# Meson-meson interactions from U(3) chiral perturbation theory

J. A. Oller

Universidad de Murcia, Spain

in collaboration with Zhi-Hui Guo and Joaquim Prades (Universidad de Granada)

J. A. Oller

Meson-meson interactions from U(3) chiral perturbation theory

Universidad de Murcia

A (1) > A (1) > A

## Outline

J. A. Oller

- 1. Background
- 2. Setup of the analytical calculation
  - Relevant chiral lagrangian & perturbative calculation
  - Unitarization : N/D method
- 3. Preliminary numerical results
  - Fit results
  - Poles from the unitarized amplitudes
- 4. Conclusion & Outlook

## Background

In the chiral limit  $m_u = m_d = m_s = 0$  the QCD Lagrangian is invariant under  $U_L(3) \otimes U_R(3)$  symmetry

 $SU_L(3)\otimes SU_R(3) \rightarrow SU_V(3)$  is Spontaneously Broken. Goldstone bosons appear  $\pi$ , K,  $\eta$ 

 $U_V(1) \equiv U_{L+R}$  Conserved Baryon Number

 $U_A(1) \equiv U_{L-R}$  Neither Conserved nor Goldstone Boson **Puzzle:** Goldstone mode:  $\eta_0$  mass would be  $<\sqrt{3}m_{\pi}$  Weinberg PRD'75 but  $\eta'$  is much heavier,  $M_{\eta'} \sim 1$  GeV

・ロト ・回 ト ・ヨト ・ヨ

The ninth axial singlet current has an anomalous divergence Adler PR'69 Fujikawa PRD'80

$$J_5^{\mu(0)} = \bar{q}\gamma_{\mu}\gamma_5 q$$
$$\partial_{\mu}J_5^{\mu(0)} = \frac{g^2}{16\pi^2} \frac{1}{N_c} Tr_c(G_{\mu\nu}\tilde{G}^{\mu\nu})$$

Large  $N_c$  QCD 't Hooft NPB'74, Witten NPB'79  $N_c \rightarrow \infty$ ,  $g^2 N_c \rightarrow constant$ 

 $U_L(N_F) \otimes U_R(N_F) \rightarrow U_{L+R}(N_F)$  Coleman, Witten PRL'80 Entire Nonet of Goldstone bosons results

Explicit breaking of chiral symmetry due to quark masses and to the  $U_A(1)$  anomaly are treated perturbatively

Universidad de Murcia

Combined power expansion in light quark masses and  $1/N_c$ 

This formalism is set up in Di Vecchia, Veneziano NPB'80 Rosenzweig, Schechter, Trahern PRD'80 Witten Ann.Phys.'80 The Leading Order in  $1/N_c$  and the Derivative Expansion has been worked out

Herrera-Siklody, Latorre, Pascual, Taron NPB'97 Generalization of Gasser, Leutwyler Ann.Phys.'84, NPB'85 from  $SU_L(3) \otimes SU_R(3)$  to  $U_L(3) \otimes U_R(3)$ 

Generating functional in the presence of external sources  $\mathcal{Z}[l, r, s, p, \theta]$ . Chiral Lagrangian to  $\mathcal{O}(p^4)$  and all orders in  $1/N_c$ 

▲ 同 ▶ → 三 ▶

Bilinear Quark operators (currents) and the Topological Charge operator coupled to external sources:

$$\mathcal{L} = \mathcal{L}_{QCD} + \bar{q}_L \gamma_\mu \ell^\mu(x) q_L + \bar{q}_R \gamma_\mu r^\mu(x) q_R - \bar{q}_R(s(x) + ip(x)) q_L$$
$$- \bar{q}_L(s(x) - ip(x)) q_R - \frac{g^2}{16\pi^2} \frac{\theta(x)}{N_c} Tr_c(G_{\mu\nu} \tilde{G}^{\mu\nu})$$

$$g_L = I + i(\beta - \alpha) , \ g_R = I + i(\beta - \alpha)$$
  
 $\theta(x) \rightarrow \theta(x) - 2\langle \alpha(x) \rangle$ 

The extra term in the fermionic determinant due to the anomaly is compensated

The non-abelian anomaly cannot be compensated. The Wess Zumino Witten term has to be added by hand Wess and Zumino PLB'71, Witten NPB'83 Adler, PR'69, Bardeen, PR'69, Adler and Bardeen PR'69 ( $\gtrsim$ ) ( $\approx$ )

