On Schatten-Herz operators

OSCAR BLASCO¹ Salvador Pérez-Esteva ²

¹Departamento Análisis Matemático Universidad Valencia

²Instituto de Matemáticas Unidad Cuernavaca (U.N.A.M) Cuernavaca (México)

Jaca. 6-9 Abril 2011 VI Encuentros de Análisis Funcional

イロト 不同ト イヨト イヨト

Э

Preliminaries Toeplitz operators The spaces The problems

Introduction

Notation

A₂ = L²(D, dA) ∩ ℋ(D) the Bergman space on D, with dA = dxdy/π the normalized Lebesgue measure.

Preliminaries Toeplitz operators The spaces The problems

Introduction

Notation

 A₂ = L²(D, dA) ∩ ℋ(D) the Bergman space on D, with dA = dxdy/π the normalized Lebesgue measure. We write dλ(z) = dA(z)/(1-|z|²)² the measure invariant under Moebious transforms.

Preliminaries Toeplitz operators The spaces The problems

Introduction

Notation

- A₂ = L²(D, dA) ∩ ℋ(D) the Bergman space on D, with dA = dxdy/π the normalized Lebesgue measure. We write dλ(z) = dA(z)/(1-|z|²)² the measure invariant under Moebious transforms.
- $e_n(z) = \sqrt{n+1}z^n$ for $n \ge 0$ the canonical orthonormal basis of A_2 .

Preliminaries Toeplitz operators The spaces The problems

Introduction

Notation

- A₂ = L²(D, dA) ∩ ℋ(D) the Bergman space on D, with dA = dxdy/π the normalized Lebesgue measure. We write dλ(z) = dA(z)/(1-|z|²)² the measure invariant under Moebious transforms.
- $e_n(z) = \sqrt{n+1}z^n$ for $n \ge 0$ the canonical orthonormal basis of A_2 . $K_z(w) = \frac{1}{(1-\overline{z}w)^2}$ and $k_z = \frac{1-|z|^2}{(1-\overline{z}w)^2}$ for the Bergman and normalized Bergman kernels on A_2 .

Preliminaries Toeplitz operators The spaces The problems

Introduction

Notation

- A₂ = L²(D, dA) ∩ ℋ(D) the Bergman space on D, with dA = dxdy/π the normalized Lebesgue measure. We write dλ(z) = dA(z)/(1-|z|²)² the measure invariant under Moebious transforms.
- $e_n(z) = \sqrt{n+1}z^n$ for $n \ge 0$ the canonical orthonormal basis of A_2 . $K_z(w) = \frac{1}{(1-\overline{z}w)^2}$ and $k_z = \frac{1-|z|^2}{(1-\overline{z}w)^2}$ for the Bergman and normalized Bergman kernels on A_2 .

Preliminaries Toeplitz operators The spaces The problems

Introduction

Notation

- A₂ = L²(D, dA) ∩ ℋ(D) the Bergman space on D, with dA = dxdy/π the normalized Lebesgue measure. We write dλ(z) = dA(z)/(1-|z|²)² the measure invariant under Moebious transforms.
- $e_n(z) = \sqrt{n+1}z^n$ for $n \ge 0$ the canonical orthonormal basis of A_2 . $K_z(w) = \frac{1}{(1-\overline{z}w)^2}$ and $k_z = \frac{1-|z|^2}{(1-\overline{z}w)^2}$ for the Bergman and normalized Bergman kernels on A_2 .

Definition

Let $T : A_2 \to A_2$ be a bounded operator. The Berezin transform of the operator T, $\tilde{T} : \mathbb{D} \to \mathbb{C}$, is given by

$$\widetilde{T}(z) = \langle T(k_z), k_z \rangle.$$
(1)

Preliminaries Toeplitz operators The spaces The problems

Introduction

Notation

- A₂ = L²(D, dA) ∩ ℋ(D) the Bergman space on D, with dA = dxdy/π the normalized Lebesgue measure. We write dλ(z) = dA(z)/(1-|z|²)² the measure invariant under Moebious transforms.
- $e_n(z) = \sqrt{n+1}z^n$ for $n \ge 0$ the canonical orthonormal basis of A_2 . $K_z(w) = \frac{1}{(1-\overline{z}w)^2}$ and $k_z = \frac{1-|z|^2}{(1-\overline{z}w)^2}$ for the Bergman and normalized Bergman kernels on A_2 .

