Non-commutative *L^p*-spaces and some orthogonality related problems

María Luisa C. Godoy

I Workshop de la Red de Análisis Funcional y Aplicaciones

June 22-23, 2021

María Luisa C. Godoy

Non-commutative L^p-spaces and some orthogonality related problems

Contents

Non-commutative *L^p*-spaces

Tracial *L^p*-spaces Haagerup *L^p*-spaces

Problem 1: Orthogonally additive polynomials

Problem 2: Reflexivity and hyperreflexivity

María Luisa C. Godoy

Non-commutative L^p-spaces and some orthogonality related problems

Introduction

 $\blacktriangleright \mathbb{F} = \mathbb{C}.$

- Banach algebra: Banach space with product
 B(H) = continuous operators on a Hilbert space H
- C^* -algebra: Banach algebra with involution (*) Example: \mathbb{C} , $z^* = \overline{z}$ Example: C(K), $(f^*)(x) = \overline{f(x)}$. Example: $B(\mathcal{H})$, T^* = adjoint operator of T
- ▶ If \mathcal{A} is a *C**-algebra, there is a Hilbert space \mathcal{H} such that $\mathcal{A} \subset B(\mathcal{H})$ as a *C**-algebra.

A von Neumann algebra is a C^* -algebra $\mathcal{M} \subset B(\mathcal{H})$ that is WOT-closed and has unit. Examples: $L^{\infty}(\mu)$, $\mathbb{M}_n(\mathbb{C})$, $B(\mathcal{H}) \dots$ A von Neumann algebra is a C^* -algebra $\mathcal{M} \subset B(\mathcal{H})$ that is WOT-closed and has unit. Examples: $L^{\infty}(\mu)$, $\mathbb{M}_n(\mathbb{C})$, $B(\mathcal{H})$...

- ▶ Self-adjoint elements: $\mathcal{M}_{sa} = \{x \in \mathcal{M} : x = x^*\}$ ($\mathbb{C}_{sa} = \mathbb{R}$)
- ▶ Positive elements: $\mathcal{M}_+ = \{x^2 : x \in \mathcal{M}_{sa}\}$ $(\mathbb{C}_+ = \mathbb{R}_0^+)$

A von Neumann algebra is a C^* -algebra $\mathcal{M} \subset B(\mathcal{H})$ that is WOT-closed and has unit.

Examples: $L^{\infty}(\mu)$, $\mathbb{M}_n(\mathbb{C})$, $B(\mathcal{H})$...

▶ Self-adjoint elements: $\mathcal{M}_{sa} = \{x \in \mathcal{M} : x = x^*\}$ ($\mathbb{C}_{sa} = \mathbb{R}$)

▶ Positive elements: $\mathcal{M}_+ = \{x^2 : x \in \mathcal{M}_{sa}\}$ $(\mathbb{C}_+ = \mathbb{R}_0^+)$

Continuous functional calculus:

- ▶ If $f \in C_0(\mathbb{C})$, $\exists f(x)$ for $x \in \mathcal{M}$ if $x^*x = xx^*$.
- If $f \in C_0(\mathbb{R})$, $\exists f(x)$ for $x \in \mathcal{M}_{sa}$.
- ▶ If $f \in C_0(\mathbb{R}^+_0)$, $\exists f(x)$ for $x \in \mathcal{M}_+$.

(and it works fine: the map $f \mapsto f(x)$ is a *-homomorphism) Example: if $x \in \mathcal{M}_+$, $\exists x^{1/n} \in \mathcal{M}_+$. If $x \in \mathcal{M}$, there are $x_{Re}^+, x_{Re}^-, x_{Im}^+, x_{Im}^- \in \mathcal{M}_+$ such that $x = x_{Re}^+ - x_{Re}^- + ix_{Im}^+ - ix_{Im}^-$. A von Neumann algebra is a C^* -algebra $\mathcal{M} \subset B(\mathcal{H})$ that is WOT-closed and has unit.

