J.A. Oller

Departamento de Física Universidad de Murcia ¹

July 24th, 2014

¹Partially funded by MINECO (Spain) and EU-FEDER, project FPA2010-17806

Nucleon-Nucleon scattering from dispersion relations and chiral symmetry up to $\mathsf{N}^2\mathsf{LO}$

Contents

Outline

Introduction

- Oncoupled waves: Formalism
- 3 Uncoupled waves: Results
- **④** Uncoupled waves: Higher partial waves $\ell \ge 2$
- S Coupled waves: Formalism
- 6 Coupled Waves: Results

Conclusions

-Nucleon-nucleon interactions

Introduction

NN interactions are a basic building block

Application of ChPT to *NN* interactions S. Weinberg, PLB **251** (1990) 288; NPB **363** (1991) 3; PLB **295** (1992) 114. It is already a long story

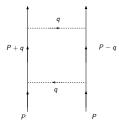
Weinberg's scheme: Calculate V_{NN} in ChPT and solve the LS equation:

$$T_{NN}(\mathbf{p}',\mathbf{p}) = V_{NN}(\mathbf{p}',\mathbf{p}) + \int d\mathbf{p}'' V_{NN}(\mathbf{p}',\mathbf{p}'') \frac{m}{\mathbf{p}^2 - \mathbf{p}''^2 + i\epsilon} T_{NN}(\mathbf{p}'',\mathbf{p})$$

C. Ordóñez, L. Ray and U. van Kolck, PRL **72** (1994) 1982; PRC **53** (1996) 2086.

-Nucleon-nucleon interactions

- \bullet Typical three-momentum cut-offs $\Lambda \sim 600$ MeV are fined tuned to data.
- NN scattering is nonperturbative: (Anti)bound states, $m\gg M_\pi$

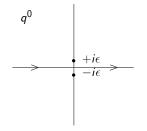


$$\int d^4 q \, (q^0 + i\epsilon)^{-1} (q^0 - i\epsilon)^{-1} (q^2 + M_\pi^2)^{-2} P(q)$$
Infrared enhancement
$$1/|\mathbf{q}| \to 1/|\mathbf{q}| \times m/|\mathbf{q}|.$$

-Nucleon-nucleon interactions

Extreme non-relativistic propagator (or Heavy-Baryon propagator)

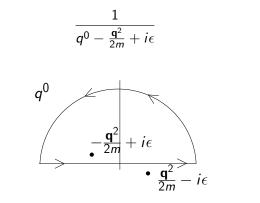
$$\frac{1}{q^0 + i\epsilon}$$



"Pinch" singularity The integration contour cannot be deformed

-Nucleon-nucleon interactions

Non-relativistic propagator with recoil correction:



$$\int dq^0 (q^0 - \frac{\mathbf{q}^2}{2m} + i\epsilon)^{-1} (q^0 + \frac{\mathbf{q}^2}{2m} - i\epsilon)^{-1} = -2\pi i \frac{m}{\mathbf{q}^2}$$

-Nucleon-nucleon interactions

• V_{NN} is calculated up to next-to-next-to-leading order (N³LO) and applied with great phenomenological success

Entem and Machleidt, PLB **254** (2002) 93; PRC **66** (2002) 014002; PRC **68** (2003) 041001 Epelbaum, Glöckle, Meißner, NPA **637** (1998) 107; **671** (2000) 195; **747** (2005) 362

• Remaining cut-off dependence

Chiral counterterms introduced in V_{NN} following naive chiral power counting are not enough to reabsorb the dependence on the cut-off

Nogga, Timmermans and van Kolck, PRC **72** (2005) 054006 Pavón Valderrama and Arriola, PRC **72** (2005) 054002; **74** (2006) 054001; **74** (2006) 064004 Kaplan, Savage, Wise NPB **478** (1996) 629 Birse, PRC **74** (2006) 014003 ; C.-J. Yang, Elster and Phillips, PRC **80** (2009) 034002; *idem* 044002.

 \triangleright In Nogga *et al.* one counterterm is **promoted** from higher to lower orders in ${}^{3}P_{0}$, ${}^{3}P_{2}$ and ${}^{3}D_{2}$ and then stable results for $\Lambda < 4$ GeV are obtained.

> Higher order contributions would be treated perturbatively

Pavón Valderrama, PRC 83 (2011) 024003; 84 (2011) 064002 B. Long, C.-J. Yang, PRC 84 (2011) 057001; 85 (2011) 034002; 86 (2012) 024001 • Given an attractive/repulsive singular potential only one/none counterterm is effective.

Pavón Valderrama and Arriola, Phys.Rev.C72,054002 (2005) Zeoli *et al.*, Few Body Sys. 54,2191 (2013)

• This procedure is **criticized** by Epelbaum and Gegelia, Eur.Phys. J.A41, 341 (2009).

It is not enough to obtain a finite ${\mathcal T}\text{-matrix}$ in the limit $\Lambda\to\infty$

One should absorb all divergences from loops in counterterms

To avoid renormalization scheme dependence and violation of low-energy theorems when $\Lambda\to\infty$

• **Covariant ChPT** Epelbaum and Gegelia, Phys.Lett.B716,338 (2012) Avoid 1/*m* expansion in nucleon denominators + OPE Ultraviolet divergences are absorbed by leading S-wave counterterms Contrary to the HBChPT case Eiras,Soto, Eur.Phys.J.A17,89(2003) -Nucleon-nucleon interactions

• V_{NN} is calculated up to next-to-next-to-leading order (N³LO) and applied with great phenomenological success

Entem and Machleidt, PLB **254** (2002) 93; PRC **66** (2002) 014002; PRC **68** (2003) 041001 Epelbaum, Glöckle, Meißner, NPA **637** (1998) 107; **671** (2000) 195; **747** (2005) 362

• Remaining cut-off dependence

Chiral counterterms introduced in V_{NN} following naive chiral power counting are not enough to reabsorb the dependence on the cut-off

Nogga, Timmermans and van Kolck, PRC **72** (2005) 054006 Pavón Valderrama and Arriola, PRC **72** (2005) 054002; **74** (2006) 054001; **74** (2006) 064004 Kaplan, Savage, Wise NPB **478** (1996) 629 Birse, PRC **74** (2006) 014003 ; C.-J. Yang, Elster and Phillips, PRC **80** (2009) 034002; *idem* 044002.