J. A. Oller

Universidad de Murcia

$$D_{\mu}U 
ightarrow g_{R}(D_{\mu}U)g_{L}^{\dagger}$$

The combination

$$X(x) = \langle \log U(x) \rangle + i\theta(x) \equiv i \frac{\sqrt{2}N_F}{f} \eta_0 + i\theta(x)$$

is invariant and any of its functions Witten NPB'79, Leutwyler PLB'96

Leading Order Lagrangian

$$egin{aligned} \mathcal{L}_{0+2} &= - \mathit{W}_0(X) + \mathit{W}_1(X) \langle D_\mu U^\dagger D^\mu U 
angle + \mathit{W}_2(X) \langle U^\dagger \chi + \chi^\dagger U 
angle \ &+ i \mathit{W}_3(X) \langle U^\dagger \chi - \chi^\dagger U 
angle + \mathit{W}_4(X) \langle U^\dagger D_\mu U 
angle \langle U^\dagger D^\mu U 
angle \ &+ \mathit{W}_5(X) \langle U^\dagger (D_\mu U) 
angle D^\mu \hat{ heta} + \mathit{W}_6(X) D_\mu \hat{ heta} D^\mu \hat{ heta} \end{aligned}$$

Universidad de Murcia

$$W_4(0) = 0$$
,  $W_1(0) = W_2(0) = \frac{f^2}{4}$ 

J. A. Oller

 $1/N_c$  counting for couplings Leutwyler PLB'96

$$G(X) = g(\frac{X}{N_c}) N_c^{2-N(T_{r_F})-N(\hat{\theta})}$$

for Arbitrary Number of Flavors.  $f\sim \sqrt{N_c} \to {\rm Each}$  Loop Meson suppressed by  $N_c^{-1}$ 

$$M_{\eta_0}^2 |_{U_A(1)} = -\frac{2N_F}{f^2} W_0''(0) \propto \frac{1}{N_c}$$

$$\mathcal{L}_4 = \sum_{i=0}^{57} \beta_i O_i$$

Herrera-Siklody et al. NPB'97

J. A. Oller

Meson-meson interactions from U(3) chiral perturbation theory

Universidad de Murcia

A D > A B > A B >

Current status along this line:

- Lagrangians up to  $\mathcal{O}(p^4)$  have been thoroughly studied.
- ► The η − η' mixing and parts of the η, η' decays have been calculated at one loop level.

Variant:

These Lagrangians were employed by Borasoy *et al* PRD'01, EPJA'01, NPA'02

One-loop calculation in Infrared Regularization for  $\eta' \to \eta \pi \pi$  decay

It is stressed that  $M_{\eta'}$  is large

But  $M_{\eta'}$  also appears from vertices and there is nothing like 'baryon number conservation' that acts in the meson-baryon sector

Proliferation of free parameters. Poor predictive power.

 $\delta$ -expansion:  $p^2 \sim m_q \sim 1/N_c \sim \delta$ For the low energy implications of U(3) theory Leutwyler PLB'96, Kaiser and Leutwyler EPJC'00

 $\mathcal{L}_{\delta^0}$ :  $B, F, M_0^2$ 

 $\mathcal{L}_{\delta}$ : 10 operators

Loops are suppressed by  $p^2/f^2 \sim \mathcal{O}(\delta^2)$ 

- We aim a the complete calculation of the meson-meson scattering within U(3) χPT at one loop level and also study the various resonances by unitarizing the χPT amplitudes
- We include explicit exchange of tree level resonances instead of local counterterms

Universidad de Murcia

- Are the results stable under the inclusion of the  $\eta_0$ ?
- Influence on the running of the pole positions with Large  $N_c$
- Chiral symmetry restoration. Scalar and Pseudoscalar Spectrum.