Examples: $L^{\infty}(\mu)$, $\mathbb{M}_n(\mathbb{C})$, $B(\mathcal{H})$...

▶ Self-adjoint elements: $\mathcal{M}_{sa} = \{x \in \mathcal{M} : x = x^*\}$ ($\mathbb{C}_{sa} = \mathbb{R}$)

▶ Positive elements: $\mathcal{M}_+ = \{x^2 : x \in \mathcal{M}_{sa}\}$ $(\mathbb{C}_+ = \mathbb{R}_0^+)$

Continuous functional calculus:

- ▶ If $f \in C_0(\mathbb{C})$, $\exists f(x)$ for $x \in \mathcal{M}$ if $x^*x = xx^*$.
- If $f \in C_0(\mathbb{R})$, $\exists f(x)$ for $x \in \mathcal{M}_{sa}$.
- ▶ If $f \in C_0(\mathbb{R}^+_0)$, $\exists f(x)$ for $x \in \mathcal{M}_+$.

(and it works fine: the map $f \mapsto f(x)$ is a *-homomorphism) Example: if $x \in \mathcal{M}_+$, $\exists x^{1/n} \in \mathcal{M}_+$. If $x \in \mathcal{M}$, there are $x_{Re}^+, x_{Re}^-, x_{Im}^+, x_{Im}^- \in \mathcal{M}_+$ such that $x = x_{Re}^+ - x_{Re}^- + ix_{Im}^+ - ix_{Im}^-$.

- ▶ Projections: $\operatorname{Proj}(\mathcal{M}) = \{e \in \mathcal{M} : e^2 = e = e^*\}.$
- Every self-adjoint element is limit of self-adjoint linear combinations of projections.

Non-commutative L^{p} -spaces

Tracial L^p-spaces

Definition

Let \mathcal{M} be a von Neumann algebra. A *trace* on \mathcal{M} is a map $\tau: \mathcal{M}_+ \to [0,\infty]$ satisfying:

•
$$\tau(x+y) = \tau(x) + \tau(y)$$
 for all $x, y \in \mathcal{M}_+$.

•
$$\tau(\lambda x) = \lambda \tau(x)$$
 for all $x \in \mathcal{M}_+$ and $\lambda \ge 0$.

•
$$\tau(xx^*) = \tau(x^*x)$$
 for all $x \in \mathcal{M}$.

- 1. τ is normal is $\sup_{\alpha} \tau(x_{\alpha}) = \tau(\sup_{\alpha} x_{\alpha})$ for any bounded increasing net (x_{α}) in \mathcal{M}_+ .
- 2. τ is *semifinite* if for any non-zero $x \in \mathcal{M}_+$ there is a non-zero $y \in \mathcal{M}_+$ such that $y \leq x$ and $\tau(y) < \infty$.
- 3. τ is *faithful* if $\tau(x) = 0$ implies x = 0.

 ${\cal M}$ is said to be ${\it semifinite}$ if it admits a normal semifinite faithful trace.

Non-commutative L^{p} -spaces

Tracial L^p-spaces

Definition

Let \mathcal{M} be a von Neumann algebra. A *trace* on \mathcal{M} is a map $\tau: \mathcal{M}_+ \to [0,\infty]$ satisfying:

•
$$\tau(x+y) = \tau(x) + \tau(y)$$
 for all $x, y \in \mathcal{M}_+$.

•
$$\tau(\lambda x) = \lambda \tau(x)$$
 for all $x \in \mathcal{M}_+$ and $\lambda \ge 0$.

•
$$\tau(xx^*) = \tau(x^*x)$$
 for all $x \in \mathcal{M}$.

- 1. τ is normal is $\sup_{\alpha} \tau(x_{\alpha}) = \tau(\sup_{\alpha} x_{\alpha})$ for any bounded increasing net (x_{α}) in \mathcal{M}_+ .
- 2. τ is *semifinite* if for any non-zero $x \in \mathcal{M}_+$ there is a non-zero $y \in \mathcal{M}_+$ such that $y \leq x$ and $\tau(y) < \infty$.
- 3. τ is *faithful* if $\tau(x) = 0$ implies x = 0.

