

A note on Hahn-Banach extensions: uniqueness and renormings

A joint work with Antonio José Guirao and Vicente Montesinos

Christian Cobollo

I Workshop de la Red de Análisis Funcional y Aplicaciones

Motivation

Renorming

(X,\|•\|)

Motivation

Renorming

(X, \|•\|)

 Properties

Motivation

Renorming

(X,\|•\|)

Properties

Topological
(Isomorphic)

Motivation

Renorming

(X,\|•\|)

 Properties

Topological
(Isomorphic)

Geometrical (Isometric)

Motivation

Renorming

$$
X=\mathbb{R}^{2}
$$

$\|\cdot\|_{\infty}$
$\|\cdot\|_{2}$

$S_{\|\cdot\|_{\infty}}$

Motivation

Renorming

(X,\|•\|)

 Properties

Topological
(Isomorphic)

Geometrical (Isometric)

Motivation

Oja-Viil-Werner

E. Oja, T. Viil, and D. Werner, Totally smooth renormings (2019)

Motivation

Unique Extension Properties

Motivation

Unique Extension Properties

Motivation

Unique Extension Properties

Motivation

Unique Extension Properties

Definition (Phelps, 1960)

$M \hookrightarrow X$ has property \mathbf{U} in \boldsymbol{X} if: every $f^{*} \in M^{*}$ has unique norm-preserving extension to X.

Motivation

Unique Extension Properties

Motivation

Unique Extension Properties

Motivation

Unique Extension Properties

Motivation

Unique Extension Properties

Definition (Sullivan, 1977)

X is HBS if: X has property U in $X^{* *}$.

Motivation

Unique Extension Properties

Motivation

Unique Extension Properties

Definition

X is TS if: every $M \hookrightarrow X$ has property U in $X^{* *}$.

Motivation

The Problem

Question

$\mathrm{HBS}+$? \Longrightarrow renormable TS.

Motivation

The Problem

Question

$\mathrm{HBS}+$? \Longrightarrow renormable TS.
Theorem (Sullivan, 1977)
HBS + Separable \Longrightarrow renormable TS.

Motivation

The Problem

Question

$\mathrm{HBS}+$? \Longrightarrow renormable TS.

Theorem (Sullivan, 1977)
 HBS + Separable \Longrightarrow renormable TS.

Theorem (Oja-Viil-Werner, 2019)

 HBS + WCG \Longrightarrow renormable TS.
Motivation

The Problem

Question

 HBS + ? \Longrightarrow renormable TS.
Theorem (Sullivan, 1977)

HBS + Separable \Longrightarrow renormable TS.

Theorem (Oja-Vill-Werner, 2019)

 HBS + WCG \Longrightarrow renormable TS.© C. C., A. J. Guirao, and V. Montesinos, A remark on totally smooth renormings, RACSAM (2020).

Motivation

The Problem

Question

 HBS + ? \Longrightarrow renormable TS.
Theorem (Sullivan, 1977)

HBS + Separable \Longrightarrow renormable TS.

Theorem (Oja-Vill-Werner, 2019)

 HBS + WCG \Longrightarrow renormable TS.回 C. C., A. J. Guirao, and V. Montesinos, A remark on totally smooth renormings, RACSAM (2020).
Theorem (C.C., A. J. Guirao, V. Montesinos) HBS \Longrightarrow renormable TS...

Motivation

The Problem

Question

 HBS + ? \Longrightarrow renormable TS.
Theorem (Sullivan, 1977)

HBS + Separable \Longrightarrow renormable TS.

Theorem (Oja-Vill-Werner, 2019)

 HBS + WCG \Longrightarrow renormable TS.回 C. C., A. J. Guirao, and V. Montesinos, A remark on totally smooth renormings, RACSAM (2020).
Theorem (C.C., A. J. Guirao, V. Montesinos)
HBS \Longrightarrow renormable TS... and even more.

On unique extensions

TS decomposition

TS

On unique extensions

TS decomposition

TS $=\forall M \hookrightarrow X$ has U in X

On unique extensions

TS decomposition

TS $=\forall M \hookrightarrow X$ has U in $X+$ HBS

On unique extensions

TS decomposition

TS $=\forall M \hookrightarrow X$ has U in $X+$ HBS

Theorem (Taylor-Foguel, 1958)
$\forall M \hookrightarrow X$ has U in $X \Longleftrightarrow\left(X^{*},\|\cdot\|^{*}\right)$ is rotund (X has $\left.\mathrm{R}^{*}\right)$.