 \triangleright The main goal of our study is to establish a sound framework that allows to study *NN* interactions in chiral EFT without any regulator dependence.

It is an interesting problem

└─N/D representation

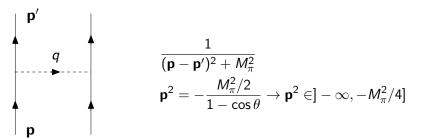
N/D Method

Chew and Mandelstam, Phys. Rev. 119 (1960) 467

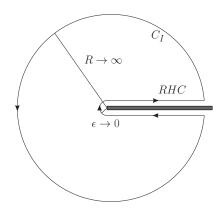
A *NN* partial wave amplitude has two type of cuts: Unitarity or Right Hand Cut (RHC)

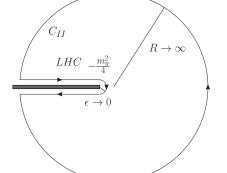
$$\Im T = \frac{m|\mathbf{p}|}{4\pi}TT^{\dagger} \quad , \ \mathbf{p}^2 > 0 \longrightarrow \Im T^{-1} = -\frac{m|\mathbf{p}|}{4\pi}\mathbb{I}$$

Left Hand Cut (LHC)



└─N/D representation





$$T_{J\ell S}(A) = \frac{N_{J\ell S}(A)}{D_{J\ell S}(A)}$$

 $N_{J\ell S}(A)$ has Only LHC $D_{J\ell S}(A)$ has Only RHC

Uncoupled waves: Formalism

Uncoupled Partial Waves

 $T_{J\ell S}(A) = N_{J\ell S}(A) / D_{J\ell S}(A)$

$$\Im \frac{1}{T_{J\ell S}(A)} = -\rho(A) \equiv \frac{m\sqrt{A}}{4\pi} \qquad , \ A > 0$$

 $\Im D_{J\ell S}(A) = -N_{J\ell S}(A)\rho(A) \qquad , \ A > 0$

 $\Im N_{J\ell S}(A) = D_{J\ell S}(A) \Im T_{J\ell S}(A) \quad , \ A < -M_{\pi}^2/4$

 $A \equiv |\mathbf{p}|^2$, $\Delta(A) = \Im T_{J\ell S}(A)$, $A < -M_{\pi}^2/4$

Uncoupled waves: Formalism

Let us start with one subtraction in D(A) and N(A)

COUPLED SYSTEM OF LINEAR INTEGRAL EQUATIONS

$$D_{J\ell S}(A) = 1 - \frac{A - D}{\pi} \int_0^\infty dq^2 \frac{\rho(q^2) N_{J\ell S}(q^2)}{(q^2 - A)(q^2 - D)}$$
$$N_{J\ell S}(A) = N_{J\ell S}(D) + \frac{A - D}{\pi} \int_{-\infty}^L dk^2 \frac{\Delta_{J\ell S}(k^2) D_{J\ell S}(k^2)}{(k^2 - A)(k^2 - D)}$$

$$egin{aligned} L &\equiv -rac{M_\pi^2}{4} \ \Delta(A) &= \Im T_{J\ell S}(A) \;, \; A < L \end{aligned}$$

Uncoupled waves: Formalism

$$D_{J\ell S}(A) = 1 - AN_{J\ell S}(0)\mathbf{g}(\mathbf{A}, \mathbf{0}) + \frac{A}{\pi} \int_{-\infty}^{L} dk^2 \frac{\Delta_{J\ell S}(k^2) D_{J\ell S}(k^2)}{k^2} \mathbf{g}(\mathbf{A}, \mathbf{k}^2)$$

CHANGE OF VARIABLE:

$$A=\frac{L}{x}, x\in [1,0]$$

$$D_{J\ell S}(\mathbf{x}) = 1 - \frac{L}{x} N_{J\ell S}(0) \mathbf{g}(\mathbf{x}, \mathbf{0}) + \frac{L}{\pi x} \int_0^1 dy \frac{\Delta(y) \mathbf{g}(\mathbf{x}, \mathbf{y})}{y} D(y)$$

Uncoupled waves: Formalism

Fredholm Integral Equation of the Second Kind

$$D_{J\ell S}(x) = f_{J\ell S}(x) + \int_0^1 dy K(x, y) D(y)$$
$$K(x, y) = \frac{L}{\pi} \frac{\mathbf{g}(\mathbf{x}, \mathbf{y})}{x y} \Delta(y)$$

- Not L_2 for $\Delta(A)$ at NLO and at higher orders in ChPT
- Not symmetric

└─N/D Representation

The N/D method provides nonperturbative scattering equations that requires as input $\Delta(A)$ that is calculated in perturbation theory

Integrals of infinite extent are convergent by introducing enough number of subtractions

• In connection with ChPT this dispersive method was recently applied to NN scattering in LO: M. Albaladejo and J.A. Oller, Phys.Rev.C84, 054009 (2011); 86,034005 (2011) employing OPE