 ${\cal M}$ is said to be ${\it semifinite}$ if it admits a normal semifinite faithful trace.

This means that we can integrate operators of \mathcal{M} .

María Luisa C. Godoy

Non-commutative L^p-spaces and some orthogonality related problems

Example

• Let
$$\mathcal{M} = L^{\infty}(\mathbb{R})$$
.
 $L^{\infty}(\mathbb{R})_{+} = \{f \in L^{\infty}(\mathbb{R}) : f(x) > 0 \text{ almost everywhere}\}.$
 $\tau(f) = \int_{\mathbb{R}} f(x) dx, \quad (f \in L^{\infty}(\mathbb{R})_{+})$

► S = {bounded functions with compact support},

$$S = \lim \left\{ f \in L^{\infty}(\mathbb{R})_{+} : \int_{\mathbb{R}} \operatorname{supp} f(x) dx < \infty \right\}.$$

▶ If 0 ,

$$\|f\|_p = \left(\int_{\mathbb{R}} |f(x)|^p dx\right)^{1/p}, \quad (f \in S).$$

• $L^{p}(\mathbb{R})$ is the completion of $(S, \|\cdot\|_{p})$.

María Luisa C. Godoy

Non-commutative L^P-spaces and some orthogonality related problems

Tracial L^p-spaces

- Let *M* be a semifinite von Neumann algebra with normal semifinite faithful trace *τ*.
- Let $S(\mathcal{M}, \tau) = \lim \{x \in \mathcal{M}_+ : \tau(\operatorname{supp}(x)) < \infty\}.$
- If 0 we define

$$\|x\|_p = \left(\tau(|x|^p)\right)^{1/p}, \quad (x \in \mathcal{S}(\mathcal{M}, \tau)).$$

- $L^{p}(\mathcal{M}, \tau)$ is the completion of $(S(\mathcal{M}, \tau), \|\cdot\|_{p})$.
- We set L[∞](M, τ) = (M, ||·||) and L⁰(M, τ) = measurable closed densely defined operators affiliated to M.

►
$$L^p(\mathcal{M},\tau) = \{x \in L^0(\mathcal{M},\tau) : (\tau(|x|^p))^{1/p} < \infty\}.$$

What if ${\mathcal M}$ is not semifinite?

A posible definition:

- We can't define $L^p(\mathcal{M})$ for p < 1.
- We lost the multiplicative structure.

Non-commutative L^p -spaces Haagerup L^p -spaces

Definition

Let \mathcal{M} be a von Neumann algebra. A *weight* on \mathcal{M} is a map $\varphi: \mathcal{M}_+ \to [0,\infty]$ satisfying:

•
$$\varphi(x + y) = \varphi(x) + \varphi(y)$$
 for all $x, y \in \mathcal{M}_+$.

•
$$\varphi(\lambda x) = \lambda \varphi(x)$$
 for all $x \in \mathcal{M}_+$ and $\lambda \ge 0$.

- 1. φ is normal is $\sup_{\alpha} \varphi(x_{\alpha}) = \varphi(\sup_{\alpha} x_{\alpha})$ for any bounded increasing net (x_{α}) in \mathcal{M}_+ .
- 2. φ is *semifinite* if for any non-zero $x \in \mathcal{M}_+$ there is a non-zero $y \in \mathcal{M}_+$ such that $y \leq x$ and $\varphi(y) < \infty$.
- 3. φ is *faithful* if $\varphi(x) = 0$ implies x = 0.

Every von Neumann algebra admits a normal semifinite faithful weight.

Haagerup's construction

- Let \mathcal{M} be a von Neumann algebra.
- Let *R* be the crossed product of *M* by the modular automorphism group {σ_t} associated with a normal semifinite faithful weight φ on *M*.