Definition

Let $T : A_2 \to A_2$ be a bounded operator. The Berezin transform of the operator T, $\tilde{T} : \mathbb{D} \to \mathbb{C}$, is given by

$$\widetilde{T}(z) = \langle T(k_z), k_z \rangle.$$
(1)

We write f_T the A₂-valued function $z \to f_T(z) = T(k_z)$. Hence $\tilde{T}(z) = \langle f_T(z), k_z \rangle$

• If T is bounded then $\widetilde{T} : \mathbb{D} \to \mathbb{C}$ is a bounded function and $\|\widetilde{T}\|_{\infty} \le \|T\|$.

Preliminaries Toeplitz operators The spaces The problems

Introduction

Notation

- A₂ = L²(D, dA) ∩ ℋ(D) the Bergman space on D, with dA = dxdy/π the normalized Lebesgue measure. We write dλ(z) = dA(z)/(1-|z|²)² the measure invariant under Moebious transforms.
- $e_n(z) = \sqrt{n+1}z^n$ for $n \ge 0$ the canonical orthonormal basis of A_2 . $K_z(w) = \frac{1}{(1-\overline{z}w)^2}$ and $k_z = \frac{1-|z|^2}{(1-\overline{z}w)^2}$ for the Bergman and normalized Bergman kernels on A_2 .

Definition

Let $T : A_2 \to A_2$ be a bounded operator. The Berezin transform of the operator T, $\tilde{T} : \mathbb{D} \to \mathbb{C}$, is given by

$$\widetilde{T}(z) = \langle T(k_z), k_z \rangle.$$
(1)

- If T is bounded then $\widetilde{T} : \mathbb{D} \to \mathbb{C}$ is a bounded function and $\|\widetilde{T}\|_{\infty} \le \|T\|$.
- If T is compact then $\widetilde{T} \in C_0(\mathbb{D})$.

Preliminaries Toeplitz operators The spaces The problems

Introduction

Notation

- A₂ = L²(D, dA) ∩ ℋ(D) the Bergman space on D, with dA = dxdy/π the normalized Lebesgue measure. We write dλ(z) = dA(z)/(1-|z|²)² the measure invariant under Moebious transforms.
- $e_n(z) = \sqrt{n+1}z^n$ for $n \ge 0$ the canonical orthonormal basis of A_2 . $K_z(w) = \frac{1}{(1-\overline{z}w)^2}$ and $k_z = \frac{1-|z|^2}{(1-\overline{z}w)^2}$ for the Bergman and normalized Bergman kernels on A_2 .

Definition

Let $T : A_2 \to A_2$ be a bounded operator. The Berezin transform of the operator T, $\tilde{T} : \mathbb{D} \to \mathbb{C}$, is given by

$$\widetilde{T}(z) = \langle T(k_z), k_z \rangle.$$
(1)

- If T is bounded then $\widetilde{T} : \mathbb{D} \to \mathbb{C}$ is a bounded function and $\|\widetilde{T}\|_{\infty} \le \|T\|$.
- If T is compact then $\widetilde{T} \in C_0(\mathbb{D})$.
- If T is Hilbert-Schmidt if and only if $f_T \in L^2(\mathbb{D}, A_2, d\lambda)$.

Preliminaries Toeplitz operators The spaces The problems

Introduction

Notation

- A₂ = L²(D, dA) ∩ ℋ(D) the Bergman space on D, with dA = dxdy/π the normalized Lebesgue measure. We write dλ(z) = dA(z)/(1-|z|²)² the measure invariant under Moebious transforms.
- $e_n(z) = \sqrt{n+1}z^n$ for $n \ge 0$ the canonical orthonormal basis of A_2 . $K_z(w) = \frac{1}{(1-\overline{z}w)^2}$ and $k_z = \frac{1-|z|^2}{(1-\overline{z}w)^2}$ for the Bergman and normalized Bergman kernels on A_2 .

Definition

Let $T : A_2 \to A_2$ be a bounded operator. The Berezin transform of the operator T, $\tilde{T} : \mathbb{D} \to \mathbb{C}$, is given by

$$\widetilde{T}(z) = \langle T(k_z), k_z \rangle.$$
(1)

- If T is bounded then $\widetilde{T} : \mathbb{D} \to \mathbb{C}$ is a bounded function and $\|\widetilde{T}\|_{\infty} \le \|T\|$.
- If T is compact then $\widetilde{T} \in C_0(\mathbb{D})$.
- If T is Hilbert-Schmidt if and only if $f_T \in L^2(\mathbb{D}, A_2, d\lambda)$.