NLO: Z.-H.Guo, G. Ríos, J.A. Oller, Phys.Rev.C89,014002(2014) OPE+leading TPE

N²LO: J.A. Oller, arXiv:1402.2449 OPE+leading+subleading TPE

└─N/D Representation

High-Energy behavior

• Let
$$|D(A)| \le A^n$$
 for $A \to \infty$
 $N(A) = T(A)D(A)$
 $T(A) = \frac{S(A) - 1}{2\rho(A)} \to A^{-1/2}$, $A \to +\infty$
 $N(A) \le A^{n-1/2}$

We divide N(A) and D(A) by $(A - C)^m$ with m > n

$$rac{D(A)}{A^m}
ightarrow 0 \;, \; ext{when} \; A
ightarrow \infty \ L < C < 0$$

Dispersive integrals are convergent with m > n subtractions

└─N/D Representation

$$D(A) = \sum_{i=1}^{m} \delta_i (A - C)^{m-i} - \frac{(A - C)^m}{\pi} \int_0^\infty dq^2 \frac{\rho(q^2) N(q^2)}{(q^2 - A)(q^2 - C)^m}$$
$$N(A) = \sum_{i=1}^{m} \nu_i (A - C)^{m-i} + \frac{(A - C)^m}{\pi} \int_{-\infty}^L dk^2 \frac{\Delta(k^2) D(k^2)}{(k^2 - A)(k^2 - C)^m}$$

m = 1 IS THE MINIMUM Once-subtracted DRs for N(A)and D(A)

Unnatural size of *S*-wave scattering lengths

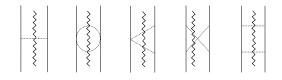
- C could be taken different in D(A) and N(A)
 - N(A): C = 0
 - D(A): One subtraction at C = 0 and the rest at $C = -M_{\pi}^2$.
 - Normalization: D(0) = 1

└─N/D Representation

In our study Δ(A) is given by ⁻ⁱ/₂ the discontinuity across the LHC:
 LO: OPE

- NLO: Leading TPE (irreducible) + Once-iterated OPE
- N²LO: Subleading TPE

Kaiser, Brockmann and Weise, NPA625(1997)758



$$\Delta(A)$$
 is finite $A^{A)} \rightarrow A^{A^{2}}$ N²LO, at most
 $\Delta(A)$ is finite $A^{A^{-1}}$ NLO, at most
 $A^{A^{-1}}$ LO, at most

└─N/D Representation

Existence of solution of the IEs: $\Delta(A) = \lambda(-A)^{\gamma}$

Change of Variable: $x = L/k^2$, y = L/A

$$D(y) = 1 +
u_1 rac{m(-L)^rac{1}{2}}{4\pi y^rac{1}{2}} + rac{\lambda m}{4\pi^2} (-L)^{\gamma+rac{1}{2}} \int_0^1 rac{dx}{x^{\gamma+rac{1}{2}}y^rac{1}{2}} rac{D(x)}{\sqrt{x}+\sqrt{y}}$$

Symmetryzing the kernel. Change of function:

$$\widetilde{D}(y) = y^{-\frac{\gamma}{2}} D(y)$$

$$\begin{split} \widetilde{D}(y) &= y^{-\gamma/2} + y^{-\frac{\gamma+1}{2}} \nu_1 \frac{m(-L)^{\frac{1}{2}}}{4\pi} \\ &+ \frac{\lambda m}{4\pi^2} (-L)^{\gamma+\frac{1}{2}} \int_0^1 dx \frac{\widetilde{D}(x)}{(xy)^{\frac{\gamma+1}{2}} (\sqrt{x} + \sqrt{y})} \end{split}$$

└─N/D Representation

Kernel:

$$K(y,x) = \frac{1}{(xy)^{\frac{\gamma+1}{2}}(\sqrt{x} + \sqrt{y})}$$

ullet It is quadratically integrable for $\gamma < -1/2$

$$\int_0^1 \int_0^1 dx dy \ K(x,y)^2 < \infty$$

- The inhomogeneous term is also quadratically integrable
- Because of Fredholm Theorem \rightarrow There is a unique solution
- The eigenvalues have no accumulation point in the finite domain. Just change infinitesimally g_A, c_i, etc.

└─N/D Representation

For **OPE** $\gamma = -1$ or -2

There is a unique solution when $\Delta(A)$ is given at LO with the N/D method

In the Lippmann-Schwinger + OPE potential this is not the case. Singular nature of the OPE potential $(1/r^3 \text{ for } r \rightarrow 0)$ in the triplet waves. \rightarrow **Introduction**

• Adding more subtractions does not modify the symmetric kernel

$$\frac{A^2}{\pi}\int dk^2 \frac{\Delta(k^2)D(k^2)}{(k^2)^2}\dots$$

One extra
$$\frac{L}{y} \cdot \frac{x}{L} \longrightarrow \widetilde{D}(y) = y^{-\frac{\gamma}{2}+1}D(y)$$

The degree of divergence does not increase in the inhomogeneous term \leftrightarrow We multiply by the extra y