Haagerup's construction

- Let *M* be a von Neumann algebra.
- Let *R* be the crossed product of *M* by the modular automorphism group {σ_t} associated with a normal semifinite faithful weight φ on *M*.
- ▶ \mathcal{R} is a semifinite von Neumann algebra and, for each $s \in \mathbb{R}$, there is a linear map $\theta_s : \mathcal{R} \to \mathcal{R}$ such that

$$\tau \circ \theta_s = e^{-s} \tau \quad (s \in \mathbb{R}).$$

María Luisa C. Godoy

Non-commutative L^p -spaces and some orthogonality related problems

Summary

Tracial L^p-spaces

Haagerup L^p-spaces

Summary

Tracial L^p-spaces

Haagerup L^p-spaces

- \blacktriangleright \mathcal{M} must be semifinite
- τ is a n.s.f. trace (integral)

$$\blacktriangleright \ \mathcal{S}(\mathcal{M},\tau) \subset \mathcal{M}$$

$$\blacktriangleright L^{p}(\mathcal{M},\tau) = \overline{S(\mathcal{M},\tau)}^{\|\cdot\|_{p}}$$

Summary

Tracial L^p-spaces

- M must be semifinite
- τ is a n.s.f. trace (integral)

$$\blacktriangleright \ \mathcal{S}(\mathcal{M},\tau) \subset \mathcal{M}$$

$$\blacktriangleright L^{p}(\mathcal{M},\tau) = \overline{S(\mathcal{M},\tau)}^{\|\cdot\|_{p}}$$

Haagerup L^p -spaces

- ► Any *M*
- \blacktriangleright $\mathcal R$ is semifinite

•
$$L^p(\mathcal{M}) \subset L^0(\mathcal{R}, \tau)$$

•
$$L^p(\mathcal{M}) = \dots$$

Let \mathcal{M} be a von Neumann algebra and let $0 . Let <math>L^p$ be the non-commutative L^p -space associated with \mathcal{M} (tracial or Haagerup).

Properties

- L^p is a Banach space if $1 \le p \le \infty$.
- L^p is a quasi-Banach space if 0 .
- ▶ Hölder's inequality: if $0 < p, q, r \le \infty$ are such that $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$, then

$$x \in L^p, y \in L^q \implies xy \in L^r$$

and
$$||xy||_r \le ||x||_p ||y||_q$$
.
• $(L^p)^* = L^{p^*}$ if $1 and $\frac{1}{p} + \frac{1}{p^*} = 1$.
• $(L^1)^* = L^{\infty} = \mathcal{M}$.
• L^p is a Banach (or quasi-Banach) \mathcal{M} -bimodule$

Problem 1: Orthogonally additive polynomials

Definition

Let X and Y be linear spaces. A map $P: X \to Y$ is said to be an *m*-homogeneous polynomial if there exists an *m*-linear map $\varphi: X^m \to Y$ such that

$$P(x) = \varphi(x, \ldots, x) \quad (x \in X).$$

Example

Let X be a linear space that has an additional structure that allow us to multiply its elements (algebra, function space, etc). If $X_{(m)}$ is a linear space containing the set $\{x^m : x \in X\}$ and $\Phi : X_{(m)} \to Y$ is a linear map, then we can define an *m*-homogeneous polynomial $P : X \to Y$ as follows:

$$P(x) = \Phi(x^m) \quad (x \in X).$$

Question

If P is a polynomial on X, then $P(x) = \Phi(x^m)$ ($x \in X$) for some linear map Φ ?

Question

If P is a polynomial on X, then $P(x) = \Phi(x^m)$ ($x \in X$) for some linear map Φ ?

Answer: no.

Example

If $P(x) = \Phi(x^m)$ $(x \in X)$, then P satisfies that

$$x, y \in X, xy = yx = 0 \implies P(x + y) = P(x) + P(y).$$

Let $P : \mathbb{M}_2 \to \mathbb{C}$, $P(A) = a_{11}a_{22}$ $(A = (a_{ij}) \in \mathbb{M}_2)$.

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \implies P(A+B) \neq P(A) + P(B)$$

Let X and Y be linear spaces.

