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Abstract: This work focus on the problem of automatic loop shaping in QFT,
where traditionally the search of a optimum design, a non convex and nonlinear
optimization problem, is simplified by linearizing and/or convexifying the problem.
In this work, the authors propose a suboptimal solution using a fixed structure in
the compensator. However, in relation to previous work, the main idea consists in
the study of the use of a fractional compensator, which give singular properties
to automatically shape the open loop gain function by using a minimum set of
parameters. A fractional controller, based on complex fractional order poles and
zeros, is proposed and successfully applied.

1. INTRODUCTION

Quantitative Feedback Theory is a robust fre-
quency domain control design methodology which
has been successfully applied in practical prob-
lems from different domains (Horowitz, 1993).
One of the key design steps is loop shaping of the
open loop gain function to a set of restrictions (or
boundaries) given by the design specifications and
the (uncertain) model of the plant. Although this
step has been traditionally performed by hand,
the use of CACSD tools (e. g. the QFT Matlab
Toolbox (Borghesani et al., 1995), has made the
manual loop shaping much more simple. How-
ever, the problem of automatic loop shaping is
of enormous interest in practice, since the manual
loop shaping can be hard for the non experienced
engineer, and thus it has received a considerable
attention, specially in the last two decades.

Optimal loop computation is a non linear and
non convex optimization problem for which it is

1 This work has been partially supported by Ministerio de
Ciencia y Tecnoloǵıa under project DPI2004-07670-C02-
02, which is greatly appreciated by the authors.

difficult to find a satisfactory solution, since there
is no optimization algorithm which guarantees a
globally optimum solution for such a problem.

A possible approach is to simplify the problem
in some way, in order to obtain a different opti-
mization problem for which there exists a closed
solution, or an optimization algorithm which does
guarantees a global optimum. A trade-off between
necessarily conservative simplification of the prob-
lem and computational solvability has to be cho-
sen. For instance, Thompson (Thomson, 1990)
convexifies the problem by using rectangular tem-
plates and then solves the resulting nonlinear
optimization problem. Gera and Horowitz (Gera
and Horowitz, 1980) linearize the problem in their
semi-automatic iterative algorithm by consider-
ing, in each iteration, a linear approximation of
boundaries. Some authors have investigated the
loop shaping problem in terms of particular struc-
tures, with a certain degree of freedom, which can
be shaped to the particular problem to be solved.
This is the case in (Fransson et al., 2002), (Chait
et al., 1999), (Yaniv and Nagurka, 2004). An-
other possibility is to use evolutionary algorithms,



able to face nonlinear and non convex optimiza-
tion problems. This is the approach adopted in
(Garćıa and Guillén, 2000), (Chen et al., 1998)
and (Raimúndez et al., 2001). Evolutionary al-
gorithms’ drawbacks are that they are computa-
tionally demanding and they do not guarantee, in
general, an optimal solution.

However, by the use of information about the
problem, instead of just a brute force method,
computation effort can be reduced and reasonably
close to the optimum solutions can be obtained. In
this sense, a good structure for the compensator,
in terms of using a reduced set of parameters,
but with a rich frequency domain behavior, is of
crucial importance. In previous work, the compen-
sator has been fixed to a rational structure, with
a finite (but no necessarily small) number of zeros
and poles. In this work, the main contribution is
to introduce a fractional compensator that, with
a minimum number of parameters, gives a flexi-
ble structure in the frequency domain regarding
automatic loop shaping. In fact, it can be ap-
proximated by a rational compensator, but with
a considerably large number of parameters. This
dramatic reduction in the number of parameters is
of capital importance for the success of evolution-
ary algorithms in the resolution of the automatic
loop shaping problem.

The key idea behind this structure choice is to use
as much a priori information about the optimum
as possible so that the evolutionary search does
not have to try any possibility among a large set of
parameters, but just to choose a small set of values
which parameterize the set of possible controllers
according to the incorporated information.

This work, following (Cervera and Baños, 2005), is
a first step to introduce fractional control ideas in
automatic loop shaping in QFT. It is considered
the particular case of minimum phase open loop
gain functions, for which the investigated compen-
sators can give a good structure with a reduced set
of parameters. The non-minimum phase case will
be considered elsewhere.