└─N/D Representation

NLO: $\gamma \geq 1$

Integration Interval: $x \in [\varepsilon, 1]$ $\varepsilon \to 0^+$ To recover [0, 1] define $t = (x - \varepsilon)/(1 - \varepsilon)$, $u = (y - \varepsilon)/(1 - \varepsilon)$

$$\begin{split} \widetilde{D}_{\varepsilon}(u) &= (1-\varepsilon)^{-\frac{\gamma}{2}} (u + \frac{\varepsilon}{1-\varepsilon})^{-\frac{\gamma}{2}} \left(1 + (1-\varepsilon)^{-\frac{1}{2}} (u + \frac{\varepsilon}{1-\varepsilon})^{-\frac{1}{2}} \nu_1 \frac{m(-L)^{\frac{1}{2}}}{4\pi} \right) \\ &+ \frac{\lambda m}{4\pi^2} (-L)^{\gamma+\frac{1}{2}} \int_0^1 dt \frac{\widetilde{D}_{\varepsilon}(t) (1-\varepsilon)^{-\gamma-\frac{1}{2}}}{\left[(t + \frac{\varepsilon}{1-\varepsilon}) (u + \frac{\varepsilon}{1-\varepsilon}) \right]^{\frac{\gamma+1}{2}} \left(\sqrt{t + \frac{\varepsilon}{1-\varepsilon}} + \sqrt{u + \frac{\varepsilon}{1-\varepsilon}} \right) \end{split}$$

With the modified kernel $K_{\varepsilon}(u, t)$ given by

$$\mathcal{K}_{arepsilon}(u,t) = rac{(1-arepsilon)^{-\gamma-rac{1}{2}}}{\left[(t+rac{arepsilon}{1-arepsilon})(u+rac{arepsilon}{1-arepsilon})
ight]^{rac{\gamma+1}{2}}\left(\sqrt{t+rac{arepsilon}{1-arepsilon}}+\sqrt{u+rac{arepsilon}{1-arepsilon}}
ight)}>0\;.$$

└─N/D Representation

$$\widetilde{D}_{\varepsilon}(u) = f(u) + \frac{\lambda m}{4\pi^2} (-L)^{\gamma + \frac{1}{2}} \int_0^1 dt \, H_{\varepsilon}(u, t) f(t)$$

$$egin{aligned} &\mathcal{H}_arepsilon(u,t) = \sum_{n=1}eta^{n-1}\mathcal{K}_{arepsilon;n}(u,t)\;, \ &\mathcal{K}_{arepsilon;n+1}(u,t) = \int_0^1 dv\;\mathcal{K}_arepsilon(u,v)\,\mathcal{K}_{arepsilon;n}(v,t)\;\;,\;\;(n\geq 1)\;, \ &\mathcal{K}_{arepsilon;1}(u,t) \equiv \mathcal{K}_arepsilon(u,t)\;. \end{aligned}$$

 $H_{\varepsilon} > 0$ if $\lambda > 0$

γ ≥ 1/2: For having a cancellation between both terms it is necessary that λ < 0

└─N/D Representation

We can get rid of this limitation by adding more subtractions

The subtraction constants have no sign defined.

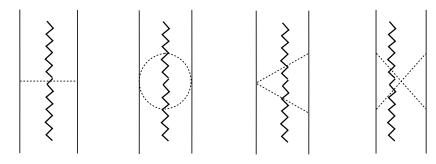
The factor A^n also changes sign according to whether n is even or odd.

Adding more subtractions increases also the sensitivity to lower energies

└─N/D Representation

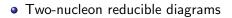
Perturbative calculation of $\Delta(A)$.

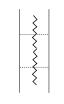
• Irreducible diagrams contributing to $\Delta(A)$



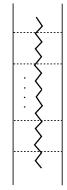
Amenable to a chiral expansion, much like V_{NN}

└─N/D Representation





Similar size to the other NLO irreducible diagrams



- All pion lines must be put on-shell $\longrightarrow A \leq -n^2 M_{\pi}^2/4$.
- As *n* increases their physical contribution fades away.
- This only occurs for the imaginary part!

└─N/D Representation

Chiral scaling of subtraction constants.

The change of the subtraction point makes the subtraction constants change

$$N(A) = \nu_1 + \nu_2 A + \frac{A^2}{\pi} \int_{-\infty}^{L} dk^2 \frac{\Delta(k^2)D(k^2)}{(k^2)^2}$$
$$= \nu_1' + \nu_2' A + \frac{(A-C)^2}{\pi} \int_{-\infty}^{L} dk^2 \frac{\Delta(k^2)D(k^2)}{(k^2-C)^2}$$

$$\nu_1' = \nu_1 - \frac{C^2}{\pi} \int_{-\infty}^{L} dk^2 \Delta(k^2) D(k^2) \frac{1}{(k^2 - C)^2 k^2}$$

$$\nu_2' = \nu_2 + \frac{C}{\pi} \int_{-\infty}^{L} dk^2 \Delta(k^2) D(k^2) \frac{2k^2 - C}{(k^2 - C)^2 (k^2)^2}$$

.

└─N/D Representation

$$\nu_1' = \nu_1 - \frac{C^2}{\pi} \int_{-\infty}^{L} dk^2 \Delta(k^2) D(k^2) \frac{1}{(k^2 - C)^2 k^2} \sim \mathcal{O}(p^n)$$

$$\nu_2' = \nu_2 + \frac{C}{\pi} \int_{-\infty}^{L} dk^2 \Delta(k^2) D(k^2) \frac{2k^2 - C}{(k^2 - C)^2 (k^2)^2} \sim \mathcal{O}(p^{n-1})$$

$$\begin{array}{c|ccc} \hline \text{Coefficient} & \Delta(A) = & \mathcal{O}(p^0) & \mathcal{O}(p^2) \\ \hline \nu_1 & p^0 & p^2 \\ \nu_2 & p^{-2} & p^0 \\ \nu_3 & p^{-4} & p^{-2} \end{array} \qquad \begin{array}{c} \bullet & C \sim M_\pi^2 \\ \bullet & \Delta(k^2) \sim \mathcal{O}(p^n) \\ \bullet & D(k^2) \sim \mathcal{O}(p^0) \\ D(0) = 1 \end{array}$$

