Bode optimal loop shaping with CRONE compensators

A. Baños¹ J. Cervera¹ P. Lanusse² J. Sabatier²

¹Faculty of Computer Engineering, Department of Computer and Systems Engineering, University of Murcia (Spain) – [jcervera,abanos]@um.es

²Université de Bordeaux, CNRS UMR 5218, Laboratoire IMS, Talence Cedex (France) – [patrick.lanussej,jocelyn.sabatier]@laps.ims-bordeaux.fr

14th IEEE Mediterranean Electrotechnical Conference 5-7 May 2008, Ajaccio, France

・ロト ・ 理 ト ・ ヨ ト ・

3

- Introduction: Bode Optimal Loops
 - Four Parameters Bode Optimal Loop
 - Eight Parameters Bode Optimal Loop
 - Goal
- Loop Shaping with CRONE Compensators
 - Why a CRONE compensator?
 - Real Differentiator Term
 - Low and High Frequency Terms
 - Complex Differentiator Term
 - Maximizing Loop Phase Lag

Loop Shaping with CRONE Compensators Desig Example Conclusions Four Parameters Bode Optimal Loop Eight Parameters Bode Optimal Loop Goal

Problem Statement

PROBLEM:

- for operational bandwith $0 \le \omega \le \omega_0$
- where desired $|L(j\omega)| = M_0 \gg 1$
- given crossover frequency ω_c
- compute $L(j\omega)$ which maximizes ω_0

• SOLUTION: decrease $|L(j\omega)|$ as fast as possible...

Loop Shaping with CRONE Compensators Desig Example Conclusions Four Parameters Bode Optimal Loop Eight Parameters Bode Optimal Loop Goal

Problem Statement

PROBLEM:

- for operational bandwith $0 \le \omega \le \omega_0$
- where desired $|L(j\omega)| = M_0 \gg 1$
- given crossover frequency ω_c
- compute $L(j\omega)$ which maximizes ω_0
- SOLUTION: decrease |L(jω)| as fast as possible...

< 口 > < 同 > < 臣 > < 臣 >

Loop Shaping with CRONE Compensators Desig Example Conclusions Four Parameters Bode Optimal Loop Eight Parameters Bode Optimal Loop Goal

Problem Statement

Baños, Cervera, Lanusse & Sabatier Bode optimal loop shaping with CRONE compensators

< ∃→

Loop Shaping with CRONE Compensators Desig Example Conclusions Four Parameters Bode Optimal Loop Eight Parameters Bode Optimal Loop Goal

Ideal Bode Characteristic

For ideal optimal structure $\begin{cases} |L(j\omega)| = M_0, & 0 < \omega < \omega_0 \\ \angle L(j\omega) = -\alpha\pi, & \omega > \omega_0 \end{cases}$

solution is equivalent to maximize phase lag, or minimizing stability margin,

so it is necessary to trade-off between ω_0 and stability margin...

Loop Shaping with CRONE Compensators Desig Example Conclusions Four Parameters Bode Optimal Loop Eight Parameters Bode Optimal Loop Goal

Ideal Bode Characteristic

|L(jω)|_{dB} M ω For arg(L(jω)) ω_c -α 180° -180°

< ∃⇒

Loop Shaping with CRONE Compensators Desig Example Conclusions Four Parameters Bode Optimal Loop Eight Parameters Bode Optimal Loop Goal

Ideal Bode Characteristic

For ideal optimal structure $\begin{cases} |L(j\omega)| = M_0, & 0 < \omega < \omega_0 \\ \angle L(j\omega) = -\alpha\pi, & \omega > \omega_0 \end{cases}$

solution is equivalent to maximize phase lag, or minimizing stability margin,

so it is necessary to trade-off between ω_0 and stability margin...

ヘロト ヘアト ヘビト ヘビト

Four Parameters Bode Optimal Loop Eight Parameters Bode Optimal Loop Goal

Four Parameters Bode Optimal Loop

- In general, the problem is well defined as a function of parameters:
 - *M*₀
 - α
 - ω₀
 - ω_c
- Not all of them independent.

Four Parameters Bode Optimal Loop Eight Parameters Bode Optimal Loop Goal

Practical considerations about high frequency

- In practice, four parameters Bode Optimal Loop has to be modified:
 - To cope with sensor noise amplification
 - Because it is not realistic to assume good control of $|L(j\omega)|$ for high frequency.