### Shifman, Vainshtein PRD'08

$$egin{aligned} \Pi_{\mathcal{S}}(Q) &- \Pi_{\mathcal{P}}(Q) \sim rac{g^2 \langle ar{q}q 
angle^2}{Q^4} \;,\; j_{\mathcal{S}} = ar{q}q \;,\; j_{\mathcal{P}} = ar{q}\gamma_5 q \ \Pi_{\mathcal{S},\mathcal{P}}(Q) &= -i \int d^4x \: e^{iqx} \, T \langle j_{\mathcal{S},\mathcal{P}}(x) j_{\mathcal{S},\mathcal{P}}(0) 
angle \end{aligned}$$

Bernard, Duncan, LoSecco, Weinberg PRD'75

$$\int_0^\infty ds \left[ \Pi_{\mathcal{S}}^{(0)}(s) - \Pi_{\mathcal{P}}^{(3)}(s) \right] = 0 = \int_0^\infty ds \left[ \Pi_{\mathcal{S}}^{(3)}(s) - \Pi_{\mathcal{P}}^{(0)}(s) \right]$$

In the chiral limit Moussallam EPJC'99, HEP'00

$$\int_{0}^{\infty} {
m Im}\Pi_{SS}^{0-3}(s) ds = 0 = \int_{0}^{\infty} {
m Im}\Pi_{PP}^{0-3}(s) ds$$

Jamin,Oller,Pich, NPB'00 I=1/2 S-wave meson-meson scattering It was not a full one-loop calculation for the kernel

Beisert and Borasoy, PRD'03 studied S-wave meson-meson scattering from  $\mathcal{L}_{\delta^0}$  and  $\mathcal{L}_{\delta}$ The interaction kernel is calculated at tree level Local terms instead of resonance exchanges

Another framework is non-relativistic effective field theory Kubis and Schneider EPJC'09 studied cusp effects in  $\eta' \rightarrow \eta \pi \pi$  similarly to  $K \rightarrow 3\pi$  Colangelo, Gasser, Kubis, Rusetksy PLB'06

・日・ ・ヨ・ ・

Universidad de Murcia

## **Relevant Chiral Lagrangian**

・ロ・・四・・回・・回・ のへの

J. A. Oller

Universidad de Murcia

$$\mathcal{L}^{(0)}=rac{F^2}{4}\langle u_\mu u^\mu
angle+rac{F^2}{4}\langle \chi_+
angle+rac{F^2}{3}M_0^2\ln^2\det U$$

where

$$U = e^{i \frac{\sqrt{2}\Phi}{2F}}$$



J. A. Oller

Universidad de Murcia

In the calculation, we use

$$\begin{aligned} \eta &= C_{\theta} \eta_8 - S_{\theta} \eta_1 \,, \\ \eta' &= S_{\theta} \eta_8 + C_{\theta} \eta_1 \,, \end{aligned}$$

with

$$\theta = f(m_{\pi}, m_{K}, M_{0}, L_{i}, ...) \text{ or } f(m_{\pi}, m_{K}, M_{0}, c_{d}, c_{m}, ...)$$

Throughout the present discussion,  $\theta$  is chosen as

$$\sin \theta = -0.32$$
, i.e.  $\theta \simeq -18.5^{\circ}$ .

A B > 
 A
 B > 
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

.

Universidad de Murcia

J. A. Oller

 $L_i$ 's generically correspond to the higher order local operators.