 Introduction
 Preliminaries

 New Definitions
 Toeplitz operators

 New results
 The spaces

 A Result and its proof.
 The problems

Schatten classes

Recall that a compact operator $T: A_2 \to A_2$ is said to belong to the Schatten class $S_p(A_2)$ if

$$\|T\|_p = \sup\{(\sum_n |\langle Tu_n, u_n \rangle|^p)^{1/p}; \{u_n\} \text{ orthonormal system}\} < \infty.$$

Э

Schatten classes

Recall that a compact operator $T: A_2 \to A_2$ is said to belong to the Schatten class $S_p(A_2)$ if

$$\|T\|_{p} = \sup\{(\sum_{n} |\langle Tu_{n}, u_{n} \rangle|^{p})^{1/p}; \{u_{n}\} \text{orthonormal system}\} < \infty.$$

It is well known that

$$\|T\|_{2} = (\sum_{n} \|Te_{n}\|^{2})^{1/2}$$
(2)

Э

Schatten classes

Recall that a compact operator $T: A_2 \to A_2$ is said to belong to the Schatten class $S_p(A_2)$ if

$$\|T\|_{p} = \sup\{(\sum_{n} |\langle Tu_{n}, u_{n} \rangle|^{p})^{1/p}; \{u_{n}\} \text{orthonormal system}\} < \infty.$$

It is well known that

$$\|T\|_{2} = (\sum_{n} \|Te_{n}\|^{2})^{1/2}$$
(2)

For positive operators T, i.e. $\langle Tf, f \rangle \ge 0$ for all $f \in A_2$,

$$\|T\|_1 = tr(T) = \sum_n \langle Te_n, e_n \rangle.$$
(3)

イロト イポト イヨト イヨト

э

Schatten classes

Recall that a compact operator $T: A_2 \to A_2$ is said to belong to the Schatten class $S_p(A_2)$ if

$$\|T\|_p = \sup\{(\sum_n |\langle Tu_n, u_n \rangle|^p)^{1/p}; \{u_n\} \text{orthonormal system}\} < \infty.$$

It is well known that

$$\|T\|_{2} = (\sum_{n} \|Te_{n}\|^{2})^{1/2}$$
(2)

For positive operators T, i.e. $\langle Tf, f \rangle \ge 0$ for all $f \in A_2$,

$$\|T\|_{1} = tr(T) = \sum_{n} \langle Te_{n}, e_{n} \rangle.$$
(3)

イロト イポト イヨト イヨト

Also recall that if $T \ge 0$ then $T \in S_p$ if and only if $T^p \in S_1$.

Toeplitz operators and Berezin transform

A Toeplitz operator \mathcal{T}_{arphi} with symbol $arphi \in L^1(\mathbb{D}),$ is given by

$$T_{\varphi}(f)(z) = \int_{\mathbb{D}} \frac{f(w)\varphi(w)}{(1-\bar{w}z)^2} dA(w), \quad f = \sum_{n=0}^{m} \alpha_m e_m.$$

 Introduction
 Preliminaries

 New Definitions
 Toeplitz operators

 New results
 The spaces

 A Result and its proof.
 The problems

Toeplitz operators and Berezin transform

A Toeplitz operator \mathcal{T}_{arphi} with symbol $arphi \in L^1(\mathbb{D}),$ is given by

$$T_{\varphi}(f)(z) = \int_{\mathbb{D}} \frac{f(w)\varphi(w)}{(1-\bar{w}z)^2} dA(w), \quad f = \sum_{n=0}^{m} \alpha_m e_m.$$

$$\tag{4}$$

$$\langle T_{\varphi}(f),g\rangle = \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{f(w)g(z)\varphi(w)}{(1-z\bar{w})^2} dA(z) dA(w) = \int_{\mathbb{D}} f(w)\overline{g(w)}\varphi(w) dA(w).$$

Toeplitz operators and Berezin transform

A Toeplitz operator T_{φ} with symbol $\varphi \in L^1(\mathbb{D})$, is given by

$$T_{\varphi}(f)(z) = \int_{\mathbb{D}} \frac{f(w)\varphi(w)}{(1-\bar{w}z)^2} dA(w), \quad f = \sum_{n=0}^{m} \alpha_m e_m.$$

$$\tag{4}$$

 $\langle T_{\varphi}(f), g \rangle = \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{f(w)\overline{g(z)}\varphi(w)}{(1-z\bar{w})^2} dA(z) dA(w) = \int_{\mathbb{D}} f(w)\overline{g(w)}\varphi(w) dA(w).$ The Berezin transform of T_{φ} (or Berezin transform of the symbol) becomes

$$\widetilde{\varphi}(z) = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{\varphi(w)}{\left|1 - z\overline{w}\right|^4} dA(w)$$

for $\varphi \in L^1(\mathbb{D})$.

