

A note on Hahn–Banach extensions: uniqueness and renormings

A joint work with Antonio José Guirao and Vicente Montesinos

Christian Cobollo

I Workshop de la Red de Análisis Funcional y Aplicaciones

$(X,\|\cdot\|)$

E. Oja, T. Viil, and D. Werner, *Totally smooth renormings* (2019)

Christian Cobollo (UPV)

Christian Cobollo (UPV)

A note on Hahn–Banach extensions

23th June 2021

Definition (Phelps, 1960)

 $M \hookrightarrow X$ has **property U in** X if: every $f^* \in M^*$ has unique norm-preserving extension to X.

Christian Cobollo (UPV)

Christian Cobollo (UPV)

Christian Cobollo (UPV)

A note on Hahn–Banach extensions

23th June 2021

Definition (Sullivan, 1977)

X is **HBS** if: X has property U in X^{**} .

Christian Cobollo (UPV)

A note on Hahn–Banach extensions

Christian Cobollo (UPV)

Definition

X is **TS** if: every $M \hookrightarrow X$ has property U in X^{**} .

Christian Cobollo (UPV)

A note on Hahn–Banach extensions

The Problem

Question

HBS + ? \implies renormable TS.

The Problem

Question

HBS + ? \implies renormable TS.

Theorem (Sullivan, 1977)

HBS + **Separable** \implies renormable TS.

The Problem

Question

HBS + ? \implies renormable TS.

Theorem (Sullivan, 1977)

HBS + **Separable** \implies renormable TS.

Theorem (Oja–Viil–Werner, 2019)

HBS + WCG \implies renormable TS.

The Problem

Question

HBS + ? \implies renormable TS.

Theorem (Sullivan, 1977)

HBS + **Separable** \implies renormable TS.

Theorem (Oja–Viil–Werner, 2019)

HBS + WCG \implies renormable TS.

C. C., A. J. Guirao, and V. Montesinos, *A remark on totally smooth renormings*, RACSAM (2020).

The Problem

Question

HBS + ? \implies renormable TS.

Theorem (Sullivan, 1977)

HBS + **Separable** \implies renormable TS.

Theorem (Oja–Viil–Werner, 2019)

HBS + WCG \implies renormable TS.

C. C., A. J. Guirao, and V. Montesinos, *A remark on totally smooth renormings*, RACSAM (2020).

Theorem (C.C., A. J. Guirao, V. Montesinos)

HBS \implies renormable TS...

Christian Cobollo (UPV)

The Problem

Question

HBS + ? \implies renormable TS.

Theorem (Sullivan, 1977)

HBS + **Separable** \implies renormable TS.

Theorem (Oja–Viil–Werner, 2019)

HBS + WCG \implies renormable TS.

C. C., A. J. Guirao, and V. Montesinos, *A remark on totally smooth renormings*, RACSAM (2020).

Theorem (C.C., A. J. Guirao, V. Montesinos)

HBS \implies renormable TS... and even more.

Christian Cobollo (UPV)

A note on Hahn–Banach extensions

23th June 2021

TS decomposition

TS decomposition

 $\mathsf{TS} = \forall \ M \hookrightarrow X \text{ has U in } X + \mathsf{HBS}$

Theorem (Taylor–Foguel, 1958)

 $\forall \ M \hookrightarrow X \text{ has U in } X \iff (X^*, \|\cdot\|^*) \text{ is rotund } (X \text{ has } \mathsf{R}^*).$

TS decomposition

 $TS = R^* + HBS$

Theorem (Taylor–Foguel, 1958)

 $\forall \ M \hookrightarrow X \text{ has U in } X \iff (X^*, \|\cdot\|^*) \text{ is rotund } (X \text{ has } \mathsf{R}^*).$

HBS and topologies

Proposition (Godefroy, 1981)

$$(X, \|\cdot\|)$$
 is HBS $\iff (X^*, \|\cdot\|^*)$ has w^* - w -KK

On unique extensions HBS and topologies

Proposition (Godefroy, 1981)

$$(X,\|\cdot\|)$$
 is HBS $\iff (X^*,\|\cdot\|^*)$ has $w^*\text{-}w\text{-}\mathsf{K}\mathsf{K}$

HBS and topologies

Proposition (Godefroy, 1981)

$$(X, \|\cdot\|)$$
 is HBS $\iff (X^*, \|\cdot\|^*)$ has w^* -w-KK

Definition

Let $\tau_1 \subset \tau_2 \subset \|\cdot\|$ and $A \subset X$ a cone. We say $\|\cdot\|$ is $\tau_1 - \tau_2$ -KK w.r.t. A if $\tau_1 = \tau_2$ when restricted to $A \cap S_X$.