Loop Shaping with CRONE Compensators Desig Example Conclusions Four Parameters Bode Optimal Loop Eight Parameters Bode Optimal Loop Goal

Seven Parameters Bode Optimal Loop

< ∃⇒

Loop Shaping with CRONE Compensators Desig Example Conclusions Four Parameters Bode Optimal Loop Eight Parameters Bode Optimal Loop Goal

Seven Parameters Bode Optimal Loop

< E

Loop Shaping with CRONE Compensators Desig Example Conclusions Four Parameters Bode Optimal Loop Eight Parameters Bode Optimal Loop Goal

Eight Parameters Bode Optimal Loop

In order to add integrators to the loop, for a good steady state response ...

ヘロト 人間 ト ヘヨト ヘヨト

Loop Shaping with CRONE Compensators Desig Example Conclusions Four Parameters Bode Optimal Loop Eight Parameters Bode Optimal Loop Goal

Eight Parameters Bode Optimal Loop

< ∃⇒

Loop Shaping with CRONE Compensators Desig Example Conclusions Four Parameters Bode Optimal Loop Eight Parameters Bode Optimal Loop Goal

Eight Parameters Bode Optimal Loop

- Parameters:
 - *M*₀
 - *M*₁
 - α
 - ω₀
 - ω_c
 - ω1
 - n
 - e
- Not all of them are independent.

→ E > < E >

Loop Shaping with CRONE Compensators Desig Example Conclusions Four Parameters Bode Optimal Loop Eight Parameters Bode Optimal Loop Goal

Establish relations between these eight parameters and the parameters of a proposed CRONE structure,

so that a first approach to Bode optimal loop can be obtained in an easy and fast way.

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

CRONE Features for Bode Optimal Loop Shaping

Easy to tune

Few parameters

• For the 2/3 CRONE generation band defined compensator

$$D_{r} = \left(C_{0} \frac{1 + \frac{s}{\omega_{l}}}{1 + \frac{s}{\omega_{h}}}\right)^{a} \cos\left[-b \log\left(C_{0} \frac{1 + \frac{s}{\omega_{l}}}{1 + \frac{s}{\omega_{h}}}\right)\right],$$

- Phase and gain slope only depend on *a* (real differentiation order)
- Gain and phase slope only depend on *b* (complex differentiation order)
- Idea: for a Bode optimal loop shape, with constant phase at (ω_l, ω_h) and constant gain at (ω'_l, ω'_h), use real differentiator at (ω_l, ω_h) (b=0) and complex differentiator (a=0) at (ω'_l, ω'_h).

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

CRONE Features for Bode Optimal Loop Shaping

- Easy to tune
- Few parameters
- For the 2/3 CRONE generation band defined compensator

$$D_{r} = \left(C_{0} \frac{1 + \frac{s}{\omega_{l}}}{1 + \frac{s}{\omega_{h}}}\right)^{a} \cos\left[-b \log\left(C_{0} \frac{1 + \frac{s}{\omega_{l}}}{1 + \frac{s}{\omega_{h}}}\right)\right],$$

- Phase and gain slope only depend on *a* (real differentiation order)
- Gain and phase slope only depend on *b* (complex differentiation order)
- Idea: for a Bode optimal loop shape, with constant phase at (ω_l, ω_h) and constant gain at (ω'_l, ω'_h), use real differentiator at (ω_l, ω_h) (b=0) and complex differentiator (a=0) at (ω'_l, ω'_h).

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

CRONE Features for Bode Optimal Loop Shaping

- Easy to tune
- Few parameters
- For the 2/3 CRONE generation band defined compensator

$$D_{r} = \left(C_{0} \frac{1 + \frac{s}{\omega_{l}}}{1 + \frac{s}{\omega_{h}}}\right)^{a} \cos\left[-b \log\left(C_{0} \frac{1 + \frac{s}{\omega_{l}}}{1 + \frac{s}{\omega_{h}}}\right)\right],$$

- Phase and gain slope only depend on *a* (real differentiation order)
- Gain and phase slope only depend on *b* (complex differentiation order)
- Idea: for a Bode optimal loop shape, with constant phase at (ω_l, ω_h) and constant gain at (ω'_l, ω'_h), use real differentiator at (ω_l, ω_h) (b=0) and complex differentiator (a=0) at (ω'_l, ω'_h).