This chiral power counting coincides with Weinberg power counting

└─N/D Representation

$$D(A) = 1 + \delta_2 A - \frac{A(A - E)}{\pi} \int_0^\infty dq^2 \frac{\rho(q^2)N(q^2)}{q^2(q^2 - E)(q^2 - A)}$$
$$E \longrightarrow C$$
$$\delta_2 \to \delta_2 + \frac{E - C}{\pi} \int_0^\infty dq^2 \frac{\rho(q^2)N(q^2)}{q^2(q^2 - E)(q^2 - C)}$$

Coefficient
$$\Delta(A) = \mathcal{O}(p^0) \quad \mathcal{O}(p^2)$$

 $\delta_2 \qquad p^{-2} \quad p^0$
 $\delta_3 \qquad p^{-4} \quad p^{-2}$

$$\rho(A) = m\sqrt{A/4\pi} \sim \mathcal{O}(p^0)$$

 \star D(A) is attached to two-nucleon reducible diagrams

└─N/D Representation

$$\nu_n, \ \delta_n \sim \mathcal{O}(p^{-2(n-1)+m})$$
for $\Delta(A) \sim \mathcal{O}(p^m)$

How many subtraction to include for a given m?

$$n \leq \left[rac{m}{2}
ight]$$
 , such that $-2(n-1)+m \geq 0$

However, more relevant that the counting is to have a meaningful $$\rm IE$.$

This could eventually require including more subtraction constants.

└─N/D Representation

Analogy with ChPT, e.g. meson-meson sector $\mathcal{O}(p^4)$:

$$f_4 = \alpha_0 + \alpha_1 s + \alpha_2 s^2 + \frac{s^3}{\pi} \int_{4m_\pi^2}^{\infty} ds' \frac{Imf_4(s')}{(s')^3(s'-s)}$$

Doing the same

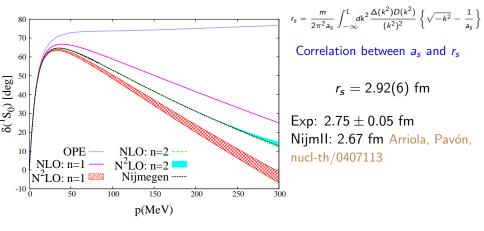
$$\alpha_0 = \mathcal{O}(p^4) \ , \ \alpha_1 = \mathcal{O}(p^2) \ , \ \alpha_2 = \mathcal{O}(p^0)$$

and no more subtractions are included because they would scale with negative powers (low-energy propagation)

The α_i are combination of the $L_i = \mathcal{O}(A^0)$

Uncoupled waves: ${}^{1}S_{0}$

Once-subtracted DR $\nu_1 = -4\pi a_s/m \sim 31 \ M_{\pi}^{-2}$



Uncoupled waves: ${}^{1}S_{0}$

$$-\frac{A}{\pi}\int_{-\infty}^{L} dk^{2} \frac{\Delta(k^{2})D(k^{2})}{k^{2}}g(A,k^{2}) + D(A) = 1 + A\frac{4\pi a_{s}}{m}g(A,0)$$

 $D(A) = D_0(A) + a_s D_1(A)$ with $D_{0,1}(A)$ independent of a_s Low-energy correlation:

$$\begin{aligned} r_s &= \alpha_0 + \frac{\alpha_{-1}}{a_s} + \frac{\alpha_{-2}}{a_s^2} , \qquad \alpha_0 = \frac{m}{2\pi^2} \int_{-\infty}^{L} dk^2 \frac{\Delta(k^2) D_1(k^2)}{(k^2)^2} \sqrt{-k^2} \\ \alpha_0 &= 2.61 \sim 2.73 \text{ fm} , \\ \alpha_{-1} &= -5.93 \sim -5.65 \text{ fm}^2 , \qquad \alpha_{-1} = \frac{m}{2\pi^2} \int_{-\infty}^{L} dk^2 \frac{\Delta(k^2)}{(k^2)^2} \left[D_0(k^2) \sqrt{-k^2} - D_1(k^2) \right] \\ \alpha_{-2} &= 5.92 \sim 6.12 \text{ fm}^3 . \qquad \alpha_{-2} = -\frac{m}{2\pi^2} \int_{-\infty}^{L} dk^2 \frac{\Delta(k^2) D_0(k^2)}{(k^2)^2} \end{aligned}$$

Pavón Valderrama, Ruiz Arriola PRC74(2006)054001: solving a Lippmann-Schwinger equation with V_{NN} that includes OPE+TPE + boundary conditions + orthogonality of wave functions

Twice-subtracted DR: $a_s [\nu_1]$ is fixed — ν_2 and δ_2 are fitted

$$\delta_2 = -8.0(3) \ M_\pi^{-2} \ ,$$

 $u_2 = -23(1) \ M_\pi^{-4} \ .$

From the once-subtracted DR:

$$u_2^{
m pred} = rac{1}{\pi} \int_{-\infty}^L dk^2 rac{\Delta(k^2) D(k^2)}{(k^2)^2}$$