At  $\mathcal{O}(\delta)$  one has  $\mathcal{O}(N_c p^4)$  and  $\mathcal{O}(p^2)$  operators:

$$\mathcal{L}^{(\delta)} = L_2 \langle u_{\mu} u_{\nu} u^{\mu} u^{\nu} \rangle + (2L_2 + L_3) \langle u_{\mu} u^{\mu} u_{\nu} u^{\nu} \rangle + \dots + F^2 \widetilde{\Lambda}_1 \langle u_{\mu} \rangle \langle u^{\mu} \rangle + F^2 \widetilde{\Lambda}_2 \ln(\det U) \langle \chi_- \rangle + \dots$$

$$u_{\mu} = i u^{\dagger} D_{\mu} U u^{\dagger} = u^{\dagger}_{\mu} \ , \ \chi_{\pm} = u^{\dagger} \chi u^{\dagger} \pm u \chi^{\dagger} u$$

 $\mathcal{O}(p^4)$ 

$$\begin{aligned} \mathcal{L}^{(\delta^2)} &= (L_1 - L_2/2) \langle u_{\mu} u^{\nu} \rangle^2 + L_4 \langle u_{\mu} u^{\mu} \rangle \langle \chi_+ \rangle + \dots \\ &+ L_{18} i D_{\mu} X \langle D^{\mu} U^{\dagger} \chi - D^{\mu} U \chi^{\dagger} \rangle + L_{25} i X \langle U^{\dagger} \chi U^{\dagger} \chi - \chi^{\dagger} U \chi^{\dagger} U \rangle \end{aligned}$$

[Kaiser and Leutwyler, '00] [Herrera-Siklody, et al., '97]

J. A. Oller

Universidad de Murcia

and  $c_d, c_m, \ldots$  correspond to the resonance operators:

$$\mathcal{L}_{S} = c_{d} \langle S_{8} u_{\mu} u^{\mu} \rangle + c_{m} \langle S_{8} \chi_{+} \rangle \\ + \widetilde{c}_{d} S_{1} \langle u_{\mu} u^{\mu} \rangle + \widetilde{c}_{m} S_{1} \langle \chi_{+} \rangle + \hat{c}_{d} \langle S_{9} u_{\mu} \rangle \langle u_{\mu} \rangle$$

$$\mathcal{L}_{V}=rac{F_{V}}{2\sqrt{2}}\langle V_{\mu
u}f_{+}^{\mu
u}
angle +rac{i\mathcal{G}_{V}}{2\sqrt{2}}\langle V_{\mu
u}[u^{\mu},u^{
u}]
angle$$

[Ecker, et al., '89]

In the current discussion, we assume the resonance saturation and exploit the above resonance operators to calculate the meson-meson scattering.

▲ 同 ▶ → 三 ▶

Universidad de Murcia

## Perturbative calculation of the scattering amplitudes

J. A. Oller

Universidad de Murcia

\*ロト \*日ト \*臣

The relevant Feynman diagrams for the wave function renormalization and mass renormalization are:



 $\Rightarrow F_P$ 

We expressed all the amplitudes in terms of physical masses and  $F_{\pi} = 92.4 \text{ MeV}$ 

Universidad de Murcia

#### J. A. Oller

## Scattering amplitudes consist of



J. A. Oller

## Partial wave amplitude and its unitarization

J. A. Oller

Universidad de Murcia

(日) (日) (日) (日)

Partial wave projection:

$$T'_J(s) = \frac{1}{2(\sqrt{2})^N} \int_{-1}^1 dx \, P_J(x) \, T'[s, t(x), u(x)] \, ,$$

where  $P_J(x)$  denote the Legendre polynomials and  $(\sqrt{2})^N$  is a symmetry factor to account for the identical particles, such as  $\pi\pi, \eta\eta, \eta'\eta'$ .

This defines the Unitary Normalization Oller, Oset NPA'97

$$\operatorname{Im} T_{Jmn}^{\prime} = \sum_{k} \theta(s - s_{th}^{k}) \rho_{k} T_{Jik}^{\prime} T_{Jkj}^{\prime*}$$
(1)