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

CRONE Features for Bode Optimal Loop Shaping

- Easy to tune
- Few paramet
- For the 2/3 C

$$D_r = \left(C_0 \frac{1+\frac{1}{c}}{1+\frac{1}{c}}\right)$$

- Phase an order)
- Gain and differentia

 Idea: for a Bc at (ω_l, ω_h) and differentiator (a=0) at (ω'_l, μ

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

CRONE Features for Bode Optimal Loop Shaping

- Additionally, two terms to shape low and high frequencies
- Final structure:

$$L(s) = k \left(\frac{\omega_l}{s} + 1\right)^{n_l} \left(C_0 \frac{1 + \frac{s}{\omega_l}}{1 + \frac{s}{\omega_h}}\right)^a$$
$$\cos\left[-b \log\left(C'_0 \frac{1 + \frac{s}{\omega'_l}}{1 + \frac{s}{\omega'_h}}\right)\right] \frac{1}{\left(\frac{s}{\omega_h} + 1\right)^{n_h}}$$

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

Real Differentiator Term

•
$$L_2(s) = \left(C_0 \frac{1+\frac{s}{\omega_l}}{1+\frac{s}{\omega_h}}\right)^a$$

• Design relations:

•
$$a\left(\frac{\pi}{2} - 2\theta_l(\omega_u)\right) = (1 - \alpha)\pi$$

• $\left(\frac{\omega_h}{2\omega_l}\right)^{-a} \approx M_0 M_1$

ヘロト ヘワト ヘビト ヘビト

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

Real Differentiator Term

Baños, Cervera, Lanusse & Sabatier Bode optimal loop shaping with CRONE compensators

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

Real Differentiator Term

•
$$L_2(s) = \left(C_0 \frac{1+\frac{s}{\omega_l}}{1+\frac{s}{\omega_h}}\right)^a$$

Design relations:

•
$$a\left(\frac{\pi}{2} - 2\theta_l(\omega_u)\right) = (1 - \alpha)\pi$$

• $\left(\frac{\omega_h}{2\omega_l}\right)^{-a} \approx M_0 M_1$

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

Real Differentiator Term

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

Low and High Frequency Terms

•
$$L_{CRONE2}(s) = k \left(\frac{\omega_l}{s} + 1\right)^{n_l} \left(C_0 \frac{1 + \frac{s}{\omega_l}}{1 + \frac{s}{\omega_h}}\right)^a \frac{1}{\left(\frac{s}{\omega_h} + 1\right)^{n_h}}$$

- Design relations:
 - $n_l \geq n$

•
$$n_h \ge e_p \ge n$$

•
$$|L_{CRONE2}(j\omega_c)| = 1$$

• $|L_{CRONE2}(j\omega_u)| = \frac{M_{0,dB} + M_{1,dB}}{2}$

イロン 不得 とくほ とくほ とうほ

Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term

Low and High Frequency Terms

•
$$L_{CRONE2}(s) = k \left(\frac{\omega_l}{s} + 1\right)^{n_l} \left(C_0 \frac{1 + \frac{s}{\omega_l}}{1 + \frac{s}{\omega_h}}\right)^a \frac{1}{\left(\frac{s}{\omega_h} + 1\right)^{n_h}}$$

- Design relations:
 - $n_l > n$

•
$$n_h \ge e_p \ge n$$

•
$$|L_{CRONE2}(j\omega_c)| = 1$$

•
$$|L_{CRONE2}(j\omega_u)| = \frac{M_{0,dB} + M_{1,dB}}{2}$$

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

Low and High Frequency Terms

Baños, Cervera, Lanusse & Sabatier

Bode optimal loop shaping with CRONE compensators

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

Complex Differentiator Term

•
$$L_3(s) = \cos\left[-b \log\left(C'_0 \frac{1+\frac{s}{\omega'_l}}{1+\frac{s}{\omega'_h}}\right)\right]$$

- Complements L₂(s), to increase phase lag at [ω'_l, ω'_h]
- To avoid non minimum phase:

$$b\log\left(\frac{\omega_h'}{\omega_l'}\right) < \pi$$

or, equivalently

$$b < b_{max} = rac{\pi}{\log(\omega_h'/\omega_l')}$$

イロン 不同 とくほう イヨン

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

Complex Differentiator Term

•
$$L_3(s) = \cos\left[-b \log\left(C'_0 \frac{1+\frac{s}{\omega'_h}}{1+\frac{s}{\omega'_h}}\right)\right]$$

Complements L₂(s), to increase phase lag at [ω'_l, ω'_h]