At N²LO:
$$u_2^{
m pred} \sim -7.5 \; M_\pi^{-4}$$

Uncoupled waves: ${}^{1}S_{0}$

$$p \cot \delta = -\frac{1}{a_s} + \frac{1}{2}r_s p^2 + \sum_{i=2} v_i p^{2i}$$

	rs	<i>v</i> ₂	<i>v</i> ₃	<i>v</i> ₄	<i>v</i> 5	V ₆
NLO	2.32	-1.08	6.3	-36.2	225	-1463
NNLO-I	2.92(6)	-0.32(8)	4.9(1)	-27.7(8)	177(4)	-1167(30)
NNLO-II	2.699(4)	-0.657(3)	5.20(2)	-30.39(9)	191.9(6)	-1263(3)
[A]	2.68	-0.61	5.1	-30.0		
[B]	$2.62 \sim 2.67$	$-0.52 \sim -0.48$	$4.0 \sim 4.2$	$-20.5\sim-19.9$		
[C]	2.68	-0.48	4.0	-20.0		

	$v_7 \times 10^{-1}$	$v_8 \times 10^{-2}$	$v_9 imes 10^{-3}$	$v_{10} \times 10^{-4}$
NLO	985	-681	480	-344(3)
NNLO-I	795(18)	-554(12)	393(8)	-284(6)
NNLO-II	857.1(1.9)	-595.7(1.3)	421.7(9)	-304(3)

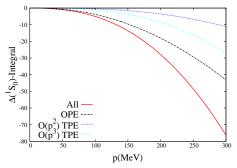
- [A] Epelbaum et al., NPA671,295(2000);
- [B] Epelbaum et al., EPJA19,401(2004);
- [C] Stoks et al., PRC48,792(1993)

Quantifying contributions to $\Delta(A)$

A typical integral from twice-subtracted DR:

$$\frac{A(A+M_{\pi}^2)}{\pi^2}\int_{-\infty}^{L} dk^2 \frac{\Delta(k^2)D(k^2)}{(k^2)^2}\int_{0}^{\infty} dq^2 \frac{q^2\rho(q^2)}{(q^2-A)(q^2-k^2)(q^2+M_{\pi}^2)}$$

The integral displays the dominant role played by the nearest region in the LHC



Uncoupled *P*-waves

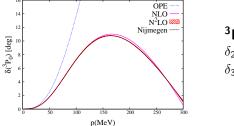
Uncoupled *P*-waves

$$\lambda_P = \lim_{A \to -\infty} rac{\Delta(A)}{(-A)^{(3/2)}} > 0 \; ,$$

Once-subtracted DRs are not meaningful.

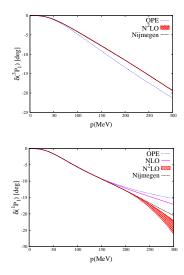
Three-time subtracted DRs are needed for ${}^{3}P_{0}$ and ${}^{3}P_{1}$

$$u_2 = 4\pi a_V/m \ , \ \nu_3 = 0^*$$



$${}^{3}\mathbf{P_{0}} \\ \delta_{2} = 2.82(5) \ M_{\pi}^{-2} \\ \delta_{3} = 0.18(6) \ M_{\pi}^{-4}$$

Uncoupled P-waves



$${}^{3}\mathbf{P}_{1} \\ \delta_{2} = 2.7(1) \ M_{\pi}^{-2} \\ \delta_{3} = 0.47(3) \ M_{\pi}^{-4}$$

$${}^{3}P_{0}$$

Twice-subtracted DRs are
enough
 $\delta_{2} = 0.4(1) M_{\pi}^{-2}$

Uncoupled waves: Higher partial waves $\ell > 2$

A partial wave should vanish as A^{ℓ} in the limit $A \rightarrow 0^+$ (threshold)

Method: ℓ -time-subtracted DR

$$N(A) = \frac{A^{\ell}}{\pi} \int_{-\infty}^{L} dk^2 \frac{\Delta(k^2) D_{J\ell S}(k^2)}{(k^2)^{\ell}(k^2 - A)}$$

$$\nu_1, \dots, \nu_{\ell-1} = 0, \quad \lim_{A \to 0} N(A) \longrightarrow A^{\ell}$$

$$D(A) = 1 + \sum_{i=2}^{\ell} \delta_i A^{i-1} + \frac{A^{\ell}}{\pi} \int_{-\infty}^{L} dk^2 \frac{\Delta(k^2) D(k^2)}{(k^2)^{\ell}} g(A, k^2)$$

$$\lim_{A \to 0} D(A) \longrightarrow 1 + \mathcal{O}(A)$$

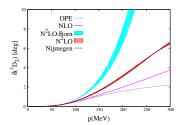
 $\lim_{A\to 0}\frac{N(A)}{D(A)}\longrightarrow A^{\ell}$

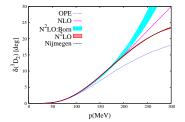
 $\ell - 1$ free parameters: δ_i $(i = 2, ..., \ell)$ Principle of maximal smoothness: $\delta_p = 0^*$, $2 \le p \le \ell - 1$ δ_ℓ is the only free parameter

Uncoupled D-waves

Uncoupled *D*-waves

Twice-subtracted DRs





$$\lambda_D = \lim_{A \to -\infty} \frac{\Delta(A)}{(-A)^{3/2}} < 0$$

 ${}^{1}\mathsf{D}_{2}$ $\delta_{2} = -0.07(1) \ M_{\pi}^{-2}$

³D₂
$$\delta_2 = -0.017(3) \ M_{\pi}^{-2}$$

Uncoupled D-waves

Born approximation

High- ℓ partial waves are expected to be perturbative

$$N(A) = \frac{A^{\ell}}{\pi} \int_{-\infty}^{L} dk^{2} \frac{\Delta(k^{2})D(k^{2})}{(k^{2})^{\ell}(k^{2} - A)}$$
$$N_{B}(A) = \frac{A^{\ell}}{\pi} \int_{-\infty}^{L} dk^{2} \frac{\Delta_{B}(k^{2})}{(k^{2})^{\ell}(k^{2} - A)}$$