Universidad de Murcia

Identical and non-identical particle states are treated in the same way

J. A. Oller

The N/D method Chew, Mandelstam PR'60 is employed approximately for unitarizing  $T_J$ :

$$T_J = \frac{N}{D},$$

where

$$\begin{split} \mathrm{Im} D &= N \, \mathrm{Im} \, T_J^{-1} = -\rho N \,, & \text{for } s > 4m^2 \,, \\ \mathrm{Im} D &= 0 \,, & \text{for } s < 4m^2 \,, \\ \mathrm{Im} N &= D \, \mathrm{Im} \, T_J \,, & \text{for } s < 0 \,, \\ \mathrm{Im} N &= 0 \,, & \text{for } s > 0 \,, \end{split}$$

due to the fact that the unitarity condition for the elastic channel  $s > 4m^2$  is

A D > A D > A D > A

Universidad de Murcia

$$\operatorname{Im} T_J^{-1} = -\rho \theta (s - s_{th}),$$

with  $ho=\sqrt{1-4m^2/s}/16\pi=q/8\pi\sqrt{s}$  .

J. A. Oller

Outline Background Analytical calculation Numerical analysis Running of pole positions with Nc Conclusion and Outlook

One can now write the dispersion relations for N and D:

$$D(s) = \widetilde{a}^{SL}(s_0) - \frac{s-s_0}{\pi} \int_{4m^2}^{\infty} \frac{N(s') \ \rho(s')}{(s'-s)(s'-s_0)} ds'$$

$$N(s) = \int_{-\infty}^0 \frac{D(s') \operatorname{Im} T_J(s')}{s'-s} ds'.$$

It can be greatly simplified if one imposes the perturbative solution for N(s) in terms of the left hand cut (LHC) discontinuity Oller, Oset PRD'99, Oller PLB'00

No LHC:

$$\begin{split} N(s) &= 1\\ D(s) &= a^{L} + \sum_{i} \frac{R_{i}}{s - s_{i}} + g(s) = Q(s)^{-1} + g(s)\\ g(s) &= \frac{a^{SL}(s_{0})}{16\pi^{2}} + \frac{s - s_{0}}{\pi} \int_{4m^{2}}^{\infty} \frac{\rho(s')}{(s' - s)(s' - s_{0})} ds'. \end{split}$$

$$T_J(s) = rac{Q(s)}{1+g(s)Q(s)}\,,$$

Including LHC (e.g. in our perturbative calculation there is LHC from crossed exchange of resonances and crossed loops)

$$Q(s) \rightarrow N(s)$$

N(s) only has LHC

$$T_J(s) = rac{N(s)}{1+g(s) \ N(s)} \, ,$$

Matching with  $T_J(s)|_{\chi PT} = T_2 + T_R + T_L$  up to one-loop at  $\mathcal{O}(p^4)$ :

$$T_2 + T_R + T_L = N(s) - N(s)g(s)N(s) + \mathcal{O}(\hbar^2)$$

$$N(s) = T_2 + T_R + T_L + N(s)g(s)N(s)$$

J. A. Oller

Universidad de Murcia

The generalization to the inelastic case is straightforward:

$$T_J(s) = [1 + g(s) \cdot N(s)]^{-1} \cdot N(s),$$

For IJ = 00 channel we have 5 channels:  $\pi\pi$ ,  $K\bar{K}$ ,  $\eta\eta$ ,  $\eta\eta'$  and  $\eta'\eta'$ 

$$N_{0}^{0}(s) = \begin{pmatrix} N_{\pi\pi\to\pi\pi} & N_{\pi\pi\to K\bar{K}} & N_{\pi\pi\to\eta\eta} & N_{\pi\pi\to\eta\eta'} & N_{\pi\pi\to\eta'\eta'} \\ N_{\pi\pi\to K\bar{K}} & N_{K\bar{K}\to K\bar{K}} & N_{K\bar{K}\to\eta\eta} & N_{K\bar{K}\to\eta\eta'} & N_{K\bar{K}\to\eta'\eta'} \\ N_{\pi\pi\to\eta\eta} & N_{K\bar{K}\to\eta\eta} & N_{\eta\eta\to\eta\eta} & N_{\eta\eta\to\eta\eta'} & N_{\eta\eta\to\eta'\eta'} \\ N_{\pi\pi\to\eta\eta'} & N_{K\bar{K}\to\eta\eta'} & N_{\eta\eta\to\eta\eta'} & N_{\eta\eta'\to\eta\eta'} & N_{\eta\eta'\to\eta'\eta'} \\ N_{\pi\pi\to\eta'\eta'} & N_{K\bar{K}\eta'\eta'} & N_{\eta\eta\to\eta'\eta'} & N_{\eta\eta'\to\eta'\eta'} & N_{\eta\eta'\to\eta'\eta'} \end{pmatrix}$$

