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Notation

A2 = L2(D,dA)∩H (D) the Bergman space on D, with dA = dxdy
π

the normalized

Lebesgue measure.

We write dλ(z) = dA(z)
(1−|z |2)2 the measure invariant under

Moebious transforms.

en(z) =
√

n + 1zn for n ≥ 0 the canonical orthonormal basis of A2.

Kz (w) = 1
(1−zw)2 and kz = 1−|z |2

(1−zw)2 for the Bergman and normalized Bergman

kernels on A2.

Definition

Let T : A2→ A2 be a bounded operator. The Berezin transform of the operator T ,
T̃ : D→ C, is given by

T̃ (z) = 〈T (kz ),kz 〉. (1)

We write fT the A2-valued function z → fT (z) = T (kz ). Hence T̃ (z) = 〈fT (z),kz 〉

If T is bounded then T̃ : D→ C is a bounded function and ‖T̃‖∞ ≤ ‖T‖.

If T is compact then T̃ ∈ C0(D).

If T is Hilbert-Schmidt if and only if fT ∈ L2(D,A2,dλ).
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Schatten classes

Recall that a compact operator T : A2→ A2 is said to belong to the Schatten class
Sp(A2) if

‖T‖p = sup{(∑
n

|〈Tun,un〉|p)1/p ;{un}orthonormal system}< ∞.

It is well known that
‖T‖2 = (∑

n

‖Ten‖2)1/2 (2)

For positive operators T , i.e. 〈Tf , f 〉 ≥ 0 for all f ∈ A2,

‖T‖1 = tr(T ) = ∑
n

〈Ten,en〉. (3)

Also recall that if T ≥ 0 then T ∈ Sp if and only if T p ∈ S1.
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Toeplitz operators and Berezin transform

A Toeplitz operator Tϕ with symbol ϕ ∈ L1(D), is given by

Tϕ (f )(z) =
∫

D

f (w)ϕ(w)

(1− w̄z)2
dA(w), f =

m

∑
n=0

αmem.

(4)

〈Tϕ (f ),g〉=
∫
D
∫
D

f (w)g(z)ϕ(w)
(1−zw̄)2 dA(z)dA(w) =

∫
D f (w)g(w)ϕ(w)dA(w).

The Berezin transform of Tϕ (or Berezin transform of the symbol) becomes

ϕ̃(z) = (1−|z |2)2
∫

D

ϕ(w)

|1−zw |4
dA(w)

for ϕ ∈ L1(D).
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Proposition

The Berezin transform ϕ → ϕ̃ is bounded in Lp(D,dλ) for any 1≤ p ≤ ∞.

Proposition

Let 1≤ p < ∞. If ϕ ∈ Lp(D,dλ) then Tϕ ∈ Sp(A2).

It is known that for a nonegative ϕ ∈ L1(D), Tϕ is compact if and only if ϕ̃ ∈ C0(D).

Theorem

The Toeplitz operator Tϕ ∈ Sp if and only if the Berezin transform ϕ̃ ∈ Lp(D,dλ).

A general question: What can be said for other spaces of operators or other spaces
of functions in terms of the Berezin transform?
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Mixed norm spaces

For α ∈ R, 0 < p,q ≤ ∞ the mixed norm space Lp,q,α is the space of all measurable
complex functions f on D such that

‖f ‖Lp,q,α =

(∫ 1

0
(1− r2)qα−1Mq

p (f , r)dr

)1/q

< ∞, (5)

with

Mp(f , r) =

(∫ 2π

0

∣∣∣f (re iθ )
∣∣∣p dθ

2π

)1/p

.

Of course Lp(D,dA) = Lp,p,1/p and f ∈ Lp(D,dλ) if and only if (1−|z |2)−2/pf ∈ Lp,p,1/p .
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Herz spaces

For α ∈ R and 1≤ p,q ≤ ∞ let K p,α
q be Herz spaces consisting of all measurable

functions such that
(

2−nα ‖f ‖Lp(An ,dA)

)
n∈N
∈ `q where

An = {z : 1−2−n ≤ |z |< 1−2−(n+1)}.