 $\Delta_B(A)$ only includes irreducible contributions

For
$$\ell \geq 2$$
 $N_B(A) = V_{NN}(A)$

Perturbative phase shifts: $\delta_B(A) = \rho(A)N_B(A)$

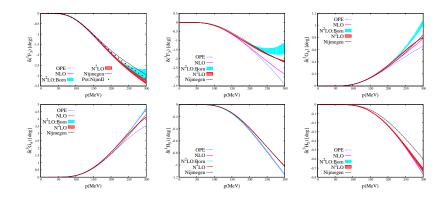
Connection between the subtraction constants ν_i and ChPT counterterms

Uncoupled F-, G- and H-waves

Uncoupled F-, G- and H-waves

Standard treatment:

 ℓ -time subtracted DRs 1 free parameter per wave

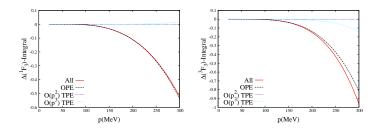


Uncoupled F-, G- and H-waves

Quantifying contributions to $\Delta(A)$

The perturbative character for $\ell \geq 3$ can also be seen here:

$$\frac{A^{\ell}}{\pi}\int_{-\infty}^{L}dk^{2}\frac{\Delta(k^{2})D(k^{2})}{(k^{2})^{\ell}}g(A,k^{2})$$



Coupled waves

Coupled Waves

$$S_{JIS} = I + i \frac{|\mathbf{p}|m}{4\pi} T$$

Along the RHC $A \ge 0$

$$S_{JIS} \cdot S_{JIS}^{\dagger} = S_{JIS}^{\dagger} \cdot S_{JIS} = I$$

$$S_{JIS} = \begin{pmatrix} \cos 2\varepsilon \, e^{i2\delta_1} & i \sin 2\varepsilon \, e^{i(\delta_1 + \delta_2)} \\ i \sin 2\varepsilon \, e^{i(\delta_1 + \delta_2)} & \cos 2\varepsilon \, e^{i2\delta_2} \end{pmatrix} \quad , \quad |\mathbf{p}|^2 \ge 0$$

arepsilon is the mixing angle: i=1 ($\ell=J-1$), i=2 ($\ell=J+1$)

$$\operatorname{Im} \frac{1}{T_{ii}(A)} = -\rho(A) \left[1 + \frac{\frac{1}{2}\sin^2 2\varepsilon}{1 - \cos 2\varepsilon \cos 2\delta_i} \right]^{-1} \equiv -\nu_{ii}(A)$$
$$\operatorname{Im} \frac{1}{T_{12}(A)} = -2\rho(A) \frac{\sin(\delta_1 + \delta_2)}{\sin 2\varepsilon} \equiv -\nu_{12}(A)$$

Coupled waves

$$T_{ij}(A) = \frac{N_{ij}(A)}{D_{ij}(A)}$$
, $(ij = 11, 12, 22)$

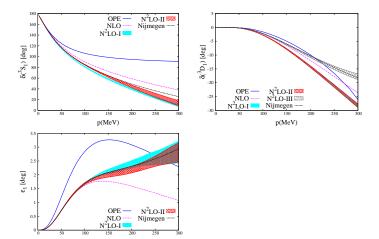
One proceeds in a coupled-iterative way:

- We take an input.
- 2 Solve the integral equations and get new $\nu_{ij}(A)$.
- S Repeat the process until convergence is obtained.

Coupled Waves: ${}^3S_1 - {}^3D_1$

 $^{3}S_{1} - ^{3}D_{1}$

• Minimum number of subtractions in the DRs: 1 free parameter, $E_d = 2.225$ MeV



 \square Coupled Waves: ${}^{3}S_{1} - {}^{3}D_{1}$

Correlation between r_t and a_t

$$r_{t} = -\frac{m}{2\pi^{2}a_{t}} \int_{-\infty}^{L} dk^{2} \frac{\Delta_{11}(k^{2})D_{11}(k^{2})}{(k^{2})^{2}} \left\{ \frac{1}{a_{t}} + \frac{4\pi k^{2}}{m}g_{11}(0,k^{2}) \right\} \\ -\frac{8}{m} \int_{0}^{\infty} dq^{2} \frac{\nu_{11}(q^{2}) - \rho(q^{2})}{(q^{2})^{2}}$$

$$S = \mathcal{O}\begin{pmatrix} S_0 & 0\\ 0 & S_2 \end{pmatrix} \mathcal{O}^T \quad , \quad N_p^2 = \lim_{A \to k_d^2} \left(\sqrt{-k_d^2} + i\sqrt{A} \right) S_0$$
$$\eta = -\tan \epsilon_1 = [D/S \text{ ratio}]$$

 \Box Coupled Waves: ${}^{3}S_{1} - {}^{3}D_{1}$

	a _t [fm]	<i>r</i> _t [fm]	η	$N_p^2 [\text{fm}^{-1}]$	<i>v</i> ₂	<i>v</i> ₃
NLO	5.22	1.47	0.0295	0.714	-0.10572(12)	0.8818(11)
NNLO-I	5.52(3)	1.89(3)	0.0242(3)	0.818(10)	0.157(22)	0.645(9)
NNLO-II	5.5424*	1.759*	0.02535(13)	0.78173(2)	0.0848(4)	0.762(7)
[A]	5.4194(20)	1.7536(25)	0.0253(2)	0.7830(15)	0.040(7)	0.673(2)
[B]	5.424	1.753	0.0245		0.046	0.67

	v ₇	$v_8 \times 10^{-1}$	$v_{9} \times 10^{-2}$	$v_{10} \times 10^{-3}$
NLO	1867(11)	-1375(11)	1008(11)	-760(12)
NNLO-I	1161(41)	-840(30)	625(22)	-463(17)
NNLO-II	1426(13)	-1015(15)	764(17)	-545(20)

[A] de Swart et al., Proceedings of 3rd International Symposium on Dubna Deuteron 95, Dubna, Moscow, July
 4–7, 1995, arXiv: nucl-th/9509032

[B] Epelbaum et al., NPA671, 295 (2000).