- We say that x, y ∈ X are orthogonal if xy = yx = 0. In that case, we write x ⊥ y.
- A map P: X → Y is said to be orthogonally additive on a subset S ⊂ X if

$$x, y \in \mathcal{S}, x \perp y \implies P(x+y) = P(x) + P(y).$$

A map P: X → Y is said to be orthogonally additive if it is orthogonally additive on X.

Question

If P is a polynomial on X, and P is orthogonally additive on a certain subset $S \subset X$, then $P(x) = \Phi(x^m)$ ($x \in X$) for some linear map Φ ?

Theorem

Let \mathcal{M} be a von Neumann algebra with a normal semifinite faithful trace τ , let X be a topological linear space, and let $P: L^p(\mathcal{M}, \tau) \to X$ be a continuous m-homogeneous polynomial with 0 . If <math>P is orthogonally additive on $S(\mathcal{M}, \tau)_+$, then there exists a unique continuous linear map $\Phi: L^{p/m}(\mathcal{M}, \tau) \to X$ such that

 $P(x) = \Phi(x^m) \quad (x \in L^p(\mathcal{M}, \tau)).$

Theorem

Let \mathcal{M} be a von Neumann algebra with a normal semifinite faithful trace τ , let X be a topological linear space, and let $P: L^p(\mathcal{M}, \tau) \to X$ be a continuous m-homogeneous polynomial with 0 . If <math>P is orthogonally additive on $S(\mathcal{M}, \tau)_+$, then there exists a unique continuous linear map $\Phi: L^{p/m}(\mathcal{M}, \tau) \to X$ such that

$$P(x) = \Phi(x^m) \quad (x \in L^p(\mathcal{M}, \tau)).$$

Lemma

Let \mathcal{M} be a von Neumann algebra, let X be a topological linear space, and let $P \colon \mathcal{M} \to X$ be a continuous m-homogeneous polynomial. If P is orthogonally additive on \mathcal{M}_+ , then there exists a unique continuous linear map $\Phi \colon \mathcal{M} \to X$ such that

$$P(a) = \Phi(a^m) \quad (a \in \mathcal{M}).$$

Proof of the theorem:

- Let $e \in \operatorname{Proj}(M)$ with $\tau(e) < \infty$ and let $\mathcal{M}_e = e\mathcal{M}e$.
- $\mathcal{M}_e \subset S(\mathcal{M}, \tau)$.
- ▶ $P \mid_{\mathcal{M}_e}$ is continuous.
- There exists a unique continuous linear map Φ_e : M_e → X such that P(x) = Φ_e(x^m) (x ∈ M_e).
- For each $x \in S(\mathcal{M}, \tau)$, define $\Phi(x) = \Phi_e(x)$, where $e \in \operatorname{Proj}(\mathcal{M})$ is such that $\tau(e) < \infty$ and $x \in \mathcal{M}_e$.
- Φ is linear.
- Φ is continuous with respect to the norm $\|\cdot\|_{p/m}$.
- Φ extends to a continuous linear map from $L^{p/m}(\mathcal{M}, \tau)$ to the completion of X.
- $\blacktriangleright \Phi(L^{p/m}(\mathcal{M},\tau)) \subset X.$

What we don't know

Does this hold for Haagerup L^p-spaces? It makes sense, but:

▶ Tracial L^p : $S \subset L^p \cap L^{p/m}$, and S is dense in both.

• Haagerup
$$L^p$$
: $L^p \cap L^{p/m} = \{0\}$ if $m \neq 1$.

Problem 2: Reflexivity and hyperreflexivity

Definition

Let \mathcal{X}, \mathcal{Y} be Banach spaces, and let \mathcal{A} be a closed linear subspace of $B(\mathcal{X}, \mathcal{Y})$.

