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Introduction

▶ F = C.
▶ Banach algebra: Banach space with product

B(H) = continuous operators on a Hilbert space H
▶ C ∗-algebra: Banach algebra with involution (∗)

Example: C, z∗ = z
Example: C (K ), (f ∗)(x) = f (x).
Example: B(H), T ∗ = adjoint operator of T

▶ If A is a C ∗-algebra, there is a Hilbert space H such that
A ⊂ B(H) as a C ∗-algebra.
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A von Neumann algebra is a C ∗-algebra M ⊂ B(H) that is
WOT -closed and has unit.
Examples: L∞(µ), Mn(C), B(H) . . .

▶ Self-adjoint elements: Msa = {x ∈ M : x = x∗} (Csa = R)
▶ Positive elements: M+ = {x2 : x ∈ Msa} (C+ = R+

0 )
▶ Continuous functional calculus:

▶ If f ∈ C0(C), ∃f (x) for x ∈ M if x∗x = xx∗.
▶ If f ∈ C0(R), ∃f (x) for x ∈ Msa.
▶ If f ∈ C0(R+

0 ), ∃f (x) for x ∈ M+.

(and it works fine: the map f 7→ f (x) is a ∗-homomorphism)
Example: if x ∈ M+, ∃x1/n ∈ M+. If x ∈ M, there are
x+Re , x

−
Re , x

+
Im, x

−
Im ∈ M+ such that x = x+Re − x−Re + ix+Im − ix−Im.

▶ Projections: Proj(M) = {e ∈ M : e2 = e = e∗}.
▶ Every self-adjoint element is limit of self-adjoint linear

combinations of projections.
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Non-commutative Lp-spaces
Tracial Lp-spaces

Definition
Let M be a von Neumann algebra. A trace on M is a map
τ : M+ → [0,∞] satisfying:

▶ τ(x + y) = τ(x) + τ(y) for all x , y ∈ M+.

▶ τ(λx) = λτ(x) for all x ∈ M+ and λ ≥ 0.

▶ τ(xx∗) = τ(x∗x) for all x ∈ M.

1. τ is normal is supα τ(xα) = τ(supα xα) for any bounded
increasing net (xα) in M+.

2. τ is semifinite if for any non-zero x ∈ M+ there is a non-zero
y ∈ M+ such that y ≤ x and τ(y) < ∞.

3. τ is faithful if τ(x) = 0 implies x = 0.

M is said to be semifinite if it admits a normal semifinite faithful
trace.

This means that we can integrate operators of M.
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Example

▶ Let M = L∞(R).
L∞(R)+ = {f ∈ L∞(R) : f (x) > 0 almost everywhere}.

τ(f ) =

∫
R
f (x)dx , (f ∈ L∞(R)+)

▶ S = {bounded functions with compact support},

S = lin

{
f ∈ L∞(R)+ :

∫
R
supp f (x)dx < ∞

}
.

▶ If 0 < p < ∞,

∥f ∥p =

(∫
R
|f (x)|p dx

)1/p

, (f ∈ S).

▶ Lp(R) is the completion of (S , ∥·∥p).
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Tracial Lp-spaces

▶ Let M be a semifinite von Neumann algebra with normal
semifinite faithful trace τ .

▶ Let S(M, τ) = lin{x ∈ M+ : τ(supp(x)) < ∞}.
▶ If 0 < p < ∞ we define

∥x∥p =
(
τ(|x |p)

)1/p
, (x ∈ S(M, τ)).

▶ Lp(M, τ) is the completion of (S(M, τ), ∥·∥p).
▶ We set L∞(M, τ) = (M, ∥·∥) and L0(M, τ) = measurable

closed densely defined operators affiliated to M.

▶ Lp(M, τ) = {x ∈ L0(M, τ) :
(
τ(|x |p)

)1/p
< ∞}.
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What if M is not semifinite?
A posible definition:

▶ L∞(M) = M.

▶ L1(M)∗ = L∞(M) = M, so L1(M) = M∗.

▶ We can define Lp(M) (1 < p < ∞) by interpolation.