Universidad de Murcia

Image: A math a math

J. A. Oller

$$g_0^0(s) = egin{pmatrix} g_0^{\pi\pi} & 0 & 0 & 0 & 0 \ 0 & g_{Kar{K}} & 0 & 0 & 0 \ 0 & 0 & g_{\eta\eta} & 0 & 0 \ 0 & 0 & 0 & g_{\eta\eta'} & 0 \ 0 & 0 & 0 & 0 & g_{\eta'\eta'} \end{pmatrix}$$

2 Universidad de Murcia

≣⇒

・ロト ・回ト ・ヨト ・

Meson-meson interactions from U(3) chiral perturbation theory

J. A. Oller

For IJ = 10 there are 3 channels:  $\pi^0 \eta$ ,  $K\bar{K}$  and  $\pi^0 \eta'$ 

$$N(s)_0^1 = \left(egin{array}{cccc} N_{\pi\eta
ightarrow Kar{\kappa}} & N_{\pi\eta
ightarrow Kar{\kappa}} & N_{\pi\eta
ightarrow \pi\eta'} & N_{\pi\eta
ightarrow Kar{\kappa}} & N_{Kar{\kappa}
ightarrow \pi\eta'} & N_{\pi\eta
ightarrow \pi$$

J. A. Oller

Meson-meson interactions from U(3) chiral perturbation theory

Universidad de Murcia

A B + 
 A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

For IJ = 1/2 0 there are tree channels:  $K\pi$ ,  $K\eta$  and  $K\eta'$ 

$$N(s)_0^{1/2} = \left(egin{array}{cccc} N_{K\pi
ightarrow K\pi} & N_{K\pi
ightarrow K\eta} & N_{K\pi
ightarrow K\eta'} \ N_{K\pi
ightarrow K\eta'} & N_{K\eta
ightarrow K\eta'} & N_{K\eta
ightarrow K\eta'} \ N_{K\pi
ightarrow K\eta'} & N_{K\eta
ightarrow K\eta'} & N_{K\eta
ightarrow K\eta'} \end{array}
ight) \ g(s)_0^{1/2} = \left(egin{array}{cccc} g_{K\pi} & 0 & 0 \ 0 & g_{K\eta} & 0 \ 0 & 0 & g_{K\eta'} \end{array}
ight)$$

J. A. Oller

Meson-meson interactions from U(3) chiral perturbation theory

Universidad de Murcia

A B > 4
 B > 4
 B

3

For IJ = 3/2 0:

$$N(s)_0^{3/2} = N_{K\pi o K\pi}$$
 $g(s)_0^{3/2} = g_{K\pi}$ 

For IJ = 2 0:

J. A. Oller

$$N(s)_0^2 = N_{\pi\pi\to\pi\pi}$$
,

$$g(s)_0^2 = g_{\pi\pi}$$

Meson-meson interactions from U(3) chiral perturbation theory

Universidad de Murcia

・ロン ・日子・ ・ ヨン

## **Preliminary numerical results**

・ロト・(四・・川下・・川下・ (日・)

J. A. Oller

Universidad de Murcia

By performing the  $\chi^2$  fit, we get

$$\begin{array}{ll} c_d = (17.0^{+3.0}_{-2.7})\,\mathrm{MeV} & c_m = (41^{+18}_{-18})\,\mathrm{MeV} \\ \widetilde{c}_d = (14.5^{+1.1}_{-0.9})\,\mathrm{MeV} & \widetilde{c}_m = (17.7^{+4.5}_{-3.7})\,\mathrm{MeV} \\ G_V = (55.9^{+2.5}_{-2.4})\,\mathrm{MeV} & M_{S_1} = (1050^{+29}_{-37})\,\mathrm{MeV} \\ M_{S_8} = (1400^{+32}_{-30})\,\mathrm{MeV} & a_{SL} = (-0.90^{+0.03}_{-0.04}) \\ c_1 = (1.33^{+0.09}_{-0.11}) \end{array}$$

with  $\chi^2/d.o.f = 684/(285 - 9) \simeq 2.4$ . We have used  $\Delta \chi^2/\sqrt{2\chi^2} \le 2$  to get the errors Etkin *et al.* PRD'82