イロト イポト イヨト イヨト

Toeplitz operators and Berezin transform

A Toeplitz operator T_{φ} with symbol $\varphi \in L^1(\mathbb{D})$, is given by

$$T_{\varphi}(f)(z) = \int_{\mathbb{D}} \frac{f(w)\varphi(w)}{(1-\bar{w}z)^2} dA(w), \quad f = \sum_{n=0}^{m} \alpha_m e_m.$$

$$\tag{4}$$

 $\langle T_{\varphi}(f), g \rangle = \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{f(w)\overline{g(z)}\varphi(w)}{(1-z\bar{w})^2} dA(z) dA(w) = \int_{\mathbb{D}} f(w)\overline{g(w)}\varphi(w) dA(w).$ The Berezin transform of T_{φ} (or Berezin transform of the symbol) becomes

$$\widetilde{\varphi}(z) = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{\varphi(w)}{\left|1 - z\overline{w}\right|^4} dA(w)$$

for $\varphi \in L^1(\mathbb{D})$.

イロト イポト イヨト イヨト

Toeplitz operators and Schatten classes

Proposition

The Berezin transform $\phi \to \tilde{\phi}$ is bounded in $L^p(\mathbb{D}, d\lambda)$ for any $1 \leq p \leq \infty$.

(日) (同) (三) (三)

æ

Toeplitz operators and Schatten classes

Proposition

The Berezin transform $\phi \to \tilde{\phi}$ is bounded in $L^p(\mathbb{D}, d\lambda)$ for any $1 \le p \le \infty$.

Proposition

Let $1 \leq p < \infty$. If $\varphi \in L^p(\mathbb{D}, d\lambda)$ then $T_{\varphi} \in S_p(A_2)$.

イロト イポト イヨト イヨト

Э

Toeplitz operators and Schatten classes

Proposition

The Berezin transform $\phi \to \tilde{\phi}$ is bounded in $L^p(\mathbb{D}, d\lambda)$ for any $1 \le p \le \infty$.

Proposition

Let $1 \leq p < \infty$. If $\varphi \in L^p(\mathbb{D}, d\lambda)$ then $T_{\varphi} \in S_p(A_2)$.

It is known that for a nonegative $\varphi \in L^1(\mathbb{D})$, T_{φ} is compact if and only if $\tilde{\varphi} \in C_0(\mathbb{D})$.

イロト イポト イヨト イヨト

э

Toeplitz operators and Schatten classes

Proposition

The Berezin transform $\phi \to \tilde{\phi}$ is bounded in $L^p(\mathbb{D}, d\lambda)$ for any $1 \le p \le \infty$.

Proposition

Let $1 \leq p < \infty$. If $\varphi \in L^p(\mathbb{D}, d\lambda)$ then $T_{\varphi} \in S_p(A_2)$.

It is known that for a nonegative $\varphi \in L^1(\mathbb{D})$, T_{φ} is compact if and only if $\widetilde{\varphi} \in C_0(\mathbb{D})$.

Theorem

The Toeplitz operator $T_{\varphi} \in S_p$ if and only if the Berezin transform $\widetilde{\varphi} \in L^p(\mathbb{D}, d\lambda)$.

イロト イポト イヨト イヨト

Toeplitz operators and Schatten classes

Proposition

The Berezin transform $\phi \to \tilde{\phi}$ is bounded in $L^p(\mathbb{D}, d\lambda)$ for any $1 \le p \le \infty$.

Proposition

Let $1 \leq p < \infty$. If $\varphi \in L^p(\mathbb{D}, d\lambda)$ then $T_{\varphi} \in S_p(A_2)$.

It is known that for a nonegative $\varphi \in L^1(\mathbb{D})$, T_{φ} is compact if and only if $\widetilde{\varphi} \in C_0(\mathbb{D})$.

Theorem

The Toeplitz operator $T_{\varphi} \in S_p$ if and only if the Berezin transform $\widetilde{\varphi} \in L^p(\mathbb{D}, d\lambda)$.

イロト イポト イヨト イヨト

Toeplitz operators and Schatten classes

Proposition

The Berezin transform $\phi \to \tilde{\phi}$ is bounded in $L^p(\mathbb{D}, d\lambda)$ for any $1 \le p \le \infty$.

Proposition

Let $1 \leq p < \infty$. If $\varphi \in L^p(\mathbb{D}, d\lambda)$ then $T_{\varphi} \in S_p(A_2)$.

It is known that for a nonegative $\varphi \in L^1(\mathbb{D})$, T_{φ} is compact if and only if $\widetilde{\varphi} \in C_0(\mathbb{D})$.

Theorem

The Toeplitz operator $T_{\varphi} \in S_p$ if and only if the Berezin transform $\widetilde{\varphi} \in L^p(\mathbb{D}, d\lambda)$.