HBS and topologies

Proposition (Godefroy, 1981)

$$(X, \|\cdot\|)$$
 is HBS $\iff (X^*, \|\cdot\|^*)$ has w^* -w-KK

Definition

Let $\tau_1 \subset \tau_2 \subset \|\cdot\|$, $A \subset X$ a cone. We say $\|\cdot\|$ is τ_1 - τ_2 -KK w.r.t. A if $\tau_1 = \tau_2$ when restricted to $A \cap S_X$.

Proposition (C.C., A. J. Guirao, V. Montesinos)

Let $\|\cdot\|$ be τ_1 - τ_2 -KK w.r.t. A. If $\|\cdot\|$ is τ_2 -lsc and $\overline{A \cap B_X}^{\|\cdot\|} = B_X$, then $\|\cdot\|$ is τ_1 -lsc.

HBS and topologies

Proposition (Godefroy, 1981)

$$(X, \|\cdot\|)$$
 is HBS $\iff (X^*, \|\cdot\|^*)$ has w^* -w-KK

Theorem (C.C., A. J. Guirao, V. Montesinos)

 $X \text{ admits HBS} \iff X^* \text{ admits } w^* \cdot w \cdot \mathsf{KK}$

A landmark in renorming theory Raja's Theorem

Troyanski (1985): X admits LUR \Rightarrow X admits R + X admits $w - \|\cdot\|$ -KK

A landmark in renorming theory Raja's Theorem

Troyanski (1985): X admits LUR \lapha X admits R + X admits w-||·||-KK

 X^* admits dual LUR \leftrightarrows X^* admits dual R + X^* admits w^* - $\|\cdot\|$ -KK
A landmark in renorming theory Raja's Theorem

A landmark in renorming theory Raja's Theorem

A landmark in renorming theory Raja's Theorem

Theorem (M. Raja, 2002)

 X^* has a LUR norm $\iff X^*$ has w^* -w-KK norm.

Christian Cobollo (UPV)

A note on Hahn–Banach extensions

23th June 2021

Putting the pieces together

TS decomposition + Godefroy + Raja + w^* -w-KK norms are dual

Putting the pieces together

TS decomposition + Godefroy + Raja + w*-w-KK norms are dual

Theorem (C.C., A. J. Guirao, V. Montesinos)

- Let $(X, \|\cdot\|)$ be a Banach space. TFAE:
- (i) X admits HBS norm.

Putting the pieces together

TS decomposition + Godefroy + Raja + w*-w-KK norms are dual

Theorem (C.C., A. J. Guirao, V. Montesinos)

Let $(X, \|\cdot\|)$ be a Banach space. TFAE:

- (i) X admits HBS norm.
- (ii) X^* admits w^* -w-KK norm.

Putting the pieces together

TS decomposition + Godefroy + Raja + w*-w-KK norms are dual

Theorem (C.C., A. J. Guirao, V. Montesinos)

Let $(X, \|\cdot\|)$ be a Banach space. TFAE:

(i) X admits HBS norm.

(ii) X^* admits w^* -w-KK norm.

(iii) X^* admits **dual LUR norm**.

Putting the pieces together

TS decomposition + Godefroy + Raja + w*-w-KK norms are dual

Theorem (C.C., A. J. Guirao, V. Montesinos)

Let $(X, \|\cdot\|)$ be a Banach space. TFAE:

- (i) X admits HBS norm.
- (ii) X^* admits w^* -w-KK norm.
- (iii) X^* admits **dual LUR norm**.
- (iv) X admits TS norm.