This work is structured as follows: in section 2
some brief preliminaries about QFT and evolu-
tionary algorithms are introduced; in section 3, a
fractional compensator structure is presented and
analyzed; in section 4, fractional controllers imple-
mentation is studied; in section 5, this structure is
applied to a design example which has tradition-
ally been used as benchmark problem in QFT;
finally, in section 6 a QFT CACSD tool, able to
deal with fractional structures, is presented.

2. SOME PRELIMINARIES

2.1 QUANTITATIVE FEEDBACK THEORY

The basic idea in QFT (Horowitz, 1993) is to
define and take into account, along the control
design process, the quantitative relation between
the amount of uncertainty to deal with and the
amount of control effort to use. Typically, the
QFT control system configuration (see fig. 1) con-
siders two degrees of freedom: a controller C(s),
in the closed loop, which cares for the satisfaction
of robust specifications despite uncertainty; and a
precompensator, F (s), designed after C(s), which
allows to achieve the desired frequency response
once uncertainty has been controlled.

F s( )
+

_
C s( ) P s( )

Fig. 1. Two degrees of freedom control system
configuration.

For a given plant P (s), its template P is defined
as the set of plant possible frequency responses
due to uncertainty. A nominal plant, P0 ∈ P, is
chosen.

The design of the controller C(s) is accomplished
in the Nichols chart, in terms of the nominal
open loop transfer function, L0(s) = P0(s)C(s).
A discrete set of design frequencies Ω is cho-
sen. Given quantitative specifications on robust
stability and robust performance on the closed
loop system, boundaries Bω, ω ∈ Ω, are com-
puted. Bω defines the allowed regions for L0(jω)
in the Nichols chart, so that Bω being not violated
by L0(jω) implies specification satisfaction by
L(jω) = P (jω)C(jω)∀P (s) ∈ P. The basic step
in the design process, loop shaping, consists of the
design of L0(jω) which satisfies boundaries and is
reasonable close to optimum. QFT optimization
criterion is the minimization of high frequency
gain (Horowitz, 1973), i.e., Khf in the expression

lim
ω→∞

L(jω) =
Khf

snpe
(1)

where npe = excess of poles over zeros.

Loop shaping is traditionally carried out manually
with the help of CACSD tools, like QFT Matlab
toolbox (Borghesani et al., 1995). This leads to a
trial and error process, whose resulting product
quality is strongly determined by the designer
experience and intuition. There is no commercial
tool for this purpose yet. An automatic loop
shaping procedure obtaining is, so, a key issue
which is still of a great interest.



2.2 EVOLUTIONARY ALGORITHMS

The term evolutionary algorithms (Spears et al.,
1993) groups a set of different problem solving
algorithms which share the basic feature that they
are based on natural evolutionary processes. To
find a solution to a problem, they simulate the
survival of the fittest process present in Nature. A
population of individuals, each one representing a
possible solution, evolves along a sequence of gen-
erations. In this process, population goes through
selection, mutation and reproduction operations
(search operations). Selection is done in terms of
an optimization criterion which defines the fit-
ness degree of each individual as solution to the
problem. The reproduction process gives priority
to the fittest individuals, and this way uses the
available fitness information. Mutation arbitrary
modifies existing individuals, thus permitting a
general way to explore the search space.

Evolutionary algorithms, used for optimization
purposes, can deal with complicated problems,
including QFT non linear and non convex control
design problem. But they cannot guarantee, in
general, attainment of globally optimal solution.

Evolutionary algorithms used for optimization can
be classified in three major groups: Genetic Algo-
rithms (GA’s), Evolutionary Programming (EP)
and Evolution Strategies (ES’). The basic dif-
ference between GA’s and EP/ES’ is individual
representation. In the first case, they are rep-
resented in terms of genomes, bit strings which
codify the individual characteristics. Operations
such us mutation or crossover take place at bit
level, so there is a disconnection between evolu-
tionary operations meaning and the change they
produce in the individual. In the second case,
individuals are directly represented in terms of the
(real, integer, . . . ) variables characterizing them,
so evolutionary operations acts on these variables.
In this work EP/ES’ have been used, by means of
the Genetic and evolutionary algorithm toolbox for
use with Matlab (GEATbx, (Pohlheim, 2004)).

