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Motivation
Unique Extension Properties

Definition (Phelps, 1960)
M ↪→ X has property U in X if: every f∗ ∈M∗ has unique
norm-preserving extension to X.
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Definition
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Motivation
The Problem

Question
HBS + ? =⇒ renormable TS.

Theorem (Sullivan, 1977)
HBS + Separable =⇒ renormable TS.

Theorem (Oja–Viil–Werner, 2019)
HBS + WCG =⇒ renormable TS.

C. C., A. J. Guirao, and V. Montesinos, A remark on totally
smooth renormings, RACSAM (2020).

Theorem (C.C., A. J. Guirao, V. Montesinos)
HBS =⇒ renormable TS... and even more.
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On unique extensions
TS decomposition

TS = ∀M ↪→ X has U in X + HBS

Theorem (Taylor–Foguel, 1958)

∀M ↪→ X has U in X ⇐⇒ (X∗, ‖ · ‖∗) is rotund (X has R∗).
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On unique extensions
HBS and topologies

Proposition (Godefroy, 1981)
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On unique extensions
HBS and topologies

Proposition (Godefroy, 1981)

(X, ‖ · ‖) is HBS ⇐⇒ (X∗, ‖ · ‖∗) has w∗-w-KK

Definition
Let τ1 ⊂ τ2 ⊂ ‖ · ‖ and A ⊂ X a cone. We say ‖ · ‖ is τ1-τ2-KK w.r.t. A
if τ1 = τ2 when restricted to A ∩ SX .
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Definition
Let τ1 ⊂ τ2 ⊂ ‖ · ‖, A ⊂ X a cone. We say ‖ · ‖ is τ1-τ2-KK w.r.t. A if
τ1 = τ2 when restricted to A ∩ SX .

Proposition (C.C., A. J. Guirao, V. Montesinos)

Let ‖ · ‖ be τ1-τ2-KK w.r.t. A. If ‖ · ‖ is τ2-lsc and A ∩BX
‖·‖ = BX , then

‖ · ‖ is τ1-lsc.
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On unique extensions
HBS and topologies

Proposition (Godefroy, 1981)

(X, ‖ · ‖) is HBS ⇐⇒ (X∗, ‖ · ‖∗) has w∗-w-KK

Theorem (C.C., A. J. Guirao, V. Montesinos)
X admits HBS ⇐⇒ X∗ admits w∗-w-KK
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A landmark in renorming theory
Raja’s Theorem

Theorem (M. Raja, 2002)
X∗ has a LUR norm ⇐⇒ X∗ has w∗-w-KK norm.
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More than a TS renorming
Putting the pieces together

TS decomposition + Godefroy + Raja + w∗-w-KK norms are dual

Theorem (C.C., A. J. Guirao, V. Montesinos)

Let (X, ‖ · ‖) be a Banach space. TFAE:

(i) X admits HBS norm.
(ii) X∗ admits w∗-w-KK norm.
(iii) X∗ admits dual LUR norm.
(iv) X admits TS norm.

TS = R∗ + HBS
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More than a TS renorming
A key example

Proposition
Let K be a Ciesielski–Pol compact set. Then:
1) K(3) = ∅.
2) There is no bounded linear one-to-one T : C(K)→ c0(Γ).

1) =⇒ C(K)∗ has dual LUR renorming.
2) =⇒ C(K) is not WCG.
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About a Sullivan extension
On wHBS

Theorem (C.C., A. J. Guirao, V. Montesinos)
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TS = R∗ + HBS

VS = G + wHBS
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About a Sullivan extension
On wHBS

Theorem (C.C., A. J. Guirao, V. Montesinos)

Let (X, ‖ · ‖) be a Banach space. TFAE:

(i) X admits HBS norm.
(ii) X∗ admits w∗-w-KK norm.
(iii) X∗ admits dual LUR norm.
(iv) X admits TS norm.

NO. Example: C([0, µ]) with uncountable µ.

HBS>>>wHBS
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Very Smoothness

Gâteaux < Very Smooth < Fréchet

Gâteaux: ∂‖ · ‖ : X → X∗ is ‖ · ‖-w∗-continuous.

Very Smooth: ∂‖ · ‖ : X → X∗ is ‖ · ‖-w continuous (Diestel, 1975).

Fréchet: ∂‖ · ‖ : X → X∗ is ‖ · ‖-‖ · ‖-continuous.
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Very Smoothness

Definition
(X, ‖ · ‖) VR ⇐⇒ (X∗, ‖ · ‖∗) Gâteaux in NA(X)\{0}
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Very Smoothness

Very Smooth: ∂‖ · ‖ : X → X∗ is ‖ · ‖-w continuous.

Very Rotund: ∂−1‖ · ‖ : NA(X)\{0} → X is ‖ · ‖-w continuous.

Theorem (Moltó, Orihuela, Troyanski, Valdivia, 2009)

(X, ‖ · ‖) Fréchet and (X∗, ‖ · ‖∗) Gâteaux. Then X admits LUR norm.

Theorem (C.C., A. J. Guirao, V. Montesinos)

(X, ‖ · ‖) Fréchet and VR. Then X admits LUR norm.

Example: c0(Γ) with uncountable Γ.

Open Problem
(X, ‖ · ‖) Fréchet =⇒ X admits LUR norm?
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Fréchet and Morris norm

Question (Orihuela)
F+R =⇒ F+VR?

Definition (Guirao, Montesinos, Zizler, 2014)

(X, ‖ · ‖) is Morris if is R but no element of SX is extreme point of SX∗∗ .
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Fréchet and Morris norm

Theorem (C.C., A. J. Guirao, V. Montesinos)

Every c0(Γ) with infinite Γ admits an equivalent F+M norm.

Sketch (c0 case):
Define in c∗0 = `1 the norm | · | := ‖ · ‖1 + ‖ · ‖2 (w∗-w-KK + R).
Take | · |∗ in c0 (F).

Build an appropiate T : c0 → `2. Define |‖x|‖ := |x|∗ + ‖Tx‖2.
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Fréchet and Morris norm

Thus, c0(Γ) with infinite Γ admits a norm which is F+R but no extreme
point is preserved.

but VR =⇒ all extreme points are preserved!

So, (c0(Γ), |‖ · |‖) is F+R but no F+VR.

Open Problem
(X, ‖ · ‖) has F+R norm =⇒ admits LUR (or F+VR)?
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The End

Thanks For Your Attention!
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