Putting the pieces together

TS decomposition + Godefroy + Raja + w*-w-KK norms are dual

Theorem (C.C., A. J. Guirao, V. Montesinos)

Let $(X, \|\cdot\|)$ be a Banach space. TFAE:

- (i) X admits HBS norm.
- (ii) X^* admits w^* -w-KK norm.
- (iii) X^* admits **dual LUR norm**.
- (iv) X admits TS norm.

$\mathsf{TS} \;=\; \mathsf{R}^* + \mathsf{HBS}$

A key example

Proposition

Let *K* be a Ciesielski–Pol compact set. Then: 1) $K^{(3)} = \emptyset$. 2) There is no bounded linear one-to-one $T : C(K) \rightarrow c_0(\Gamma)$.

A key example

Proposition

Let *K* be a Ciesielski–Pol compact set. Then: 1) $K^{(3)} = \emptyset$.

2) There is no bounded linear one-to-one $T: C(K) \to c_0(\Gamma)$.

1) $\implies C(K)^*$ has dual LUR renorming.

A key example

Proposition

Let *K* be a Ciesielski–Pol compact set. Then:

1) $K^{(3)} = \emptyset$.

2) There is no bounded linear one-to-one $T : C(K) \rightarrow c_0(\Gamma)$.

- 1) $\implies C(K)^*$ has dual LUR renorming.
- 2) $\implies C(K)$ is not WCG.

Properties wU and wHBS

Properties wU and wHBS

Definition

 $M \hookrightarrow X$ has **property wU in X** if: every $f^* \in NA(M)$ has unique norm-preserving extension to X.

Properties wU and wHBS

Christian Cobollo (UPV)

Properties wU and wHBS

Definition (Sullivan, 1977)

X has wHBS if: X has property wU in X^{**} .

Christian Cobollo (UPV)

Theorem (C.C., A. J. Guirao, V. Montesinos)

• X HBS $\iff X^* w^* \cdot w \cdot KK$

Theorem (C.C., A. J. Guirao, V. Montesinos)

- X HBS $\iff X^* w^* \cdot w \cdot KK$
- X wHBS $\iff X^* w^* \cdot w \cdot KK$ w.r.t. NA(X)

Theorem (C.C., A. J. Guirao, V. Montesinos)

- X HBS $\iff X^* w^* \cdot w \cdot KK$
- X wHBS $\iff X^* w^* \cdot w \cdot KK$ w.r.t. NA(X)

$TS = R^* + \textbf{HBS}$

Christian Cobollo (UPV)

A note on Hahn–Banach extensions

23th June 2021

Theorem (C.C., A. J. Guirao, V. Montesinos)

- $X \text{ HBS} \iff X^* w^* \cdot w \cdot KK$
- X wHBS $\iff X^* w^* \cdot w \cdot KK$ w.r.t. NA(X)

 $TS = R^* + HBS$ VS = G + wHBS

Theorem (C.C., A. J. Guirao, V. Montesinos)

Let $(X, \|\cdot\|)$ be a Banach space. TFAE:

- (i) X admits HBS norm.
- (ii) X^* admits w^* -w-KK norm.
- (iii) X^* admits dual LUR norm.
- (iv) X admits TS norm.

Theorem?

Let $(X, \|\cdot\|)$ be a Banach space. TFAE:

- (i) X admits wHBS norm.
- (ii) X^* admits w^* -w-KK norm w.r.t. NA(X).
- (iii) X^* admits **dual R norm**.
- (iv) X admits VS norm.

Theorem?

Let $(X, \|\cdot\|)$ be a Banach space. TFAE:

(i) X admits wHBS norm.

(ii) X^* admits w^* -w-KK norm w.r.t. NA(X).

(iii) X^* admits **dual R norm**.

(iv) X admits VS norm.

NO. **Example:** $C([0, \mu])$ with uncountable μ .

Theorem?

Let $(X, \|\cdot\|)$ be a Banach space. TFAE:

(i) *X* admits wHBS norm.

(ii) X^* admits w^* -w-KK norm w.r.t. NA(X).

(iii) X^* admits **dual R norm**.

(iv) X admits VS norm.