3. AUTOMATIC LOOP SHAPING

The automatic loop shaping method proposed
consists of using a fractional controller structure,
based on fractional complex poles and zeros, to
solve a QFT control design problem. The pro-
posed structure is based on the traditionally used
in linear control complex pole term,

T =
ω2

n

s2 + 2δωns + ω2
n

(2)

with a non integer exponent added in order to
obtain higher flexibility in the design, so the
controller is composed by terms

Ti =
(

ω2
ni

s2 + 2δiωnis + ω2
ni

)ei

(3)

with ei ∈ R, ei < 0 corresponding to zeros.

Different combinations of this kind of terms are
possible. Following the aim of parameter mini-
mization, the choice has been the minimal num-
ber of poles and zeros which permit to obtain a
close to optimum loop. As it has been shown in
(Horowitz, 1973), (Horowitz, 1993) and (Lurie and
Enright, 2000), based on ideas in (Bode, 1945), the
optimal loop follows the right and bottom parts
of the UHFB. This has led to the use of two poles
and one zero in the following manner. One pole
is used to get the loop close to the UHFB right
side and to go along it with the constant phase
given by the phase margin (see fig. 2). Second
pole is used to get a new leftwards movement,
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Fig. 2. First fractional order pole effect.
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Fig. 3. Second fractional order pole effect.

after the UHFB right bottom corner, which per-
mits approaching the UHFB bottom and a phase
fast increase towards the final phase, given by
the excess of poles over zeros (see fig. 3). This
two poles do not give enough flexibility to tightly
follow the UHFB. This is why the zero is added.
Its additional degrees of freedom permit a precise



adjust of the structure in fig. 3 to get results as
shown in fig. 4.
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Fig. 4. Fractional order zero effect.

The resulting structure is defined by ten parame-
ters, three per pole or zero plus a constant gain
term K

L0 = K

(
ω2

n1

s2 + 2δ1ωn1s + ω2
n1

)e1

(
ω2

n2

s2 + 2δ2ωn2s + ω2
n2

)e2

(
ω2

n3

s2 + 2δ3ωn3s + ω2
n3

)e3

(4)

Heuristic rules have been developed in order to
obtain values for these parameters, which permits
an optimization with a (to be chosen) reasonable
number of parameters or even a direct automatic
loop shape, without optimization.

The rule for di, i ∈ {1, 2, 3} consists of a fixed
value choice, which has proven to work fine in
every case, for each one: d1 = 1, d2 = 0.25 and
d3 = 1.

The rule for e1 is to choose it so that UHFB
right side, given by robust stability specification,
γ, and first pole high frequency phases are the
same. This common phase can be computed as
φ = acos

(
−

√
1− 1

γ2

)
. The excess of poles over

zeros, ezp, is a fixed quantity. Since ezp = e1+e2+
e3, there is only one degree of freedom in (e2, e3),
expressed as re32 (e3/e2). re32 can be fixed, for
instance re32 = 0.5 works quite fine.

ω3 rule is stated in terms of ω2 as ω3 = 2ω2. The
rule for ω2 has no closed form. It consists of a
search algorithm which computes which ω2 value
makes the loop coincide with the bottom of the
UHFB in its middle point. No specific rule has
been defined for ω1. It can manually be used to
satisfy tracking boundaries.

About K, its rule depends on the choice of a ωcg

crossover frequency. It is computed so that the

loop, in terms of the remaining already computed
parameters, crosses 0 dB at the chosen frequency.