On unique extensions

TS decomposition

$T S=R^{*}+\mathrm{HBS}$

Theorem (Taylor-Foguel, 1958)
$\forall M \hookrightarrow X$ has U in $X \Longleftrightarrow\left(X^{*},\|\cdot\|^{*}\right)$ is rotund (X has $\left.\mathrm{R}^{*}\right)$.

On unique extensions

HBS and topologies

Proposition (Godefroy, 1981)

$$
(X,\|\cdot\|) \text { is HBS } \Longleftrightarrow\left(X^{*},\|\cdot\|^{*}\right) \text { has } w^{*}-w \text {-KK }
$$

On unique extensions

HBS and topologies

Proposition (Godefroy, 1981)

$$
(X,\|\cdot\|) \text { is HBS } \Longleftrightarrow\left(X^{*},\|\cdot\|^{*}\right) \text { has } w^{*}-w-\mathrm{KK}
$$

On unique extensions

HBS and topologies

Proposition (Godefroy, 1981)

$$
(X,\|\cdot\|) \text { is HBS } \Longleftrightarrow\left(X^{*},\|\cdot\|^{*}\right) \text { has } w^{*}-w-\mathrm{KK}
$$

Definition

Let $\tau_{1} \subset \tau_{2} \subset\|\cdot\|$ and $A \subset X$ a cone. We say $\|\cdot\|$ is $\tau_{1}-\tau_{2}$-KK w.r.t. A if $\tau_{1}=\tau_{2}$ when restricted to $A \cap S_{X}$.

On unique extensions

HBS and topologies

Proposition (Godefroy, 1981)

$$
(X,\|\cdot\|) \text { is HBS } \Longleftrightarrow\left(X^{*},\|\cdot\|^{*}\right) \text { has } w^{*}-w-\mathrm{KK}
$$

Definition

Let $\tau_{1} \subset \tau_{2} \subset\|\cdot\|, A \subset X$ a cone. We say $\|\cdot\|$ is $\tau_{1}-\tau_{2}$-KK w.r.t. A if $\tau_{1}=\tau_{2}$ when restricted to $A \cap S_{X}$.

Proposition (C.C., A. J. Guirao, V. Montesinos)

Let $\|\cdot\|$ be $\tau_{1}-\tau_{2}$-KK w.r.t. A. If $\|\cdot\|$ is τ_{2}-Isc and $\overline{A \cap B_{X}}\|\cdot\|=B_{X}$, then $\|\cdot\|$ is τ_{1}-lsc.

On unique extensions

HBS and topologies
Proposition (Godefroy, 1981)

$$
(X,\|\cdot\|) \text { is HBS } \Longleftrightarrow\left(X^{*},\|\cdot\|^{*}\right) \text { has } w^{*}-w-\mathrm{KK}
$$

Theorem (C.C., A. J. Guirao, V. Montesinos)

$$
X \text { admits } \mathrm{HBS} \Longleftrightarrow X^{*} \text { admits } w^{*}-w-\mathrm{KK}
$$

A landmark in renorming theory

Raja's Theorem

Troyanski (1985): $\quad X$ admits LUR $\leftrightarrows X$ admits $R+X$ admits $w-\|\cdot\|-$ KK

A landmark in renorming theory

Raja's Theorem

Troyanski (1985): $\quad X$ admits LUR $\leftrightarrows X$ admits $R+X$ admits $w-\|\cdot\|-K K$
X^{*} admits dual LUR $\leftrightarrows X^{*}$ admits dual $\mathrm{R}+X^{*}$ admits $w^{*}-\|\cdot\|-\mathrm{KK}$

A landmark in renorming theory

Raja's Theorem

Troyanski (1985): $\quad X$ admits LUR $\leftrightarrows X$ admits $R+X$ admits $w-\|\cdot\|-$ KK
X^{*} admits dual LUR $\leftrightarrows X^{*}$ admis dual $\mathrm{R}+\mathrm{X}^{*}$ admits $w^{*}-\|\cdot\|-\mathrm{KK}$