 $G_V = 55$  MeV Gasser and Leutwyler '85

 $c_1$  is defined by

$$rac{d\sigma}{dE_{\pi\eta}}=p_{\pi\eta}|c_1T_{Kar{K}
ightarrow\pi\eta}|^2$$

J. A. Oller

Universidad de Murcia

- < ∃ >

Other more constraint fits of similar quality are also possible by taking  $c_d = c_m$  and  $\tilde{c}_d = \tilde{c}_m$ 

Short distance constraints requiring vanishing of I=1/2 scalar form factors for  $s \rightarrow \infty$  Jamin, Oller, Pich NPB'00,'02

$$\sum_{i=1}^{N} c_d c_m = f^2/4 \quad , \quad \sum_{i=1}^{N} \frac{c_{m,i}}{M_{S_i}^2} (c_{m,i} - c_{d,i}) = 0$$
(2)

Universidad de Murcia

The latter is fulfilled taking  $c_{m,i} = c_{d,i} = 0$ . The former requires the contribution of the higher octet of scalar resonances.

3 free parameters less  $\rightarrow$  6 free parameters.



#### J. A. Oller

Universidad de Murcia



#### J. A. Oller

Universidad de Murcia

## Poles from the unitarized amplitudes

► *IJ* = 00

$$M_{\sigma} = 451^{+3}_{-5} \text{ MeV}, \quad \Gamma_{\sigma}/2 = 249^{+5}_{-7} \text{ MeV},$$
$$|g_{\sigma\pi\pi}| = 3.08^{+0.02}_{-0.02} \text{ GeV},$$
$$|g_{\sigma K\bar{K}}|/|g_{\sigma\pi\pi}| = 0.50,$$
$$|g_{\sigma\eta\eta}|/|g_{\sigma\pi\pi}| = 0.09$$
with  $g_{\sigma\pi\pi}^2 = \frac{1}{2\pi i} \oint_{|s-s_{\sigma}|=R} T^{\text{II}}(s) \, ds.$ 
$$IJ = 00$$
$$M_{E} = 1003^{+13}_{-17} \text{ MeV}, \quad \Gamma_{E}/2 = 24^{+12}_{-14} \text{ MeV}$$

$$\begin{split} M_{f_0} &= 1003^{+17}_{-17}\,\mathrm{MeV}\,, \quad |f_{f_0}/2 = 24^{+12}_{-14}\,\mathrm{MeV}\,, \\ |g_{f_0\pi\pi}| &= 1.9^{+0.4}_{-0.4}\,\mathrm{GeV} \\ |g_{f_0K\bar{K}}|/|g_{f_0\pi\pi}| &= 2.0 \\ |g_{f_0\eta\eta}|/|g_{f_0\pi\pi}| &= 1.4 \end{split}$$

J. A. Oller

Universidad de Murcia

・ロン ・日子・ ・ ヨン

► *IJ* = 1/20

$$\begin{split} M_{\kappa} &= 685^{+22}_{-17}\,{\rm MeV}\,, \quad \Gamma_{\kappa}/2 = 273^{+18}_{-10}\,{\rm MeV}\,, \\ |g_{\kappa \kappa \pi}| &= 4.5^{+0.2}_{-0.2}\,{\rm GeV} \\ |g_{\kappa \kappa \eta}|/|g_{\kappa \kappa \pi}| &= 0.57 \\ |g_{\kappa \kappa \eta'}|/|g_{\kappa \kappa \pi}| &= 0.50 \end{split}$$