A general question: What can be said for other spaces of operators or other spaces of functions in terms of the Berezin transform?

イロト イポト イヨト イヨト

Mixed norm spaces

For $\alpha \in \mathbb{R}$, $0 < p,q \le \infty$ the mixed norm space $L^{p,q,\alpha}$ is the space of all measurable complex functions f on \mathbb{D} such that

$$\|f\|_{L^{p,q,\alpha}} = \left(\int_0^1 (1-r^2)^{q\alpha-1} M_p^q(f,r) dr\right)^{1/q} < \infty,$$
(5)

with

$$M_p(f,r) = \left(\int_0^{2\pi} \left|f(re^{i\theta})\right|^p \frac{d\theta}{2\pi}\right)^{1/p}.$$

Of course $L^p(\mathbb{D}, dA) = L^{p,p,1/p}$ and $f \in L^p(\mathbb{D}, d\lambda)$ if and only if $(1 - |z|^2)^{-2/p} f \in L^{p,p,1/p}$.

イロト 不同ト イヨト イヨト

Э

Introduction	
New Definitions	Toeplitz operators
New results	The spaces
A Result and its proof.	

Herz spaces

For $\alpha \in \mathbb{R}$ and $1 \leq p, q \leq \infty$ let $\mathscr{K}_q^{p,\alpha}$ be Herz spaces consisting of all measurable functions such that $\left(2^{-n\alpha} \|f\|_{L^p(A_n, dA)}\right)_{n \in \mathbb{N}} \in \ell^q$ where

$$A_n = \{z: 1 - 2^{-n} \le |z| < 1 - 2^{-(n+1)}\}.$$

▲ 글 ▶ 글 글

Introduction	
New Definitions	Toeplitz operators
New results	The spaces
A Result and its proof.	

Herz spaces

For $\alpha \in \mathbb{R}$ and $1 \leq p, q \leq \infty$ let $\mathscr{K}_q^{p,\alpha}$ be Herz spaces consisting of all measurable functions such that $\left(2^{-n\alpha} \|f\|_{L^p(A_n; dA)}\right)_{n \in \mathbb{N}} \in \ell^q$ where

$$A_n = \{z: 1 - 2^{-n} \le |z| < 1 - 2^{-(n+1)}\}.$$

We provide $\mathscr{K}_q^{p,\alpha}$ with the norm

$$\|f\|_{\mathscr{K}^{p,\alpha}_{q}} = \left\| \left(2^{-n\alpha} \|f\|_{L^{p}(A_{n},dA)} \right)_{n\in\mathbb{N}} \right\|_{\ell^{q}} < \infty.$$
(6)

< ≣ >

Of course $\mathscr{K}_{p}^{p,0} = L^{p}(\mathbb{D}, dA)$ and $\mathscr{K}_{p}^{p,-2/p} = L^{p}(\mathbb{D}, d\lambda)$ We will write $\mathscr{K}_{q}^{p}(\lambda) = \mathscr{K}_{q}^{p,-2/p}$.

Kellog spaces

Denote $I_k = [2^k - 1, 2^{k+1}) \cap (\mathbb{N} \cup \{0\})$ for $k \in \mathbb{N} \cup \{0\}$ and for $0 < p, q \le \infty$ define Kellog's spaces $\ell(p, q)$ as the space of sequences $(\lambda_n)_{n \ge 0}$ such that

$$\|(\lambda_n)\|_{\ell(p,q)} = \Big(\sum_{k\geq 0} (\sum_{n\in I_k} |\lambda_n|^p)^{q/p}\Big)^{1/q},$$

and the obvious modifications for $p = \infty$ or $q = \infty$. We have $\ell(p,p) = \ell^p$ and

$$\|(\lambda_n)\|_{\ell(p,q)} = \|(|\lambda_n|^p)\|_{\ell(1,q/p)}^{1/p}.$$
(7)

Introduction	
New Definitions	Toeplitz operators
New results	The spaces
A Result and its proof.	The problems

Problem 1: Which are the new classes of Toeplitz operators whose symbols have Berezin transform in mixed norm spaces $L^{p,q,\alpha}$.

★ 문 ► ★ 문 ►

< 🗇 🕨

Introduction	
New Definitions	Toeplitz operators
New results	The spaces
A Result and its proof.	The problems

Problem 1: Which are the new classes of Toeplitz operators whose symbols have Berezin transform in mixed norm spaces $L^{p,q,\alpha}$.?

