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A secret sharing scheme is a method to protect a secret value by distributing it into shares among a
set of players in order to prevent both the disclosure and the loss of the secret. Secret sharing schemes
were independently introduced by Shamir [7] and Blakley [1] in 1979, and soon became a very important
primitive in cryptography with many different applications, such as secure multiparty computation and
distributed cryptography. These applications require efficient schemes. In particular, shares of a secret value
should be small. A common measure of the efficiency of a secret sharing scheme is the information ratio,
the ratio between the maximum length of the shares and the length of the secret.

A secret sharing scheme is non-perfect if some subsets of players that cannot recover the secret value ha-
ve partial information about it. The first non-perfect schemes were introduced by Blakley and Meadows [3],
and the main purpose was to improve the efficiency of the schemes by relaxing the security requirements.
In a perfect scheme, the information ration is always greater or equal to one, but in a non-perfect scheme it
can be smaller.

This work is dedicated to the search of bounds on the information ratio of non-perfect secret sharing
schemes and the construction of efficient linear non-perfect secret sharing schemes. To this end, we extend
the known connections between matroids, polymatroids and perfect secret sharing schemes [2, 4] to the
non-perfect case. Previous results in this line of work were presented in [6, 5].
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