Problems:

▶ We can’t define Lp(M) for p < 1.

▶ We lost the multiplicative structure.
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Non-commutative Lp-spaces
Haagerup Lp-spaces

Definition
Let M be a von Neumann algebra. A weight on M is a map
φ : M+ → [0,∞] satisfying:

▶ φ(x + y) = φ(x) + φ(y) for all x , y ∈ M+.

▶ φ(λx) = λφ(x) for all x ∈ M+ and λ ≥ 0.

1. φ is normal is supα φ(xα) = φ(supα xα) for any bounded
increasing net (xα) in M+.

2. φ is semifinite if for any non-zero x ∈ M+ there is a non-zero
y ∈ M+ such that y ≤ x and φ(y) < ∞.

3. φ is faithful if φ(x) = 0 implies x = 0.

Every von Neumann algebra admits a normal semifinite faithful
weight.
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Haagerup’s construction

▶ Let M be a von Neumann algebra.

▶ Let R be the crossed product of M by the modular
automorphism group {σt} associated with a normal semifinite
faithful weight φ on M.

▶ R is a semifinite von Neumann algebra and, for each s ∈ R,
there is a linear map θs : R → R such that

τ ◦ θs = e−sτ (s ∈ R).
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▶ Lp(M) =
{
x ∈ L0(R, τ) : θs(x) = e−s/px (s ∈ R)

}
(p < ∞).

▶ L∞(M) =
{
x ∈ L0(R, τ) : θs(x) = x (s ∈ R)

}
= M.

▶ L1(M) = M∗ ⊂ M∗, so we can define

Tr(x) = x(1) (x ∈ L1(M)).

▶ For 0 < p < ∞, we define ∥ · ∥p : Lp(M) → R by

∥x∥p = Tr(|x |p)1/p (x ∈ Lp(M)).
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Summary

Tracial Lp-spaces Haagerup Lp-spaces

▶ M must be semifinite

▶ τ is a n.s.f. trace
(integral)

▶ S(M, τ) ⊂ M

▶ Lp(M, τ) = S(M, τ)
∥·∥p

▶ Any M
▶ R is semifinite

▶ Lp(M) ⊂ L0(R, τ)

▶ Lp(M) = . . .
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Let M be a von Neumann algebra and let 0 < p ≤ ∞. Let Lp be
the non-commutative Lp-space associated with M (tracial or
Haagerup).

Properties

▶ Lp is a Banach space if 1 ≤ p ≤ ∞.

▶ Lp is a quasi-Banach space if 0 < p < 1.

▶ Hölder’s inequality: if 0 < p, q, r ≤ ∞ are such that
1
p + 1

q = 1
r , then

x ∈ Lp, y ∈ Lq =⇒ xy ∈ Lr

and ∥xy∥r ≤ ∥x∥p ∥y∥q.
▶

(
Lp

)∗
= Lp

∗
if 1 < p < ∞ and 1

p + 1
p∗ = 1.

▶
(
L1
)∗

= L∞ = M.

▶ Lp is a Banach (or quasi-Banach) M-bimodule.
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Problem 1: Orthogonally additive polynomials

Definition
Let X and Y be linear spaces. A map P : X → Y is said to be an
m-homogeneous polynomial if there exists an m-linear map
φ : Xm → Y such that

P(x) = φ (x , . . . , x) (x ∈ X ).

Example

Let X be a linear space that has an additional structure that allow
us to multiply its elements (algebra, function space, etc).
If X(m) is a linear space containing the set {xm : x ∈ X} and
Φ : X(m) → Y is a linear map, then we can define an
m-homogeneous polynomial P : X → Y as follows:

P(x) = Φ(xm) (x ∈ X ).

Maŕıa Luisa C. Godoy Non-commutative Lp -spaces and some orthogonality related problems 14 / 30



Question
If P is a polynomial on X , then P(x) = Φ(xm) (x ∈ X ) for some
linear map Φ?

Answer: no.

Example

If P(x) = Φ(xm) (x ∈ X ), then P satisfies that

x , y ∈ X , xy = yx = 0 =⇒ P(x + y) = P(x) + P(y).