► *IJ* = 10:

$$\begin{split} M_{a_0}^{\rm IV} &= 1043\,{\rm MeV}\,,\, \Gamma_{a_0}/2 = 62\,{\rm MeV}\,,\\ |g_{a_0\pi\eta}| &= 3.9\,{\rm GeV}\,,\\ |g_{a_0K\bar{K}}|/|g_{a_0\pi\eta}| &= 1.54\\ |g_{a_0\pi\eta'}|/|g_{a_0\pi\eta}| &= 0.04 \end{split}$$

where 
$$a_{SL}^{\pi\eta\to\pi\eta} = -1.4$$
 has been used.

J. A. Oller

Meson-meson interactions from U(3) chiral perturbation theory

Universidad de Murcia

< □ > < □ > < Ξ >

 IJ = 11 (Not Fitted): M<sub>ρ</sub> = 752 MeV, Γ<sub>ρ</sub>/2 = 56 MeV, |g<sub>ρππ</sub>| = 2.2 GeV

 IJ = 1/21 (Not Fitted): M<sub>K\*</sub> = 879 MeV, Γ<sub>K\*</sub>/2 = 19 MeV, |g<sub>K\*πK</sub>| = 1.6 GeV

メロト メロト メヨト メ

J. A. Oller

## Runing of pole position with $N_c$

We solve for  $M_{\eta}^2$ ,  $M_{\eta'}^2$ , mixing angle  $\theta$  at leading order  $\mathcal{L}_{\delta^0}$  and vary them with  $N_c$ 

$$egin{aligned} M_0^2 &\sim 1/N_c \ c_d &\sim c_m &\sim G_V &\sim F &\sim \sqrt{N_c} \ M_V^2 &\sim M_{\mathcal{S}_8}^2 &\sim M_{\mathcal{S}_1}^2 &\sim \mathcal{O}(N_c^0) \end{aligned}$$

## PRELIMINARY CURVES

J. A. Oller

#### Step of +1 in $N_c$ for every dot: $\sigma$



Oller, Oset PRD'99  $M_S^2 \propto f^2 \propto N_c$  For  $M_S^2 \gtrsim 4m^2 (\log s/m^2)$ Peláez *et al* '04,'06,...,'10

J. A. Oller

Meson-meson interactions from U(3) chiral perturbation theory

Universidad de Murcia

## Step of +1 in $N_c$ for every dot: $a_0(980)$



 $(M - i\Gamma/2)^2 = (a - ib)N_c$ 

$$M^{2} = \frac{aN_{c}}{2}\left(\sqrt{1 + \frac{4b^{2}}{a^{2}}} + 1\right) , \ \Gamma^{2} = \frac{aN_{c}}{2}\left(\sqrt{1 + \frac{4b^{2}}{a^{2}}} - 1\right)$$

#### J. A. Oller

Universidad de Murcia

< 🗇

## Step of +1 in $N_c$ for every dot: $f_0(980)$ Singlet Bare Mass: $M_{S_1} = 1050$



J. A. Oller

## Conclusion & Outlook

- A complete one loop calculation of all meson-meson scattering amplitudes within U(3) χPT has been worked out.
- ► They include the explicit exchange of tree level scalar and vector resonances in the *s*-,*t* and *u*-channels.
- All of the scalar channels have been studied by unitarizing the perturbative amplitudes using an approach based on the N/D method while treating perturbatively the crossed channel dynamics.
- More resonances than included are generated. Dynamical generation of resonances from the self-interactions between the lightest pseudoscalars.

▲ @ ▶ ▲ ≥ ▶ ▲

Universidad de Murcia

- N<sub>C</sub> dependence considered of various resonance quantities, such as the pole positions and the residuals.
- Peculiar trajectories indicating dynamical generation of lightest scalar resonances.
- Bare pole present in the  $f_0(980)$
- Ready for the study of all the vector channels.

▲口 > ▲団 > ▲臣 > ▲臣 > ▲臣 > のへで

Universidad de Murcia

J. A. Oller