A landmark in renorming theory

Raja's Theorem

Troyanski (1985): X admits LUR $\leftrightarrows X$ admits $R+X$ admits $w-\|\cdot\|-$ Kk

Raja (2002) : $\quad X^{*}$ admits dual LUR $\leftrightarrows X^{*}$ admi dual $\mathrm{R}+X^{*}$ admits $w^{*}-w-\mathrm{KK}$

A landmark in renorming theory

Raja's Theorem

Troyanski (1985): $\quad X$ admits LUR $\leftrightarrows X$ admits $R+X$ admits $w-\|\cdot\|-K K$

Raja (2002) : X^{*} admits dual LUR $\leftrightarrows X^{*}$ admi<dual $R+X^{*}$ admits $w^{*}-w$-KK

Theorem (M. Raja, 2002)
X^{*} has a LUR norm $\Longleftrightarrow X^{*}$ has $w^{*}-w$-KK norm.

More than a TS renorming

Putting the pieces together

TS decomposition + Godefroy + Raja + $w^{*}-w-$ KK norms are dual

More than a TS renorming

Putting the pieces together

TS decomposition + Godefroy + Raja + w $w^{*}-w-$ KK norms are dual
Theorem (C.C., A. J. Guirao, V. Montesinos)
Let $(X,\|\cdot\|)$ be a Banach space. TFAE:
(i) X admits HBS norm.

More than a TS renorming

Putting the pieces together

TS decomposition + Godefroy + Raja $+w^{*}-w-$ KK norms are dual
Theorem (C.C., A. J. Guirao, V. Montesinos)
Let $(X,\|\cdot\|)$ be a Banach space. TFAE:
(i) X admits HBS norm.
(ii) X^{*} admits $w^{*}-w$-KK norm.

More than a TS renorming

Putting the pieces together

TS decomposition + Godefroy + Raja + $w^{*}-w-$ KK norms are dual
Theorem (C.C., A. J. Guirao, V. Montesinos)
Let $(X,\|\cdot\|)$ be a Banach space. TFAE:
(i) X admits HBS norm.
(ii) X^{*} admits $w^{*}-w$-KK norm.
(iii) X^{*} admits dual LUR norm.

More than a TS renorming

Putting the pieces together

TS decomposition + Godefroy + Raja + $w^{*}-w-$ KK norms are dual
Theorem (C.C., A. J. Guirao, V. Montesinos)
Let $(X,\|\cdot\|)$ be a Banach space. TFAE:
(i) X admits HBS norm.
(ii) X^{*} admits $w^{*}-w$-KK norm.
(iii) X^{*} admits dual LUR norm.
(iv) X admits TS norm.

More than a TS renorming

Putting the pieces together

TS decomposition + Godefroy + Raja + $w^{*}-w-$ KK norms are dual
Theorem (C.C., A. J. Guirao, V. Montesinos)
Let $(X,\|\cdot\|)$ be a Banach space. TFAE:
(i) X admits HBS norm.
(ii) X^{*} admits $w^{*}-w$-KK norm.
(iii) X^{*} admits dual LUR norm.
(iv) X admits TS norm.

$$
\mathrm{TS}=\mathrm{R}^{*}+\mathrm{HBS}
$$

More than a TS renorming

A key example

Proposition

Let K be a Ciesielski-Pol compact set. Then:

1) $K^{(3)}=\emptyset$.
2) There is no bounded linear one-to-one $T: C(K) \rightarrow c_{0}(\Gamma)$.

More than a TS renorming

A key example

Proposition

Let K be a Ciesielski-Pol compact set. Then:

1) $K^{(3)}=\emptyset$.
2) There is no bounded linear one-to-one $T: C(K) \rightarrow c_{0}(\Gamma)$.
3) $\Longrightarrow C(K)^{*}$ has dual LUR renorming.

More than a TS renorming

A key example

Proposition

Let K be a Ciesielski-Pol compact set. Then:

1) $K^{(3)}=\emptyset$.
2) There is no bounded linear one-to-one $T: C(K) \rightarrow c_{0}(\Gamma)$.
3) $\Longrightarrow C(K)^{*}$ has dual LUR renorming.
4) $\Longrightarrow C(K)$ is not WCG.