The differences between NNLO-I and NNLO-II are much smaller than in the ${}^{1}S_{0}$ wave πN physics is more dominant in ${}^{3}S_{1} - {}^{3}D_{1}$

Nucleon-Nucleon scattering from dispersion relations and chiral symmetry up to N²LO \Box Coupled Waves: ${}^{3}S_{1} - {}^{3}D_{1}$

Twice-subtracted DRs: NNLO-II Results E_d , r_t , a_t ν_2^{12} is fitted

- ${}^{3}D_{1}$ is not accurately reproduced
- Three-time subtracted DRs for this wave: NNLO-III
- ν_3^{22} is around a 20% larger than predicted from NNLO-II

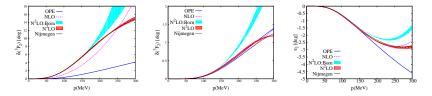
$$rac{\delta
u_3}{
u_3^{
m pred}} = \mathcal{O}(p) = 0.23 \sim rac{M_\pi}{\Lambda} \ \Lambda \sim 4 M_\pi \sim 500 \ MeV$$

Coupled waves: ${}^{3}P_{2} - {}^{3}F_{2}$

 ${}^{3}P_{2} - {}^{3}F_{2}$

$$\lambda_{11} = \lim_{A \to -\infty} \frac{\Delta_{11}(A)}{(-A)^{3/2}} > 0 ,$$

 ${}^{3}P_{2}$ requires at least three subtractions ${}^{3}P_{2}$ [2] ; ${}^{3}F_{2}$ [1] ; ϵ_{2} [0]



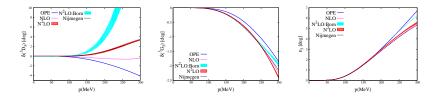
Clear improvement compared to the Born approximation in ${}^{3}F_{2}$ and ϵ_{2} without modifying the values of the c_{i} 's

The improvement does not come by modifying the potential

Coupled waves: ${}^{3}D_{3} - {}^{3}G_{3}$

$${}^{3}D_{3} - {}^{3}G_{3}$$

Standard formalism



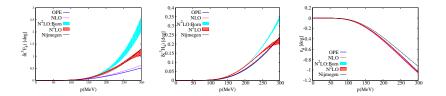
Clear improvement compared to the Born approximation in ${}^{3}D_{3}$ without modifying the values of the c_{i} 's

 ${}^{3}D_{3}$ [1] ; ${}^{3}G_{3}$ [1] ; ϵ_{3} [0]

Nucleon-Nucleon scattering from dispersion relations and chiral symmetry up to N²LO \Box Coupled waves: ${}^{3}F_{4} - {}^{3}H_{4}$

$${}^{3}F_{4} - {}^{3}H_{4}$$

Standard formalism



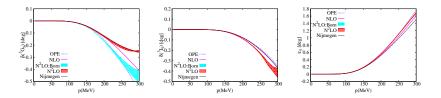
Clear improvement compared to the Born approximation in ${}^{3}F_{4}$ without modifying the values of the c_{i} 's

 ${}^{3}F_{4}$ [1] ; ${}^{3}H_{4}$ [0] ; ϵ_{4} [0]

Nucleon-Nucleon scattering from dispersion relations and chiral symmetry up to N²LO \Box Coupled waves: ${}^{3}G_{\pi} - {}^{3}I_{\pi}$

 ${}^{3}G_{5} - {}^{3}I_{5}$

Standard formalism



Note the improvement in ${}^{3}G_{5}$.

This was not accomplished before.

Neither perturbatively (even following the spectral-function regularization) nor by iterating V_{NN} . A genuine effect of NN rescattering.

 ${}^{3}G_{5}$ [1] ; ${}^{3}I_{5}$ [1] ; ϵ_{5} [0]

- Conclusions

Conclusions

- Δ(A) is calculated perturbatively in ChPT up to N²LO OPE, leading and subleading TPE, once-iterated OPE.
- Accurate reproduction of Nijmegen phase shifts.
- No need to modify $V_{NN}(A)$ in order to achieve such accurate reproduction.
- Dispersion relations provide a sound framework where *NN* rescattering can be studied in a well-defined way and independent of regulator.

- Born approximation is much more dependent on the c_i 's than the full results.
- \bullet Correlation between scattering length and effective range in S-waves \sim 10%
- Chiral power counting for the subtraction constants.
- $\Lambda_{NN} \sim 0.4\text{--}0.5$ GeV.
- Can one connect the δ_i with the chiral Lagrangians?

A.M. Gasparyan, M.F.M. Lutz and E.Epelbaum, EPJA49(2013)115 It also makes use of an N/D representation

It calculates in perturbation theory the NN partial waves at $\mu_M^2 = 4m^2 - 2M_\pi^2$ [matching point]

 \star The real parts of the NN partial waves are always affected by the infrared enhancement

But LHC integrals are truncated

- Loss of perfect analytical properties.
- Loss of feedback on the number of subtraction constants required.