

Transmission eigenvalues for higher-order operators and higher-order perturbations

A. García¹, E. V. Vesalainen², M. Zubeldia³

We extend the theory of transmission eigenvalues for higher-order main terms on three fronts. First, we extend the techniques of Serov and Sylvester to prove discreteness and existence results for transmission eigenvalues for higher-order main terms with singular and degenerate potentials. Second, we extend Sylvester's approach via upper triangular operators to establish the discreteness of transmission eigenvalues for higher-order main terms and higher-order perturbations. Finally, we extend Sylvester's approach to establish discreteness for some magnetic Schrödinger operators.

¹Universidad de País Vasco/Euskal Herriko Unibertsitatea, Spain andoni.agarcia@gmail.com

²Department of Mathematics and Statistics FI-00014 University of Helsinki, Finland esa.vesalainen@gmail.com

³Basque Center for Applied Mathematics Mazarredo, 14. 48009 Bilbao. Spain mzubeldia@bcamath.org

ODE solutions for the fractional Laplacian equations arising in conformal geometry

Azahara de la Torre Pedraza¹, María del Mar González¹, Manuel del Pino², Jun-Cheng Wei³

We construct some ODE solutions for the fractional Yamabe problem in conformal geometry. The fractional curvature, a generalization of the usual scalar curvature, is defined from the conformal fractional Laplacian, which is a non-local operator constructed on the conformal infinity of a conformally compact Einstein manifold. These ODE solutions are a generalization of the usual Delaunay and, in particular, solve the fractional Yamabe problem

$$(-\Delta)^{\gamma}u=c_{n,\gamma}u^{\frac{n+2\gamma}{n-2\gamma}}, u>0 \text{ in } r^n\backslash\{0\},$$

with an isolated singularity at the origin. This is a fractional order ODE for which new tools need to be developed. The key of the proof is the computation of the fractional Laplacian in polar coordinates.

¹Universitat Politècnica de Catalunya azahara.de.la.torre@upc.edu,mar.gonzalez@upc.edu ²Universidad de Chile

delpino@dim.uchile.cl

³University of British Columbia jcwei@math.ubc.ca