• \mathcal{A} is called *reflexive* if

$$\mathcal{A} = \big\{ T \in \mathcal{B}(\mathcal{X}, \mathcal{Y}) : T(x) \in \overline{\{S(x) : S \in \mathcal{A}\}} \ \forall x \in \mathcal{X} \big\}.$$

• \mathcal{A} is called *hyperreflexive* if there exists C such that

$$\mathsf{dist}(\mathcal{T},\mathcal{A}) \leq C \sup_{\|x\| \leq 1} \inf \big\{ \|\mathcal{T}(x) - \mathcal{S}(x)\| : \mathcal{S} \in \mathcal{A} \big\}$$

for all $T \in B(\mathcal{X}, \mathcal{Y})$, and the optimal constant is called the *hyperreflexivity constant* of \mathcal{A} .

Example

- Each von Neumann algebra is reflexive.
- ► The algebra

$$\left\{ \left(\begin{array}{cc} \alpha & \beta \\ \mathbf{0} & \alpha \end{array}\right) : \alpha, \beta \in \mathbb{C} \right\} \subset \mathbb{M}_2(\mathbb{C})$$

is not reflexive.

- Each injective von Neumann algebra is hyperreflexive with hyperreflexivity constant less or equal than 4.
- We don't know if each von Neumann algebra is hyperreflexive.

Definition

An operator $T \in B(L^p, L^q)$ is a right \mathcal{M} -module homomorphism if

$$T(xa) = T(x)a \quad \forall x \in L^p, \ \forall a \in \mathcal{M}.$$

 $\operatorname{Hom}_{\mathcal{M}}(L^p, L^q)$ is the space of right \mathcal{M} -module homomorphisms from L^p to L^q .

For T ∈ B(L^p, L^q) and a ∈ M, define aT, Ta: L^p → L^q by (aT)(x) = T(xa), (Ta)(x) = T(x)a (x ∈ L^p).
Define ad(T): M → B(L^p, L^q) by ad(T)(a) = aT - Ta (a ∈ M).

This way,

$$T \in \operatorname{Hom}_{\mathcal{M}}(L^p, L^q) \iff ad(T) = 0.$$

María Luisa C. Godoy

Non-commutative L^p-spaces and some orthogonality related problems

Lemma
Let
$$T \in B(L^p, L^q)$$
.
1. If
 $e \in \operatorname{Proj}(\mathcal{M}) \Longrightarrow eT(1-e) = 0$,
then $T \in \operatorname{Hom}_{\mathcal{M}}(L^p, L^q)$.
2. If $p, q \ge 1$, then
 $\|\operatorname{ad}(T)\| \le 8 \sup_{\|x\| \le 1} \inf\{\|T(x) - \Phi(x)\| : \Phi \in \operatorname{Hom}_{\mathcal{M}}(L^p, L^q)\}$

María Luisa C. Godoy

Non-commutative L^p -spaces and some orthogonality related problems

Definition

 $\operatorname{Hom}_{\mathcal{M}}(L^p, L^q)$ is reflexive if

 $\operatorname{Hom}_{\mathcal{M}}(L^{p},L^{q}) = \big\{ T \in B(L^{p},L^{q}) : T(x) \in \overline{\{\Phi(x) : \Phi \in \operatorname{Hom}_{\mathcal{M}}(L^{p},L^{q})\}} \, \forall x \in L^{p} \big\}.$

 $\operatorname{Hom}_{\mathcal{M}}(L^{p}, L^{q}) \text{ is hyperreflexive if}$ $\operatorname{dist}(T, \operatorname{Hom}_{\mathcal{M}}(L^{p}, L^{q})) \leq C \sup_{\|x\| \leq 1} \inf \{ \|T(x) - \Phi(x)\| : \Phi \in \operatorname{Hom}_{\mathcal{M}}(L^{p}, L^{q}) \}.$

Corollary

The space $\operatorname{Hom}_{\mathcal{M}}(L^p, L^q)$ is reflexive.