NO. **Example:** $C([0, \mu])$ with uncountable μ .

HBS>>>wHBS

Gâteaux < Very Smooth < Fréchet

Gâteaux < Very Smooth < Fréchet

Gâteaux: $\partial \| \cdot \| : X \to X^*$ is $\| \cdot \| \cdot w^*$ -continuous.

Fréchet: $\partial \| \cdot \| : X \to X^*$ is $\| \cdot \| \cdot \| \cdot \|$ -continuous.

Gâteaux < Very Smooth < Fréchet

Gâteaux: $\partial \| \cdot \| : X \to X^*$ is $\| \cdot \| \cdot w^*$ -continuous. **Very Smooth**: $\partial \| \cdot \| : X \to X^*$ is $\| \cdot \| \cdot w$ continuous (Diestel, 1975). **Fréchet**: $\partial \| \cdot \| : X \to X^*$ is $\| \cdot \| \cdot \|$ -continuous.

Definition

 $(X, \|\cdot\|) \ \mathsf{VR} \iff (X^*, \|\cdot\|^*) \ \mathsf{Gâteaux} \ \mathsf{in} \ \mathsf{NA}(X) \backslash \{0\}$

Christian Cobollo (UPV)

Very Smooth: $\partial \| \cdot \| : X \to X^*$ is $\| \cdot \| \cdot w$ continuous.

Very Smooth: $\partial \| \cdot \| : X \to X^*$ is $\| \cdot \| \cdot w$ continuous.

Very Rotund: $\partial^{-1} \| \cdot \| : \mathsf{NA}(X) \setminus \{0\} \to X$ is $\| \cdot \| \cdot w$ continuous.

Very Rotund: $\partial^{-1} \| \cdot \| : \mathsf{NA}(X) \setminus \{0\} \to X$ is $\| \cdot \| \cdot w$ continuous.

Theorem (Moltó, Orihuela, Troyanski, Valdivia, 2009)

 $(X, \|\cdot\|)$ Fréchet and $(X^*, \|\cdot\|^*)$ Gâteaux. Then X admits LUR norm.

Very Rotund: $\partial^{-1} \| \cdot \| : \mathsf{NA}(X) \setminus \{0\} \to X$ is $\| \cdot \| \cdot w$ continuous.

Theorem (Moltó, Orihuela, Troyanski, Valdivia, 2009)

 $(X, \|\cdot\|)$ Fréchet and $(X^*, \|\cdot\|^*)$ Gâteaux. Then X admits LUR norm.

Theorem (C.C., A. J. Guirao, V. Montesinos)

 $(X, \|\cdot\|)$ Fréchet and VR. Then X admits LUR norm.

Very Rotund: $\partial^{-1} \| \cdot \| : \mathsf{NA}(X) \setminus \{0\} \to X$ is $\| \cdot \| \cdot w$ continuous.

Theorem (Moltó, Orihuela, Troyanski, Valdivia, 2009)

 $(X, \|\cdot\|)$ Fréchet and $(X^*, \|\cdot\|^*)$ Gâteaux. Then X admits LUR norm.

Theorem (C.C., A. J. Guirao, V. Montesinos)

 $(X, \|\cdot\|)$ Fréchet and VR. Then X admits LUR norm.

Example: $c_0(\Gamma)$ with uncountable Γ .

Very Rotund: $\partial^{-1} \| \cdot \| : \mathsf{NA}(X) \setminus \{0\} \to X$ is $\| \cdot \| \cdot w$ continuous.

Theorem (Moltó, Orihuela, Troyanski, Valdivia, 2009)

 $(X, \|\cdot\|)$ Fréchet and $(X^*, \|\cdot\|^*)$ Gâteaux. Then X admits LUR norm.

Theorem (C.C., A. J. Guirao, V. Montesinos)

 $(X, \|\cdot\|)$ Fréchet and VR. Then X admits LUR norm.

Example: $c_0(\Gamma)$ with uncountable Γ .