4. CONTROLLER IMPLEMENTATION

Fractional order transfer functions implementa-
tion in terms of rational terms can be performed
in different ways. The AFT method developed in
(Baños and Gómez, 1995), based on nonlinear op-
timization with a least square objective function,
is a good approach, which converges very rapidly
thanks to the use of gradient information. It has
the drawback that a reasonably close to optimum
first estimation has to be supplied, otherwise it
easily converges to local minima. Evolutionary
search techniques can also be applied. They are
more robust against local minima, but its conver-
gence is slower than the former’s. A combination
of both, consisting of an evolutionary pre-search
which provides an initial estimation for AFT, has
proven to give very good result. A trade-off be-
tween rational controller complexity an approxi-
mation quality has to be chosen. As an example,
the fractional loop L0 in (12) is approached by the
order 6 rational transfer function

L6(s) =
14.9
s

(
s

561 + 1
) (

s
687.6 + 1

)
(

s
167 + 1

) (
s

701 + 1
)

(
s2

170.62
2×7.5s
170.6 + 1

)

(
s2

40.42
2×9.2s
40.4 + 1

) (
s2

8442
2×0.01s

844 + 1
) (5)

and also by the order 14 rational transfer function

L14(s) =
14.9
s

(
s

993.9 + 1
) (

s
802.4 + 1

) (
s

56.3 + 1
)

(
s

705.6 + 1
) (

s
614.4 + 1

) (
s

744.1 + 1
)

(
s

452.7 + 1
) (

s
564.1 + 1

) (
s

522.8 + 1
)

(
s

654.4 + 1
) (

s
22.1 + 1

) (
s

547.7 + 1
)

(
s

377.4 + 1
) (

s
619.1 + 1

) (
s

1000 + 1
)

(
s

689 + 1
) (

s
242.6 + 1

) (
s

203 + 1
)

(
s

205.4 + 1
) (

s2

81.32
2×10s
81.3 + 1

)

(
s

724.6 + 1
) (

s2

7202
2×0.12s

720 + 1
) (

s2

27.42
2×10s
27.4 + 1

)
(6)

both shown in fig. 5 together with the orginal
fractional transfer function.

5. DESIGN EXAMPLE

To illustrate the behavior of the proposed de-
sign procedure, the QFT Toolbox for Matlab
(Borghesani et al., 1995) Benchmark Example
number 2 is be used. It has also been used, for
instance, in (Chen et al., 1998) and (Raimúndez
et al., 2001).
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Fig. 5. Bode diagrams for L0(jω) in (12) and its
rational approaches (5) and (6)

The plant is defined as

P =
{

P (s) =
ka

s(s + a)
, k ∈ [1, 10], a ∈ [1, 10]

}

(7)

The specification is given by a robust stability
specification,

∣∣∣∣
P (jω)C(jω)

1 + P (jω)C(jω)

∣∣∣∣ ≤ 1.2, ∀P ∈ P, ω ≥ 0 (8)

and a robust tracking performance, given by

Tmin(ω) ≤
∣∣∣∣F (jω)

P (jω)C(jω)
1 + P (jω)C(jω)

∣∣∣∣ ≤ Tmax(ω)

(9)

where F (jω) is the prefilter,

Tmin(ω) =
∣∣∣∣

0.6584(jω + 30)
(jω)2 + 4(jω) + 19.752

∣∣∣∣ (10)

and

Tmax(ω) =
∣∣∣∣

120
(jω)3 + 17(jω)2 + 82(jω) + 120

∣∣∣∣
(11)

As in the QFT toolbox, the set of frequencies
considered for checking tracking specification is
{0.1, 0.5, 1, 2, 15, 100]}. For robust stability check-
ing a unique universal high frequency boundary
(UHFB) will we considered, for ω = 10000 rad/s.
According to plant open loop crossover frequency,
around 1 rad/s, and to the boundaries observed,
a tentative wcg = 10 is established.

A polo at the origin is added to the structure
in order to avoid cancellation. Using all the rules
defined in section 3, the loop in fig. 6 is obtained,
with Khf = 118.91 dB. After trying some more
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Fig. 6. Direct parameter assignment (no optimiza-
tion) loop for the design example.
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Fig. 7. Four free parameters optimization loop for
the design example.

ωcg values, ωcg = 6rad/s is found to be closer to
the optimum, with Khf = 105.6 dB.

About optimization, experiments show including
ω2 algorithmic rule is not efficient, so it is not
applied. Parameters d1, d2 and d3 are left free.
Additional free parameters can be considered,
but the trade-off between quality of obtained
results and computational effort has proven to be
between 4 to 5 free parameters. A good candidate
as a fifth free parameter is re32.



