## On the Cartesian sum of graphs and hyperbolicity

Amauris de la Cruz ${ }^{1}$, Walter Carballosa ${ }^{2}$, José M. Rodríguez ${ }^{1}$

If X is a geodesic metric space and $x_{1}, x_{2}, x_{3} \in X$, a geodesic triangle $T=\left\{x_{1}, x_{2}, x_{3}\right\}$ is the union of the three geodesics $\left[x_{1} x_{2}\right],\left[x_{2} x_{3}\right]$ and $\left[x_{3} x_{1}\right]$ in $X$. The space $X$ is $d$-hyperbolic (in the Gromov sense) if any side of $T$ is contained in a $d$-neighborhood of the union of the two other sides, for every geodesic triangle $T$ in $X$. If $X$ is hyperbolic, we denote by $d(X)$ the sharp hyperbolicity constant of $X$, i.e. $d(X)=\operatorname{minf}\{d \geq 0: X$ is d-hyperbolic $\}$. Some previous works characterize the hyperbolic product graphs (for the Cartesian, strong, join, corona and lexicographic products) in terms of properties of the factor graphs. In this paper we characterize the hyperbolic product graphs for the Cartesian sum $G_{1} \oplus G_{2}$ : $G_{1} \oplus G_{2}$ is always hyperbolic, unless either $G_{1}$ or $G_{2}$ is the trivial graph (the graph with a single vertex); if $G_{1}$ or $G_{2}$ is the trivial graph, then $G_{1} \oplus G_{2}$ is hyperbolic if and only if $G_{2}$ or $G_{1}$ is hyperbolic, respectively. Besides, if $t \notin\{5 / 4,3 / 2\}$ we characterize the Cartesian sums with $d\left(G_{1} \oplus G_{2}\right)=t$ in a very simple way; also, we characterize the Cartesian sums with $d\left(G_{1} \oplus G_{2}\right)=5 / 4$ and with $d\left(G_{1} \oplus G_{2}\right)=3 / 2$. We obtain the sharp inequalities $1 \leq d\left(G_{1} \oplus G_{2}\right) \leq 3 / 2$ for every non-trivial graphs $G_{1}, G_{2}$. Furthermore, we obtain simple formulae for the hyperbolicity constant of the Cartesian sum of many graphs. Finally, we prove the inequalities $3 / 2 \leq d\left(\overline{G_{1} \oplus G_{2}}\right) \leq 2$ for the complement graph of $G_{1} \oplus G_{2}$ for every $G_{1}, G_{2}$ with mín $\left\{\operatorname{diam} V\left(G_{1}\right)\right.$, $\left.\operatorname{diam} V\left(G_{2}\right)\right\} \geq 3$.
${ }^{1}$ Departamento de Matemáticas, Universidad Carlos III de Madrid Av. de la Universidad 30, 28911 Leganés, Madrid, España.
alcruz@math.uc3m.es, jomaro@math.uc3m.es
${ }^{2}$ Consejo Nacional de Ciencia y Tecnología (CONACYT) \& Universidad Autónoma de Zacatecas, Paseo la Bufa, int. Calzada Solidaridad, 98060 Zacatecas, ZAC, México.
wcarballosato@conacyt.mx