About a Sullivan extension

Properties wU and wHBS

About a Sullivan extension

Properties wU and wHBS

Definition

$M \hookrightarrow X$ has property $\mathbf{w U}$ in \mathbf{X} if: every $f^{*} \in \mathrm{NA}(M)$ has unique norm-preserving extension to X.

About a Sullivan extension

Properties wU and wHBS

About a Sullivan extension

Properties wU and wHBS

Definition (Sullivan, 1977)

X has wHBS if: X has property $w U$ in $X^{* *}$.

About a Sullivan extension

On wHBS

Theorem (C.C., A. J. Guirao, V. Montesinos)

- X HBS $\Longleftrightarrow X^{*} w^{*}-w-K K$

About a Sullivan extension

On wHBS

Theorem (C.C., A. J. Guirao, V. Montesinos)

- X HBS $\Longleftrightarrow X^{*} w^{*}-w-K K$
- X wHBS $\Longleftrightarrow X^{*} w^{*}-w$ - $K K$ w.r.t. $\mathrm{NA}(X)$

About a Sullivan extension

On wHBS

Theorem (C.C., A. J. Guirao, V. Montesinos)

- X HBS $\Longleftrightarrow X^{*} w^{*}-w-K K$
- X wHBS $\Longleftrightarrow X^{*} w^{*}-w$ - $K K$ w.r.t. $\mathrm{NA}(X)$

$$
\mathrm{TS}=\mathrm{R}^{*}+\mathrm{HBS}
$$

About a Sullivan extension

On wHBS

Theorem (C.C., A. J. Guirao, V. Montesinos)

- X HBS $\Longleftrightarrow X^{*} w^{*}-w-K K$
- X wHBS $\Longleftrightarrow X^{*} w^{*}-w-K K$ w.r.t. $\mathrm{NA}(X)$

$$
\begin{aligned}
\mathrm{TS} & =\mathrm{R}^{*}+\mathrm{HBS} \\
\mathrm{VS} & =\mathrm{G}+\mathrm{wHBS}
\end{aligned}
$$

About a Sullivan extension

On wHBS

Theorem (C.C., A. J. Guirao, V. Montesinos)
Let $(X,\|\cdot\|)$ be a Banach space. TFAE:
(i) X admits HBS norm.
(ii) X^{*} admits $w^{*}-w$-KK norm.
(iii) X^{*} admits dual LUR norm.
(iv) X admits TS norm.

About a Sullivan extension

On wHBS

Theorem?

Let $(X,\|\cdot\|)$ be a Banach space. TFAE:
(i) X admits $w H B S$ norm.
(ii) X^{*} admits $w^{*}-w$-KK norm w.r.t. $\mathrm{NA}(X)$.
(iii) X^{*} admits dual \mathbf{R} norm.
(iv) X admits VS norm.

About a Sullivan extension

On wHBS

Theorem?

Let $(X,\|\cdot\|)$ be a Banach space. TFAE:
(i) X admits whBS norm.
(ii) X^{*} admits $w^{*}-w$-KK norm w.r.t. $\mathrm{NA}(X)$.
(iii) X^{*} admits dual \mathbf{R} norm.
(iv) X admits VS norm.

NO. Example: $C([0, \mu])$ with uncountable μ.

About a Sullivan extension

Theorem?

Let $(X,\|\cdot\|)$ be a Banach space. TFAE:
(i) X admits $w H B S$ norm.
(ii) X^{*} admits $w^{*}-w$-KK norm w.r.t. $\mathrm{NA}(X)$.
(iii) X^{*} admits dual \mathbf{R} norm.
(iv) X admits VS norm.

NO. Example: $C([0, \mu])$ with uncountable μ.

$$
\text { HBS } \ggg \text { wHBS }
$$

Very Smoothness

Gâteaux < Very Smooth < Fréchet

Very Smoothness

Gâteaux $<$ Very Smooth $<$ Fréchet

Gâteaux: $\partial\|\cdot\|: X \rightarrow X^{*}$ is $\|\cdot\|-w^{*}$-continuous.