In this example, for ωcg = 6rad/s, optimization
high frequency gain in about 4 dB with respect
to all rules method, with Khf = 101.763 dB in a
four free parameters optimization, with resulting
loop

L0 = 10.26
(

1.77
s2 + 3.7s + 1.77

)0.19

(
341000

s2 + 700.7s + 341000

)1.6

(
1363900

s2 + 6063s + 1363900

)−0.78

(12)

shown in fig. 7.

6. CACSD TOOL

The development of this research work has re-
quired programming some not available function-
alities . Some of them were available from Mat-
lab as standard functions, but only applicable to
transfer functions involving integer exponents. For
instance, standard Matlab bode function cannot
be used with non integer exponents. Some other
functionalities emerged specifically from the de-
mands of the research process, for instance, the
need to switch on/off each individual component
in the visualization of a certain loop transfer func-
tion, or to switch on/off the automatic computa-
tion of certain parameters in terms of the others.

The progressive satisfaction of this software needs
has led to the development of a software tool
which lets the control designer to shape the open
loop, given a fixed structure, in a quite com-
fortable and general way. This software is still
a laboratory product and completely tailored to
this research, but is being partly programmed
thinking of making it evolve, in the near future,
to a complete Matlab QFT fractional toolbox.

This tool consists of a set of interconnected win-
dows showing or letting modify different data
about the design process. All of them are inter-
actively updated, so that when a parameter is
changed in any window, this change is reflected
in the others. This allows a interactive design in
which one can have an updated information, from
different points of view, of any taken action. For
instance, it is possible to view the Nichols chart of
the open loop (including boundaries and Nichols
chart of individual loop components), Bode dia-
grams, noise charts, etc.

When the program is run the user is presented the
main window (fig. 8), where the loop

structure or the plant to be controlled can be
chosen. Some other minor actions can be per-
formed from this window, like choosing the vector
of frequencies to be considered during design, the

Fig. 8. Main and loop design windows.

Fig. 9. Main and loop design windows.

stability margin to be used (γ), etc. From this
window all the other ones can be opened or closed.
The windows in which the user can perform ac-
tions are the loop design window (second window
in fig. 9) and the optimization window.

In the loop design window, for each parameter
in the chosen loop structure, there are controls
that let set its value directly, by writing its digits,
or by auto scalable slider controls. According to
the settings in the loop structure configuration
file, some of the parameters, so-called auto, are
(potentially) computed in terms of the values of
the others parameters. Wether an auto parameter
is or not computed this way can be chosen at any
time by means of a radio button associated to it.
Furthermore, it is possible to define the different
components of the loop structure. For instance,
for the controller structure defined in section 3 ,
components





C1(s) =
(

ω2
1

s2 + 2δ1ω1s + ω2
1

)e1

C2(s) =
(

ω2
2

s2 + 2δ2ω2s + ω2
2

)e2

C3(s) =
(

ω2
3

s2 + 2δ3ω3s + ω2
3

)e3

(13)

are defined. Each component is represented in
Nichols and Bode diagram by its own curve, and
the effect of each component can be included or



excluded from the complete open loop transfer
function by its corresponding radio button Ci.
This is especially useful for research purposes.

In the optimization window, optimization can be
configured and launched. A log of computed op-
timizations is kept so that any obtained result
can be easily recovered. Optimization is also con-
nected to the other windows, in such a way the
loop resulting from an optimization is represented
and can be manipulated. While optimization is be-
ing carried out, considered loops can be displayed.

7. CONCLUSIONS

An automatic loop shaping procedure, based on
evolutionary algorithms optimization on the pa-
rameters of a fixed, fractional order complex poles
and zeros structure, has been proposed. The key
idea behind this proposal is the introduction of a
structure with few parameters but, at the same
time, flexible enough, thanks to its fractional na-
ture, to get results which are close to the optimum.
It has been shown how this method produces quite
close to the optimum solutions, and also that
fractional obtained results are implementable by
rational terms.

As additional contribution (necessary to obtain
the first), a CACSD QFT has been (and is being)
developed, tool which makes easier to go on the
research of new structures, since has been pro-
grammed keeping generality in mind as a basic
design principle. It is an author’s aim to continue
the development of this tool towards a complete
QFT design Matlab toolbox.
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