Open Problem

 $(X, \|\cdot\|)$ Fréchet \implies X admits LUR norm?
Question (Orihuela)

 $F+R \implies F+VR?$

Question (Orihuela)

 $F+R \implies F+VR?$

Definition (Guirao, Montesinos, Zizler, 2014)

 $(X, \|\cdot\|)$ is Morris if is R but no element of S_X is extreme point of $S_{X^{**}}$.

Question (Orihuela)

 $F+R \implies F+VR?$

Definition (Guirao, Montesinos, Zizler, 2014)

 $(X, \|\cdot\|)$ is Morris if is R but no element of S_X is extreme point of $S_{X^{**}}$.

Christian Cobollo (UPV)

Χ

A note on Hahn–Banach extensions

Theorem (C.C., A. J. Guirao, V. Montesinos)

Every $c_0(\Gamma)$ with infinite Γ admits an equivalent F+M norm.

Theorem (C.C., A. J. Guirao, V. Montesinos)

Every $c_0(\Gamma)$ with infinite Γ admits an equivalent F+M norm.

Sketch (c_0 case):

Theorem (C.C., A. J. Guirao, V. Montesinos)

Every $c_0(\Gamma)$ with infinite Γ admits an equivalent F+M norm.

Sketch (c_0 case): Define in $c_0^* = \ell^1$ the norm $|\cdot| := ||\cdot||_1 + ||\cdot||_2$ (w^* -w-KK + R).

Theorem (C.C., A. J. Guirao, V. Montesinos)

Every $c_0(\Gamma)$ with infinite Γ admits an equivalent F+M norm.

Sketch (c_0 case): Define in $c_0^* = \ell^1$ the norm $|\cdot| := ||\cdot||_1 + ||\cdot||_2$ (w^* -w-KK + R). Take $|\cdot|_*$ in c_0 (F).

Theorem (C.C., A. J. Guirao, V. Montesinos)

Every $c_0(\Gamma)$ with infinite Γ admits an equivalent F+M norm.

Sketch (c_0 case): Define in $c_0^* = \ell^1$ the norm $|\cdot| := ||\cdot||_1 + ||\cdot||_2$ (w^* -w-KK + R). Take $|\cdot|_*$ in c_0 (F).

Theorem (C.C., A. J. Guirao, V. Montesinos)

Every $c_0(\Gamma)$ with infinite Γ admits an equivalent F+M norm.

Sketch (c_0 case): Define in $c_0^* = \ell^1$ the norm $|\cdot| := ||\cdot||_1 + ||\cdot||_2$ (w^* -w-KK + R). Take $|\cdot|_*$ in c_0 (F). Build an appropriate $T : c_0 \to \ell^2$. Define $|||x||| := |x|_* + ||Tx||_2$.

Theorem (C.C., A. J. Guirao, V. Montesinos)

Every $c_0(\Gamma)$ with infinite Γ admits an equivalent F+M norm.

Sketch (c_0 case): Define in $c_0^* = \ell^1$ the norm $|\cdot| := ||\cdot||_1 + ||\cdot||_2$ (w^* -w-KK + R). Take $|\cdot|_*$ in c_0 (F). Build an appropriate $T : c_0 \to \ell^2$. Define $|||x||| := |x|_* + ||Tx||_2$.

but VR \implies all extreme points are preserved!

but VR \implies all extreme points are preserved!

So, $(c_0(\Gamma), ||| \cdot |||)$ is F+R but no F+VR.

but VR \implies all extreme points are preserved!

So, $(c_0(\Gamma), ||| \cdot |||)$ is F+R but no F+VR.

Open Problem

 $(X, \|\cdot\|)$ has F+R norm \implies admits LUR (or F+VR)?

- **C. C., A. J. Guirao, and V. Montesinos,** A remark on totally smooth renormings (2020).
- **S. R. Foguel,** On a theorem by A. E. Taylor (1958).
- **E. Oja, T. Viil, and D. Werner,** *Totally smooth renormings* (2019).
- **R. R. Phelps**, Uniqueness of Hahn–Banach extensions and unique best approximation (1960).
- **F. Sullivan,** Geometrical properties determined by the higher duals of a Banach space (1977).

Thanks For Your Attention!

Christian Cobollo (UPV)

A note on Hahn–Banach extensions

23th June 2021