We provide K p,α
q with the norm

‖f ‖K p,α
q

=
∥∥∥(2−nα ‖f ‖Lp(An ,dA)

)
n∈N

∥∥∥
`q

< ∞. (6)

Of course K p,0
p = Lp(D,dA) and K

p,−2/p
p = Lp(D,dλ)

We will write K p
q (λ) = K

p,−2/p
q .
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Kellog spaces

Denote Ik = [2k −1,2k+1)∩ (N∪{0}) for k ∈ N∪{0} and for 0 < p,q ≤ ∞ define
Kellog’s spaces `(p,q) as the space of sequences (λn)n≥0 such that

‖(λn)‖`(p,q) =
(

∑
k≥0

( ∑
n∈Ik
|λn|p)q/p

)1/q
,

and the obvious modifications for p = ∞ or q = ∞.
We have `(p,p) = `p and

‖(λn)‖`(p,q) = ‖(|λn|p)‖1/p
`(1,q/p) . (7)
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Two problems on operators

Problem 1: Which are the new classes of Toeplitz operators whose symbols have
Berezin transform in mixed norm spaces Lp,q,α .?

Previous results for Herz spaces
In 2005 M. Loaiza, M. López Garćıa and S. Pérez-Esteva introduced the so called
Schatten-Herz classes Sp,q of all Toeplitz operators Tϕ such that Tϕ = ∑

∞
n=1 Tϕn , with

Tϕn ∈ Sp where ϕn = χAn ϕ and which satisfy(
∞

∑
n=1

∥∥Tϕn

∥∥q

Sp

)1/q

< ∞.

Theorem

Let 1≤ p < ∞, ϕ ∈ L1(D) and s > 0. Then

Tϕ ∈ Sp,q ⇐⇒ ϕ̃ ∈K p
q (λ).

Problem 2 : Find a definition of Schatten-Herz classes valid for general operators.
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Some new classes of compact operators

Definition

Let 0 < p,q < ∞ and T be a bounded operator on A2. Denote ∆j : A2→ A2 given by

∆j (f ) = ∑
n∈Ij

anz
n, f (z) =

∞

∑
n=0

anz
n.

We say that T ∈ S(p,q) if

‖T‖p,q = (
∞

∑
j=0

‖T∆j‖qSp
)1/q < ∞.

For q = ∞ we say that T ∈ S(p,∞) if ‖T‖p,∞ = supj ‖T∆j‖Sp < ∞.

S(p,1)⊂ Sp ⊂ S(p,∞).

Theorem

Let 1≤ p < ∞. Then S(p,p) = Sp with equivalent norms.
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Characterizations

Theorem

Let T be a positive compact operator on A2 and 0 < q < ∞. The following are
equivalent:

(i) T ∈ S(1,q), i.e. ∑
∞
j=0 ‖T∆j‖qS1

< ∞.

(ii)
(
〈Ten,en〉

)
n
∈ `(1,q).

(iii) T̃ ∈ L1,q,−1.

(iv) (1−|z |2)−β T̃ ∈ L1,q,α for any β −α = 1.
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More characterizations

Theorem

Let T be a positive compact operator on A2 and fT (z) = T (kz ),z ∈ D.

The following
are equivalent

(i) T ∈ S(2,q), i.e. ∑
∞
j=0 ‖T∆j‖qS2

< ∞.

(ii) (〈T 2(en),en〉)n ∈ `(1,q/2).

(iii) (‖Ten‖)n∈N ∈ `(2,q).

(iv) fT ∈ L2,q,−1/2(D,A2).

(iv) (1−|z |2)−β fT ∈ L2,q,α (D,A2) for β −α = 1/2.
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The case S(1,q)

Lemma

For 0 < q ≤ ∞ and any sequence (αn)n of nonegative real numbers, one has

‖(αn)n‖`(1,q) ∼ ‖(1− r)
∞

∑
n=0

(n + 1)αnr
n‖

Lq([0,1], dr
1−r )

. (8)

Lemma

Given z ∈ D and T : A2→ A2.∫ 2π

0
T̃ (ze it)

dt

2π
= (1−|z |2)2

∞

∑
n=0

(n + 1)〈Ten,en〉|z |2n. (9)

Corollary

Let T be a positive compact operator on A2. Then (1−|z |2)−2T̃ ∈ L1,q,1 if and only if
〈Ten,en〉 ∈ `(1,q).
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