Fréchet: $\partial\|\cdot\|: X \rightarrow X^{*}$ is $\|\cdot\|-\|\cdot\|$-continuous.

Very Smoothness

Gâteaux $<$ Very Smooth $<$ Fréchet

Gâteaux: $\partial\|\cdot\|: X \rightarrow X^{*}$ is $\|\cdot\|-w^{*}$-continuous.
Very Smooth: $\partial\|\cdot\|: X \rightarrow X^{*}$ is $\|\cdot\|-w$ continuous (Diestel, 1975).
Fréchet: $\partial\|\cdot\|: X \rightarrow X^{*}$ is $\|\cdot\|-\|\cdot\|$-continuous.

Very Smoothness

$$
\begin{array}{cll}
\left(X^{*},\|\cdot\|^{*}\right) & & (X,\|\cdot\|) \\
\mathrm{R} & \Longrightarrow & \begin{array}{l}
\text { Gâteaux diff. } \\
? ?
\end{array} \\
& \Longrightarrow & \text { Very Smoothness } \\
\text { LUR } & \Longrightarrow & \text { Fréchet diff. }
\end{array}
$$

Very Smoothness

$$
\begin{array}{cll}
\left(X^{*},\|\cdot\|^{*}\right) & & (X,\|\cdot\|) \\
\mathrm{R} & \Longrightarrow & \begin{array}{l}
\text { Gâteaux diff. } \\
\text { VR }
\end{array} \\
\Longrightarrow & \text { Very Smoothness } \\
\text { LUR } & \Longrightarrow & \text { Fréchet diff. }
\end{array}
$$

Very Smoothness

$$
\begin{array}{cll}
\left(X^{*},\|\cdot\|^{*}\right) & & (X,\|\cdot\|) \\
\mathrm{R} & \Longrightarrow & \begin{array}{l}
(X a ̂ t e a u x ~ d i f f . \\
\text { VR } \\
\text { LUR }
\end{array} \\
\Longrightarrow & \text { Very Smoothness } \\
& \Longrightarrow & \text { Fréchet diff. }
\end{array}
$$

Definition

$(X,\|\cdot\|)$ VR $\Longleftrightarrow\left(X^{*},\|\cdot\|^{*}\right)$ Gâteaux in $\mathrm{NA}(X) \backslash\{0\}$

Very Smoothness

Very Smooth: $\partial\|\cdot\|: X \rightarrow X^{*}$ is $\|\cdot\|-w$ continuous.

Very Smoothness

Very Smooth: $\partial\|\cdot\|: X \rightarrow X^{*}$ is $\|\cdot\|-w$ continuous.
Very Rotund: $\partial^{-1}\|\cdot\|: \mathrm{NA}(X) \backslash\{0\} \rightarrow X$ is $\|\cdot\|-w$ continuous.

Very Smoothness

Very Smooth: $\partial\|\cdot\|: X \rightarrow X^{*}$ is $\|\cdot\|-w$ continuous.
Very Rotund: $\partial^{-1}\|\cdot\|: \mathrm{NA}(X) \backslash\{0\} \rightarrow X$ is $\|\cdot\|-w$ continuous.
Theorem (Moltó, Orihuela, Troyanski, Valdivia, 2009)
$(X,\|\cdot\|)$ Fréchet and $\left(X^{*},\|\cdot\|^{*}\right)$ Gâteaux. Then X admits LUR norm.

Very Smoothness

Very Smooth: $\partial\|\cdot\|: X \rightarrow X^{*}$ is $\|\cdot\|-w$ continuous.
Very Rotund: $\partial^{-1}\|\cdot\|: \mathrm{NA}(X) \backslash\{0\} \rightarrow X$ is $\|\cdot\|-w$ continuous.
Theorem (Moltó, Orihuela, Troyanski, Valdivia, 2009)
$(X,\|\cdot\|)$ Fréchet and $\left(X^{*},\|\cdot\|^{*}\right)$ Gâteaux. Then X admits LUR norm.
Theorem (C.C., A. J. Guirao, V. Montesinos)
$(X,\|\cdot\|)$ Fréchet and VR. Then X admits LUR norm.