Previous results for Herz spaces

In 2005 M. Loaiza, M. López García and S. Pérez-Esteva introduced the so called Schatten-Herz classes $S_{p,q}$ of all Toeplitz operators T_{φ} such that $T_{\varphi} = \sum_{n=1}^{\infty} T_{\varphi_n}$, with $T_{\varphi_n} \in S_p$ where $\varphi_n = \chi_{A_n} \varphi$ and which satisfy

$$\left(\sum_{n=1}^{\infty} \left\| \mathcal{T}_{\varphi_n} \right\|_{S_p}^{q} \right)^{1/q} < \infty.$$

< ∃ >

Introduction	
New Definitions	Toeplitz operators
New results	The spaces
A Result and its proof.	The problems

Problem 1: Which are the new classes of Toeplitz operators whose symbols have Berezin transform in mixed norm spaces $L^{p,q,\alpha}$.?

Previous results for Herz spaces

In 2005 M. Loaiza, M. López García and S. Pérez-Esteva introduced the so called Schatten-Herz classes $S_{p,q}$ of all Toeplitz operators T_{φ} such that $T_{\varphi} = \sum_{n=1}^{\infty} T_{\varphi_n}$, with $T_{\varphi_n} \in S_p$ where $\varphi_n = \chi_{A_n} \varphi$ and which satisfy

$$\left(\sum_{n=1}^{\infty} \left\| \mathcal{T}_{\varphi_n} \right\|_{S_p}^{q} \right)^{1/q} < \infty.$$

Theorem

Let $1 \le p < \infty$, $\varphi \in L^1(\mathbb{D})$ and s > 0. Then

$$T_{\varphi} \in S_{p,q} \Longleftrightarrow \widetilde{\varphi} \in \mathscr{K}_q^p(\lambda).$$

- ∢ ≣ ▶

Introduction	
New Definitions	Toeplitz operators
New results	The spaces
A Result and its proof.	The problems

Problem 1: Which are the new classes of Toeplitz operators whose symbols have Berezin transform in mixed norm spaces $L^{p,q,\alpha}$.?

Previous results for Herz spaces

In 2005 M. Loaiza, M. López García and S. Pérez-Esteva introduced the so called Schatten-Herz classes $S_{p,q}$ of all Toeplitz operators T_{φ} such that $T_{\varphi} = \sum_{n=1}^{\infty} T_{\varphi_n}$, with $T_{\varphi_n} \in S_p$ where $\varphi_n = \chi_{A_n} \varphi$ and which satisfy

$$\left(\sum_{n=1}^{\infty} \left\| \mathcal{T}_{\varphi_n} \right\|_{S_p}^{q} \right)^{1/q} < \infty.$$

Theorem

Let $1 \le p < \infty$, $\varphi \in L^1(\mathbb{D})$ and s > 0. Then

$$\mathcal{T}_{arphi}\in\mathcal{S}_{p,q}\Longleftrightarrow\widetilde{arphi}\in\mathscr{K}_{q}^{p}(\lambda).$$

Problem 2 : Find a definition of Schatten-Herz classes valid for general operators.

Some new classes of compact operators

Definition

Let $0 < p, q < \infty$ and T be a bounded operator on A_2 . Denote $\Delta_j : A_2 \rightarrow A_2$ given by

$$\Delta_j(f) = \sum_{n \in I_j} a_n z^n, \quad f(z) = \sum_{n=0}^{\infty} a_n z^n.$$

Definition

Let $0 < p, q < \infty$ and T be a bounded operator on A_2 . Denote $\Delta_i : A_2 \to A_2$ given by

$$\Delta_j(f) = \sum_{n \in I_j} a_n z^n, \quad f(z) = \sum_{n=0}^{\infty} a_n z^n.$$

We say that $T \in S(p,q)$ if

$$\|T\|_{p,q} = (\sum_{j=0}^{\infty} \|T\Delta_j\|_{S_p}^q)^{1/q} < \infty.$$

 $\text{ For } q = \infty \text{ we say that } T \in S(p,\infty) \text{ if } \|T\|_{p,\infty} = \sup_j \|T\Delta_j\|_{S_p} < \infty.$

Definition

Let $0 < p, q < \infty$ and T be a bounded operator on A_2 . Denote $\Delta_j : A_2 \to A_2$ given by

$$\Delta_j(f) = \sum_{n \in I_j} a_n z^n, \quad f(z) = \sum_{n=0}^{\infty} a_n z^n.$$

We say that $T \in S(p,q)$ if

$$\|T\|_{p,q} = (\sum_{j=0}^{\infty} \|T\Delta_j\|_{S_p}^q)^{1/q} < \infty.$$

 $\text{ For } q = \infty \text{ we say that } T \in S(p,\infty) \text{ if } \|T\|_{p,\infty} = \sup_j \|T\Delta_j\|_{S_p} < \infty.$