Let P : M2 → C, P(A) = a11a22 (A = (aij) ∈ M2).

A =

(
1 0
0 0

)
, B =

(
0 0
0 1

)
=⇒ P(A+ B) ̸= P(A) + P(B)
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Let X and Y be linear spaces.

▶ We say that x , y ∈ X are orthogonal if xy = yx = 0. In that
case, we write x ⊥ y .

▶ A map P : X → Y is said to be orthogonally additive on a
subset S ⊂ X if

x , y ∈ S, x ⊥ y =⇒ P(x + y) = P(x) + P(y).

▶ A map P : X → Y is said to be orthogonally additive if it is
orthogonally additive on X .

Question
If P is a polynomial on X , and P is orthogonally additive on a
certain subset S ⊂ X , then P(x) = Φ(xm) (x ∈ X ) for some linear
map Φ?
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Theorem
Let M be a von Neumann algebra with a normal semifinite faithful
trace τ , let X be a topological linear space, and let
P : Lp(M, τ) → X be a continuous m-homogeneous polynomial
with 0 < p < ∞. If P is orthogonally additive on S(M, τ)+, then
there exists a unique continuous linear map Φ: Lp/m(M, τ) → X
such that

P(x) = Φ(xm) (x ∈ Lp(M, τ)).

Lemma
Let M be a von Neumann algebra, let X be a topological linear
space, and let P : M → X be a continuous m-homogeneous
polynomial. If P is orthogonally additive on M+, then there exists
a unique continuous linear map Φ: M → X such that

P(a) = Φ(am) (a ∈ M).
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Proof of the theorem:

▶ Let e ∈ Proj(M) with τ(e) < ∞ and let Me = eMe.

▶ Me ⊂ S(M, τ).

▶ P |Me is continuous.

▶ There exists a unique continuous linear map Φe : Me → X
such that P(x) = Φe(x

m) (x ∈ Me).

▶ For each x ∈ S(M, τ), define Φ(x) = Φe(x), where
e ∈ Proj(M) is such that τ(e) < ∞ and x ∈ Me .

▶ Φ is linear.

▶ Φ is continuous with respect to the norm ∥·∥p/m.
▶ Φ extends to a continuous linear map from Lp/m(M, τ) to the

completion of X .

▶ Φ(Lp/m(M, τ)) ⊂ X .
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What we don’t know
Does this hold for Haagerup Lp-spaces?
It makes sense, but:

▶ Tracial Lp: S ⊂ Lp ∩ Lp/m, and S is dense in both.

▶ Haagerup Lp: Lp ∩ Lp/m = {0} if m ̸= 1.
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Problem 2: Reflexivity and hyperreflexivity

Definition
Let X ,Y be Banach spaces, and let A be a closed linear subspace
of B(X ,Y).

▶ A is called reflexive if

A =
{
T ∈ B(X ,Y) : T (x) ∈ {S(x) : S ∈ A} ∀x ∈ X

}
.

▶ A is called hyperreflexive if there exists C such that

dist(T ,A) ≤ C sup
∥x∥≤1

inf
{
∥T (x)− S(x)∥ : S ∈ A

}
for all T ∈ B(X ,Y), and the optimal constant is called the
hyperreflexivity constant of A.
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Example

▶ Each von Neumann algebra is reflexive.

▶ The algebra {(
α β
0 α

)
: α, β ∈ C

}
⊂ M2(C)

is not reflexive.

▶ Each injective von Neumann algebra is hyperreflexive with
hyperreflexivity constant less or equal than 4.

▶ We don’t know if each von Neumann algebra is hyperreflexive.
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Definition
An operator T ∈ B(Lp, Lq) is a right M-module homomorphism if

T (xa) = T (x)a ∀x ∈ Lp, ∀a ∈ M.

HomM(Lp, Lq) is the space of right M-module homomorphisms
from Lp to Lq.

▶ For T ∈ B(Lp, Lq) and a ∈ M, define aT , Ta : Lp → Lq by

(aT )(x) = T (xa), (Ta)(x) = T (x)a (x ∈ Lp).