Very Smoothness

Very Smooth: $\partial\|\cdot\|: X \rightarrow X^{*}$ is $\|\cdot\|-w$ continuous.
Very Rotund: $\partial^{-1}\|\cdot\|: \mathrm{NA}(X) \backslash\{0\} \rightarrow X$ is $\|\cdot\|-w$ continuous.

Theorem (Moltó, Orihuela, Troyanski, Valdivia, 2009)

$(X,\|\cdot\|)$ Fréchet and $\left(X^{*},\|\cdot\|^{*}\right)$ Gâteaux. Then X admits LUR norm.
Theorem (C.C., A. J. Guirao, V. Montesinos)
$(X,\|\cdot\|)$ Fréchet and VR. Then X admits LUR norm.
Example: $c_{0}(\Gamma)$ with uncountable Γ.

Very Smoothness

Very Smooth: $\partial\|\cdot\|: X \rightarrow X^{*}$ is $\|\cdot\|-w$ continuous.
Very Rotund: $\partial^{-1}\|\cdot\|: \mathrm{NA}(X) \backslash\{0\} \rightarrow X$ is $\|\cdot\|-w$ continuous.

Theorem (Moltó, Orihuela, Troyanski, Valdivia, 2009)

$(X,\|\cdot\|)$ Fréchet and $\left(X^{*},\|\cdot\|^{*}\right)$ Gâteaux. Then X admits LUR norm.
Theorem (C.C., A. J. Guirao, V. Montesinos)
$(X,\|\cdot\|)$ Fréchet and VR. Then X admits LUR norm.
Example: $c_{0}(\Gamma)$ with uncountable Γ.

Open Problem

$(X,\|\cdot\|)$ Fréchet $\Longrightarrow X$ admits LUR norm?

Fréchet and Morris norm

Question (Orihuela)

$\mathrm{F}+\mathrm{R} \Longrightarrow \mathrm{F}+\mathrm{VR}$?

Fréchet and Morris norm

Question (Orihuela)

$\mathrm{F}+\mathrm{R} \Longrightarrow \mathrm{F}+\mathrm{VR}$?

Definition (Guirao, Montesinos, Zizler, 2014)
$(X,\|\cdot\|)$ is Morris if is R but no element of S_{X} is extreme point of $S_{X^{* *}}$.

Fréchet and Morris norm

Question (Orihuela)

$\mathrm{F}+\mathrm{R} \Longrightarrow \mathrm{F}+\mathrm{VR}$?

Definition (Guirao, Montesinos, Zizler, 2014)
$(X,\|\cdot\|)$ is Morris if is R but no element of S_{X} is extreme point of $S_{X^{* *}}$.

Fréchet and Morris norm

Theorem (C.C., A. J. Guirao, V. Montesinos)
Every $c_{0}(\Gamma)$ with infinite Γ admits an equivalent $\mathrm{F}+\mathrm{M}$ norm.

Fréchet and Morris norm

Theorem (C.C., A. J. Guirao, V. Montesinos)
Every $c_{0}(\Gamma)$ with infinite Γ admits an equivalent $\mathrm{F}+\mathrm{M}$ norm.
Sketch (c_{0} case):

Fréchet and Morris norm

Theorem (C.C., A. J. Guirao, V. Montesinos)
Every $c_{0}(\Gamma)$ with infinite Γ admits an equivalent $\mathrm{F}+\mathrm{M}$ norm.
Sketch (c_{0} case):
Define in $c_{0}^{*}=\ell^{1}$ the norm $|\cdot|:=\|\cdot\|_{1}+\|\cdot\|_{2} \quad\left(w^{*}-w-\mathrm{KK}+\mathrm{R}\right)$.

Fréchet and Morris norm

Theorem (C.C., A. J. Guirao, V. Montesinos)
Every $c_{0}(\Gamma)$ with infinite Γ admits an equivalent $\mathrm{F}+\mathrm{M}$ norm.
Sketch (c_{0} case):
Define in $c_{0}^{*}=\ell^{1}$ the norm $|\cdot|:=\|\cdot\|_{1}+\|\cdot\|_{2} \quad\left(w^{*}-w-\mathrm{KK}+\mathrm{R}\right)$. Take $|\cdot|_{*}$ in $c_{0}(\mathrm{~F})$.