 $S(p,1) \subset S_p \subset S(p,\infty).$

Definition

Let $0 < p, q < \infty$ and T be a bounded operator on A_2 . Denote $\Delta_j : A_2 \to A_2$ given by

$$\Delta_j(f) = \sum_{n \in I_j} a_n z^n, \quad f(z) = \sum_{n=0}^{\infty} a_n z^n.$$

We say that $T \in S(p,q)$ if

$$\|T\|_{p,q} = (\sum_{j=0}^{\infty} \|T\Delta_j\|_{S_p}^q)^{1/q} < \infty.$$

 $\text{For }q=\infty \text{ we say that } \mathcal{T}\in \mathcal{S}(p,\infty) \text{ if } \|\mathcal{T}\|_{p,\infty}= \sup_{j}\|\mathcal{T}\Delta_{j}\|_{\mathcal{S}_{p}}<\infty.$

$$S(p,1) \subset S_p \subset S(p,\infty).$$

Theorem

Let $1 \le p < \infty$. Then $S(p,p) = S_p$ with equivalent norms.

Definition

Let $0 < p, q < \infty$ and T be a bounded operator on A_2 . Denote $\Delta_j : A_2 \to A_2$ given by

$$\Delta_j(f) = \sum_{n \in I_j} a_n z^n, \quad f(z) = \sum_{n=0}^{\infty} a_n z^n.$$

We say that $T \in S(p,q)$ if

$$\|T\|_{p,q} = (\sum_{j=0}^{\infty} \|T\Delta_j\|_{S_p}^q)^{1/q} < \infty.$$

 $\text{For }q=\infty \text{ we say that } \mathcal{T}\in \mathcal{S}(p,\infty) \text{ if } \|\mathcal{T}\|_{p,\infty}= \sup_{j}\|\mathcal{T}\Delta_{j}\|_{\mathcal{S}_{p}}<\infty.$

$$S(p,1) \subset S_p \subset S(p,\infty).$$

Theorem

Let $1 \le p < \infty$. Then $S(p,p) = S_p$ with equivalent norms.

Characterizations

Oscar Blasco On Schatten-Herz operators

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Theorem

Let T be a positive compact operator on A_2 and $0 < q < \infty$. The following are equivalent:

(i)
$$T \in S(1,q)$$
, *i.e.* $\sum_{j=0}^{\infty} \|T\Delta_j\|_{S_1}^q < \infty$.

・ロト ・四ト ・ヨト ・ヨト …

æ

Theorem

Let T be a positive compact operator on A_2 and $0 < q < \infty$. The following are equivalent:

(i)
$$T \in S(1,q)$$
, *i.e.* $\sum_{i=0}^{\infty} \|T\Delta_{j}\|_{S_{1}}^{q} < \infty$.

(ii)
$$(\langle Te_n, e_n \rangle)_n \in \ell(1, q).$$

Theorem

Let T be a positive compact operator on A_2 and $0 < q < \infty$. The following are equivalent:

- (i) $T \in S(1,q)$, *i.e.* $\sum_{j=0}^{\infty} \|T\Delta_j\|_{S_1}^q < \infty$.
- (ii) $(\langle Te_n, e_n \rangle)_n \in \ell(1, q).$
- (iii) $\tilde{T} \in L^{1,q,-1}$.

▲ロ▶ ▲圖▶ ▲園▶ ▲国▶ ▲国 ● のへの

Theorem

Let T be a positive compact operator on A_2 and $0 < q < \infty$. The following are equivalent:

(i) $T \in S(1,q)$, *i.e.* $\sum_{j=0}^{\infty} ||T\Delta_j||_{S_1}^q < \infty$. (ii) $(\langle Te_n, e_n \rangle)_n \in \ell(1,q)$. (iii) $\tilde{T} \in L^{1,q,-1}$. (iv) $(1-|z|^2)^{-\beta} \tilde{T} \in L^{1,q,\alpha}$ for any $\beta - \alpha = 1$.

Theorem

Let T be a positive compact operator on A_2 and $f_T(z) = T(k_z), z \in \mathbb{D}$.

▲ロ▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Theorem

Let T be a positive compact operator on A_2 and $f_T(z) = T(k_z), z \in \mathbb{D}$. The following are equivalent

(i) $T \in S(2,q)$, *i.e.* $\sum_{j=0}^{\infty} \|T\Delta_j\|_{S_2}^q < \infty$.

