

Units of group rings, the Bogomolov multiplier, and the fake degree conjecture

Javier García Rodríguez¹, Andrei Jaikin Zapirain¹, Urban Jezernik²

Let J be a finite dimensional nilpotent algebra over a finite field \mathbb{F}_q . Then the set G = 1 + J becomes a finite group. The groups constructed in this way are called *algebra groups*. The group G acts by conjugation on J and this induces a G-action on the dual space $J^* = Hom_{\mathbb{F}_q}(J, \mathbb{F}_q)$, called the coadjoint action. Consider the list of integers obtained by taking the square roots of the sizes of the coadjoint orbits of G on J^* . We will see that these numbers are q-powers, the sum of their squares is |G| and the length of the list is the number of conjugacy classes of G. This precisely resembles the list of degrees of the irreducible characters of G. Indeed, if $J^p = 0$, there exists an explicit expression that gives a bijective correspondence between the characters of G and the orbits of J^* . I.M. Isaacs conjectured that this was true for any algebra group G = 1 + J. This is the so called "Fake degree conjecture". The study of this conjecture will lead us to study the abelianizations of groups of the form $1 + I_{\pi}$ where I_{π} is the augmentation ideal of the group ring $\mathbb{F}_q[\pi]$ for a finite p-group π . Surprisingly, the Bogomolov multiplier of the group π comes into play, and explains why this conjecture is not true in general. We will also explain a nice application to rationality questions in linear algebraic groups.

¹Facultad de Ciencias Universidad Autónoma de Madrid-ICMAT javier.garciarodriguez@uam.es andrei.jaikin@uam.es

²Institute of Mathematics, Physics, and Mechanics Ljubljana, Slovenia urban.jezernik@imfm.si