▶ Define ad(T ) : M → B(Lp, Lq) by

ad(T )(a) = aT − Ta (a ∈ M).

▶ This way,

T ∈ HomM(Lp, Lq) ⇐⇒ ad(T ) = 0.
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Lemma
Let T ∈ B(Lp, Lq).

1. If
e ∈ Proj(M) =⇒ eT (1− e) = 0,

then T ∈ HomM(Lp, Lq).

2. If p, q ≥ 1, then

∥ ad(T )∥ ≤ 8 sup
∥x∥≤1

inf
{
∥T (x)− Φ(x)∥ : Φ ∈ HomM(Lp, Lq)

}
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Definition
HomM(Lp, Lq) is reflexive if

HomM(Lp, Lq) =
{
T ∈ B(Lp, Lq) : T (x) ∈ {Φ(x) : Φ ∈ HomM(Lp, Lq)} ∀x ∈ Lp}.
HomM(Lp, Lq) is hyperreflexive if

dist(T ,HomM(Lp, Lq)) ≤ C sup
∥x∥≤1

inf
{
∥T (x)− Φ(x)∥ : Φ ∈ HomM(Lp, Lq)

}
.
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Corollary

The space HomM(Lp, Lq) is reflexive.

Proof:
Let T ∈ B(Lp, Lq) such that

T (x) ∈ {Φ(x) : Φ ∈ HomM(Lp, Lq)}, (x ∈ Lp).

Let e ∈ Proj(M), x ∈ Lp. Let (Φn)n∈N ⊂ HomM(Lp, Lq) such that
limn Φn(xe) = T (xe). Then

(eT (1− e))(x) = T (xe)(1− e) = lim
n→∞

Φn(xe)(1− e) = 0.
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Theorem (1)

If p = ∞ or q = 1, then HomM(Lp, Lq) is hyperreflexive and the
hyperreflexivity constant is less or equal than 8.

Idea of the proof:
Let T ∈ B(Lp, Lq).

▶ If p = ∞, Lp = M. Take y = T (1).

▶ If q = 1 and p ̸= ∞, define Φ ∈
(
Lp

)∗
by

Φ(x) = Tr(T (x)) (x ∈ Lp), and take y ∈ Lp
∗
such that

Φ(x) = Tr(yx) (x ∈ Lp).

∥T − Ly∥ ≤ ∥ad(T )∥ =⇒ dist(T ,HomM(Lp, Lq)) ≤ ∥ad(T )∥ .
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Theorem (2)

If M is injective and p, q ≥ 1, then HomM(Lp, Lq) is hyperreflexive
and the hyperreflexivity constant is less or equal than 8.

Idea of the proof:
If p = ∞ or q = 1, we apply the previous theorem.
If p ̸= ∞ and q ̸= 1, then

(
Lp

)∗
= Lp

∗
and Lq =

(
Lq

∗)∗
.

Define Φ : Lp → Lq =
(
Lq

∗)∗
by

⟨y ,Φ(x)⟩ =
∫
G
⟨y ,T (xu∗)u⟩ dµ(u) (x ∈ Lp, y ∈ Lq

∗
).

Φ ∈ HomM(Lp, Lq) and ∥T − Φ∥ ≤ ∥ad(T )∥, so
dist(T ,HomM(Lp, Lq)) ≤ ∥ad(T )∥.
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Theorem (3)

If 1 ≤ q < p, then HomM(Lp, Lq) is hyperreflexive and the
hyperreflexivity constant is less or equal than a constant Cp,q that
does not deppend on M.

Idea of the proof:
Assume towards a contradiction that, for each n ∈ N, there is a von
Neumann algebra Mn and an operator Tn ∈ B(Lp(Mn), L

q(Mn))
such that

dist(Tn,HomMn(L
p(Mn), L

q(Mn))) > n ∥ad(Tn)∥ .
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What we don’t know
What if p ≤ q, p ̸= ∞, q ̸= 1 and M is not injective?
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