▲ロ▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Theorem

Let T be a positive compact operator on A₂ and $f_T(z) = T(k_z), z \in \mathbb{D}$. The following are equivalent

- (i) $T \in S(2,q)$, *i.e.* $\sum_{i=0}^{\infty} \|T\Delta_i\|_{S_2}^q < \infty$.
- (ii) $(\langle T^2(e_n), e_n \rangle)_n \in \ell(1, q/2).$

▲ロ▶ ▲圖▶ ▲園▶ ▲国▶ ▲国 ● のへの

Theorem

Let T be a positive compact operator on A₂ and $f_T(z) = T(k_z), z \in \mathbb{D}$. The following are equivalent

- (i) $T \in S(2,q)$, *i.e.* $\sum_{j=0}^{\infty} \|T\Delta_j\|_{S_2}^q < \infty$.
- (ii) $(\langle T^2(e_n), e_n \rangle)_n \in \ell(1, q/2).$
- (iii) $(||Te_n||)_{n\in\mathbb{N}} \in \ell(2,q).$

▲ロ▶ ▲圖▶ ▲園▶ ▲国▶ ▲国 ● のへの

Theorem

Let T be a positive compact operator on A₂ and $f_T(z) = T(k_z), z \in \mathbb{D}$. The following are equivalent

- (i) $T \in S(2,q)$, *i.e.* $\sum_{j=0}^{\infty} \|T\Delta_j\|_{S_2}^q < \infty$. (ii) $(\langle T^2(e_n), e_n \rangle)_n \in \ell(1,q/2)$. (iii) $(\|Te_n\|)_{n \in \mathbb{N}} \in \ell(2,q)$.
- (iv) $f_T \in L^{2,q,-1/2}(\mathbb{D},A_2).$

|→ □ → → 三 → → 三 → ○ へ ⊙

Theorem

Let T be a positive compact operator on A_2 and $f_T(z) = T(k_z), z \in \mathbb{D}$. The following are equivalent

(i)
$$T \in S(2,q)$$
, *i.e.* $\sum_{j=0}^{\infty} ||T\Delta_j||_{S_2}^q < \infty$.
(ii) $(\langle T^2(e_n), e_n \rangle)_n \in \ell(1, q/2)$.
(iii) $(||Te_n||)_{n \in \mathbb{N}} \in \ell(2,q)$.
(iv) $f_T \in L^{2,q,-1/2}(\mathbb{D}, A_2)$.
(iv) $(1-|z|^2)^{-\beta}f_T \in L^{2,q,\alpha}(\mathbb{D}, A_2)$ for $\beta - \alpha = 1/2$

▲ロ▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

The case S(1,q)

Lemma

For $0 < q \leq \infty$ and any sequence $(\alpha_n)_n$ of nonegative real numbers, one has

$$\|(\alpha_n)_n\|_{\ell(1,q)} \sim \|(1-r)\sum_{n=0}^{\infty} (n+1)\alpha_n r^n\|_{L^q([0,1],\frac{d^r}{1-r})}.$$
(8)

(中) (종) (종) (종) (종) (종)

The case S(1,q)

Lemma

For $0 < q \leq \infty$ and any sequence $(\alpha_n)_n$ of nonegative real numbers, one has

$$\|(\alpha_n)_n\|_{\ell(1,q)} \sim \|(1-r)\sum_{n=0}^{\infty} (n+1)\alpha_n r^n\|_{L^q([0,1],\frac{dr}{1-r})}.$$
(8)

Lemma

Given $z \in \mathbb{D}$ and $T : A_2 \rightarrow A_2$.

$$\int_{0}^{2\pi} \tilde{T}(ze^{it}) \frac{dt}{2\pi} = (1 - |z|^2)^2 \sum_{n=0}^{\infty} (n+1) \langle Te_n, e_n \rangle |z|^{2n}.$$
 (9)

The case S(1,q)

Lemma

For $0 < q \le \infty$ and any sequence $(\alpha_n)_n$ of nonegative real numbers, one has

$$\|(\alpha_n)_n\|_{\ell(1,q)} \sim \|(1-r)\sum_{n=0}^{\infty} (n+1)\alpha_n r^n\|_{L^q([0,1],\frac{dr}{1-r})}.$$
(8)

Lemma

Given $z \in \mathbb{D}$ and $T : A_2 \rightarrow A_2$.

$$\int_{0}^{2\pi} \tilde{T}(ze^{it}) \frac{dt}{2\pi} = (1 - |z|^2)^2 \sum_{n=0}^{\infty} (n+1) \langle Te_n, e_n \rangle |z|^{2n}.$$
 (9)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

Corollary

Let T be a positive compact operator on A_2 . Then $(1-|z|^2)^{-2}\widetilde{T} \in L^{1,q,1}$ if and only if $\langle Te_n, e_n \rangle \in \ell(1,q)$.