• To avoid non minimum phase:

$$b\log\left(\frac{\omega_h'}{\omega_l'}\right) < \pi$$

or, equivalently

$$b < b_{max} = rac{\pi}{\log(\omega_h'/\omega_l')}$$

イロト 不得 とくほと くほとう

1

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

Complex Differentiator Term

•
$$L_3(s) = \cos\left[-b \log\left(C'_0 \frac{1+\frac{s}{\omega'_l}}{1+\frac{s}{\omega'_h}}\right)\right]$$

- Complements L₂(s), to increase phase lag at [ω_l', ω_h]
- To avoid non minimum phase:

$$b\log\left(rac{\omega_h'}{\omega_l'}
ight) < \pi$$

or, equivalently

$$b < b_{max} = rac{\pi}{\log(\omega_h'/\omega_l')}$$

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

Maximizing Loop Phase Lag

• Maximized by $b = b_{max}$, but...

Design relations:

•
$$\omega'_{u} = \omega_{h} \approx \omega_{h}$$

• $b \approx b_{max}$

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

Maximizing Loop Phase Lag

Baños, Cervera, Lanusse & Sabatier

Bode optimal loop shaping with CRONE compensators

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

Maximizing Loop Phase Lag

- Maximized by $b = b_{max}$, but...
- Design relations:

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

Maximizing Loop Phase Lag

- Maximized by
- Design relation

•
$$\omega'_u = \omega_h \approx$$

• $b \approx b_{max}$

Why a CRONE compensator? Real Differentiator Term Low and High Frequency Terms Complex Differentiator Term Maximizing Loop Phase Lag

Maximizing Loop Phase Lag

Baños, Cervera, Lanusse & Sabatier

Bode optimal loop shaping with CRONE compensators

Desig Example

• 8 Parameters Bode Optimal Specifications:

•
$$\omega_0 = 0.4$$
 rad/s, $\omega_c = 0.4$ rad/s

•
$$\alpha = 0.22$$
 (40° phase margin)

Loop obtained:

$$L_{ex}(s) = 0.87 \left(\frac{0.34}{s} + 1\right)^2 \left(C_0 \frac{1 + \frac{s}{0.34}}{1 + \frac{s}{93.5}}\right)^{-1.45}$$
$$\cos\left[-1.8374 \log\left(C_0' \frac{1 + \frac{s}{97.5}}{1 + \frac{s}{250}}\right)\right] \frac{1}{\left(\frac{s}{93.5} + 1\right)^5}$$

ヘロン 人間 とくほ とくほ とう

3

Desig Example

• 8 Parameters Bode Optimal Specifications:

•
$$\omega_0 = 0.4$$
 rad/s, $\omega_c = 0.4$ rad/s

•
$$\alpha = 0.22$$
 (40° phase margin)

$$\begin{split} \mathcal{L}_{ex}(s) &= 0.87 \left(\frac{0.34}{s} + 1\right)^2 \left(C_0 \frac{1 + \frac{s}{0.34}}{1 + \frac{s}{93.5}}\right)^{-1.45} \\ &\cos\left[-1.8374 \log\left(C_0' \frac{1 + \frac{s}{97.5}}{1 + \frac{s}{250}}\right)\right] \frac{1}{\left(\frac{s}{93.5} + 1\right)^3} \end{split}$$

イロト イポト イヨト イヨト

э

Desig Example

Baños, Cervera, Lanusse & Sabatier Bode optimal loop shaping with CRONE compensators

• A special CRONE compensator has been proposed to efficiently approximate Bode optimal loop.

- Bode optimal loop has been defined based on a number of parameters, and simple design rules have been obtained for tuning the proposed compensator.
- These rules yield a first solution of a rather hard problem.
- A finest tuning may require the use of some automatic loop shaping technique.

- A special CRONE compensator has been proposed to efficiently approximate Bode optimal loop.
- Bode optimal loop has been defined based on a number of parameters, and simple design rules have been obtained for tuning the proposed compensator.
- These rules yield a first solution of a rather hard problem.
- A finest tuning may require the use of some automatic loop shaping technique.

- A special CRONE compensator has been proposed to efficiently approximate Bode optimal loop.
- Bode optimal loop has been defined based on a number of parameters, and simple design rules have been obtained for tuning the proposed compensator.
- These rules yield a first solution of a rather hard problem.
- A finest tuning may require the use of some automatic loop shaping technique.

- A special CRONE compensator has been proposed to efficiently approximate Bode optimal loop.
- Bode optimal loop has been defined based on a number of parameters, and simple design rules have been obtained for tuning the proposed compensator.
- These rules yield a first solution of a rather hard problem.
- A finest tuning may require the use of some automatic loop shaping technique.