Fréchet and Morris norm

Theorem (C.C., A. J. Guirao, V. Montesinos)

Every $c_{0}(\Gamma)$ with infinite Γ admits an equivalent $\mathrm{F}+\mathrm{M}$ norm.
Sketch (c_{0} case):
Define in $c_{0}^{*}=\ell^{1}$ the norm $|\cdot|:=\|\cdot\|_{1}+\|\cdot\|_{2} \quad\left(w^{*}-w-\mathrm{KK}+\mathrm{R}\right)$. Take $|\cdot|_{*}$ in $c_{0}(\mathrm{~F})$.

X
$X^{* *}$

Fréchet and Morris norm

Theorem (C.C., A. J. Guirao, V. Montesinos)

Every $c_{0}(\Gamma)$ with infinite Γ admits an equivalent $\mathrm{F}+\mathrm{M}$ norm.
Sketch (c_{0} case):
Define in $c_{0}^{*}=\ell^{1}$ the norm $|\cdot|:=\|\cdot\|_{1}+\|\cdot\|_{2} \quad\left(w^{*}-w-\mathrm{KK}+\mathrm{R}\right)$. Take $|\cdot|_{*}$ in $c_{0}(\mathrm{~F})$. Build an appropiate $T: c_{0} \rightarrow \ell^{2}$. Define $\left|\left\|x\left|\left\|:=|x|_{*}+\right\| T x \|_{2}\right.\right.\right.$.

X

Fréchet and Morris norm

Theorem (C.C., A. J. Guirao, V. Montesinos)

Every $c_{0}(\Gamma)$ with infinite Γ admits an equivalent $\mathrm{F}+\mathrm{M}$ norm.
Sketch (c_{0} case):
Define in $c_{0}^{*}=\ell^{1}$ the norm $|\cdot|:=\|\cdot\|_{1}+\|\cdot\|_{2} \quad\left(w^{*}-w-\mathrm{KK}+\mathrm{R}\right)$. Take $|\cdot|_{*}$ in $c_{0}(\mathrm{~F})$. Build an appropiate $T: c_{0} \rightarrow \ell^{2}$. Define $\left|\left\|x\left|\left\|:=|x|_{*}+\right\| T x \|_{2}\right.\right.\right.$.

X

$$
X^{* *}
$$

Fréchet and Morris norm

Thus, $c_{0}(\Gamma)$ with infinite Γ admits a norm which is $F+R$ but no extreme point is preserved.

Fréchet and Morris norm

Thus, $c_{0}(\Gamma)$ with infinite Γ admits a norm which is $F+R$ but no extreme point is preserved.
but $\mathrm{VR} \Longrightarrow$ all extreme points are preserved!

Fréchet and Morris norm

Thus, $c_{0}(\Gamma)$ with infinite Γ admits a norm which is $F+R$ but no extreme point is preserved.
but $\mathrm{VR} \Longrightarrow$ all extreme points are preserved!

So, $\left(c_{0}(\Gamma),|\|\cdot \mid\|)\right.$ is $\mathrm{F}+\mathrm{R}$ but no $\mathrm{F}+\mathrm{VR}$.

Fréchet and Morris norm

Thus, $c_{0}(\Gamma)$ with infinite Γ admits a norm which is $F+R$ but no extreme point is preserved.
but $\mathrm{VR} \Longrightarrow$ all extreme points are preserved!

So, $\left(c_{0}(\Gamma),|\|\cdot \mid\|)\right.$ is $\mathrm{F}+\mathrm{R}$ but no $\mathrm{F}+\mathrm{VR}$.

Open Problem

$(X,\|\cdot\|)$ has $\mathrm{F}+\mathrm{R}$ norm \Longrightarrow admits $\mathrm{LUR}($ or $\mathrm{F}+\mathrm{VR})$?

Some References

(in C. C., A. J. Guirao, and V. Montesinos, A remark on totally smooth renormings (2020).
S. R. Foguel, On a theorem by A. E. Taylor (1958).
E. Oja, T. Viil, and D. Werner, Totally smooth renormings (2019).
R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation (1960).
(F. Sullivan, Geometrical properties determined by the higher duals of a Banach space (1977).

The End

Thanks For Your Attention!