Proof: Let $T \in B(L^p, L^q)$ such that

$$T(x) \in \overline{\{\Phi(x) : \Phi \in \operatorname{Hom}_{\mathcal{M}}(L^p, L^q)\}}, \quad (x \in L^p).$$

Let $e \in \operatorname{Proj}(\mathcal{M}), x \in L^p$. Let $(\Phi_n)_{n \in \mathbb{N}} \subset \operatorname{Hom}_{\mathcal{M}}(L^p, L^q)$ such that $\lim_n \Phi_n(xe) = T(xe)$. Then

$$(eT(1-e))(x) = T(xe)(1-e) = \lim_{n\to\infty} \Phi_n(xe)(1-e) = 0.$$

Theorem (1)

If $p = \infty$ or q = 1, then $\text{Hom}_{\mathcal{M}}(L^p, L^q)$ is hyperreflexive and the hyperreflexivity constant is less or equal than 8.

Idea of the proof:
Let
$$T \in B(L^p, L^q)$$
.
If $p = \infty$, $L^p = \mathcal{M}$. Take $y = T(1)$.
If $q = 1$ and $p \neq \infty$, define $\Phi \in (L^p)^*$ by
 $\Phi(x) = \operatorname{Tr}(T(x)) \ (x \in L^p)$, and take $y \in L^{p^*}$ such that
 $\Phi(x) = \operatorname{Tr}(yx) \ (x \in L^p)$.
 $\|T - L_y\| \le \|\operatorname{ad}(T)\| \implies \operatorname{dist}(T, \operatorname{Hom}_{\mathcal{M}}(L^p, L^q)) \le \|\operatorname{ad}(T)\|$.

Theorem (2)

If \mathcal{M} is injective and $p, q \ge 1$, then $\operatorname{Hom}_{\mathcal{M}}(L^p, L^q)$ is hyperreflexive and the hyperreflexivity constant is less or equal than 8.

Idea of the proof: If $p = \infty$ or q = 1, we apply the previous theorem. If $p \neq \infty$ and $q \neq 1$, then $(L^p)^* = L^{p^*}$ and $L^q = (L^{q^*})^*$. Define $\Phi: L^p \to L^q = (L^{q^*})^*$ by

$$\langle y, \Phi(x) \rangle = \int_G \langle y, T(xu^*)u \rangle d\mu(u) \quad (x \in L^p, y \in L^{q^*}).$$

 $\Phi \in \operatorname{Hom}_{\mathcal{M}}(L^p, L^q) \text{ and } ||T - \Phi|| \le ||\operatorname{ad}(T)||, \text{ so } \operatorname{dist}(T, \operatorname{Hom}_{\mathcal{M}}(L^p, L^q)) \le ||\operatorname{ad}(T)||.$

Theorem (3)

If $1 \le q < p$, then $\text{Hom}_{\mathcal{M}}(L^p, L^q)$ is hyperreflexive and the hyperreflexivity constant is less or equal than a constant $C_{p,q}$ that does not deppend on \mathcal{M} .

Idea of the proof:

Assume towards a contradiction that, for each $n \in \mathbb{N}$, there is a von Neumann algebra \mathcal{M}_n and an operator $\mathcal{T}_n \in B(L^p(\mathcal{M}_n), L^q(\mathcal{M}_n))$ such that

 $\operatorname{dist}(T_n, \operatorname{Hom}_{\mathcal{M}_n}(L^p(\mathcal{M}_n), L^q(\mathcal{M}_n))) > n \|\operatorname{ad}(T_n)\|.$

What we don't know What if $p \le q$, $p \ne \infty$, $q \ne 1$ and \mathcal{M} is not injective?

References

- 🛸 Gilles Pisier and Quanhua Xu. Non-Commutative L^{p} -Spaces. https://doi.org/10.1016/S1874-5849(03)80041-4
 - Jerónimo Alaminos, María L. C. Godoy, and Armando Villena. Orthogonally additive polynomials on non-commutative L^{p} -spaces. https://doi.org/10.1007/s13163-019-00330-1
 - Jerónimo Alaminos, José Extremera, María L. C. Godoy, and Armando Villena. Hyperreflexivity of the space of module homomorphisms between non-conmutative L^p-spaces. https://doi.org/10.1016/j.jmaa.2021.124964

