Nuevos resultados sobre e-convexidad

José Vicente Pérez

Dpto. Estadística e Investigación Operativa Universidad de Alicante

VII Encuentro de Análisis Funcional y Aplicaciones Jaca, 6–9 de Abril de 2011

Outline

1 Introduction

- Notation and basic definitions
- On even convexity

2 Evenly convex functions

- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity

3 Duality for evenly convex functions

- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions

Fenchel duality in evenly convex optimization problems

- Introduction
- Main results

Outline

1 Introduction

• Notation and basic definitions

• On even convexity

2 Evenly convex functions

- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity

3 Duality for evenly convex functions

- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions

Fenchel duality in evenly convex optimization problems

- Introduction
- Main results

• X is a separated locally convex real topological vector space, with dual space X^* and duality product $\langle \cdot, \cdot \rangle : X^* \times X \to \mathbb{R}$,

 $\langle x^*, x \rangle := x^*(x)$

• X is a separated locally convex real topological vector space, with dual space X^* and duality product $\langle \cdot, \cdot \rangle : X^* \times X \to \mathbb{R}$,

 $\langle x^*, x \rangle := x^*(x)$

• $K \subset X$ is a cone if $\alpha K \subset K$ for every $\alpha > 0$. $C \subset X$ is convex if $(1 - \lambda)x + \lambda y \in C$ for all $x, y \in C, 0 \le \lambda \le 1$.

• X is a separated locally convex real topological vector space, with dual space X^* and duality product $\langle \cdot, \cdot \rangle : X^* \times X \to \mathbb{R}$,

 $\langle x^*, x \rangle := x^*(x)$

- $K \subset X$ is a cone if $\alpha K \subset K$ for every $\alpha > 0$. $C \subset X$ is convex if $(1 - \lambda)x + \lambda y \in C$ for all $x, y \in C, 0 \le \lambda \le 1$.
- A face of a convex set C is a convex subset F of C such that x, y ∈ C and (x + y)/2 ∈ F imply that x, y ∈ F.
 The extreme points are the faces with a single point.

A face is said to be exposed if it is the set where a certain $x^* \in X^*$ attains its minimum on C.

• X is a separated locally convex real topological vector space, with dual space X^* and duality product $\langle \cdot, \cdot \rangle : X^* \times X \to \mathbb{R}$,

 $\langle x^*, x \rangle := x^*(x)$

- $K \subset X$ is a cone if $\alpha K \subset K$ for every $\alpha > 0$. $C \subset X$ is convex if $(1 - \lambda)x + \lambda y \in C$ for all $x, y \in C, 0 \le \lambda \le 1$.
- A face of a convex set C is a convex subset F of C such that x, y ∈ C and (x + y)/2 ∈ F imply that x, y ∈ F.
 The extreme points are the faces with a single point.
 A face is said to be exposed if it is the set where a certain x* ∈ X* attains its minimum on C.
- The recession cone of $C \subset X$ is defined by

$$0^+C := \{ v \in X \mid x + \mu v \in C \quad \forall x \in C \text{ and } \forall \mu \ge 0 \}.$$

• X is a separated locally convex real topological vector space, with dual space X^* and duality product $\langle \cdot, \cdot \rangle : X^* \times X \to \mathbb{R}$,

 $\langle x^*, x \rangle := x^*(x)$

- $K \subset X$ is a cone if $\alpha K \subset K$ for every $\alpha > 0$. $C \subset X$ is convex if $(1 - \lambda)x + \lambda y \in C$ for all $x, y \in C, 0 \le \lambda \le 1$.
- A face of a convex set C is a convex subset F of C such that x, y ∈ C and (x + y)/2 ∈ F imply that x, y ∈ F.
 The extreme points are the faces with a single point.
 A face is said to be exposed if it is the set where a certain x* ∈ X* attains its minimum on C.
- The recession cone of $C \subset X$ is defined by

$$0^+C := \{ v \in X \mid x + \mu v \in C \quad \forall x \in C \text{ and } \forall \mu \ge 0 \}.$$

• Notation: conv C, cone C, rint C, cl C (weak*-closure if $C \subset X^*$).

$$\delta_C(x) := \begin{cases} 0 & \text{if } x \in C, \\ +\infty & \text{otherwise.} \end{cases}$$

$$\delta_C(x) := \begin{cases} 0 & \text{if } x \in C, \\ +\infty & \text{otherwise.} \end{cases}$$

• The support function of $C \subset X$, $\sigma_C : X^* \to \overline{\mathbb{R}}$, is

$$\sigma_C\left(x^*\right) := \sup_{x \in C} \left\langle x^*, x \right\rangle.$$

$$\delta_C(x) := \begin{cases} 0 & \text{if } x \in C, \\ +\infty & \text{otherwise.} \end{cases}$$

• The support function of $C \subset X$, $\sigma_C : X^* \to \overline{\mathbb{R}}$, is

$$\sigma_C\left(x^*\right) := \sup_{x \in C} \left\langle x^*, x \right\rangle.$$

For a given function $f: X \to \overline{\mathbb{R}}$ we consider the following notions:

• The effective domain, the sublevel set $(r \in \mathbb{R})$ and the epigraph of f:

$$\begin{array}{lll} \mathrm{dom}\,f &:= & \left\{ x \in X \mid f(x) < +\infty \right\}, \\ L(f,r) &:= & \left\{ x \in X \mid f(x) \leq r \right\}, \\ \mathrm{epi}\,f &:= & \left\{ (x,a) \in X \times \mathbb{R} \mid f(x) \leq a \right\}. \end{array}$$

$$\delta_C(x) := \begin{cases} 0 & \text{if } x \in C, \\ +\infty & \text{otherwise.} \end{cases}$$

• The support function of $C \subset X$, $\sigma_C : X^* \to \overline{\mathbb{R}}$, is

$$\sigma_C\left(x^*\right) := \sup_{x \in C} \left\langle x^*, x \right\rangle.$$

For a given function $f: X \to \overline{\mathbb{R}}$ we consider the following notions:

• The effective domain, the sublevel set $(r \in \mathbb{R})$ and the epigraph of f:

$$\begin{array}{lll} \mathrm{dom}\,f &:= & \{x \in X \mid f(x) < +\infty\}\,, \\ L(f,r) &:= & \{x \in X \mid f(x) \leq r\}\,, \\ \mathrm{epi}\,f &:= & \{(x,a) \in X \times \mathbb{R} \mid f(x) \leq a\}\,. \end{array}$$

• f is proper if $f > -\infty$ and dom $f \neq \emptyset$.

$$\delta_C(x) := \begin{cases} 0 & \text{if } x \in C, \\ +\infty & \text{otherwise.} \end{cases}$$

• The support function of $C \subset X$, $\sigma_C : X^* \to \overline{\mathbb{R}}$, is

$$\sigma_C\left(x^*\right) := \sup_{x \in C} \left\langle x^*, x \right\rangle.$$

For a given function $f: X \to \overline{\mathbb{R}}$ we consider the following notions:

• The effective domain, the sublevel set $(r \in \mathbb{R})$ and the epigraph of f:

$$\begin{array}{lll} \mathrm{dom}\,f &:= & \{x \in X \mid f(x) < +\infty\}\,, \\ L(f,r) &:= & \{x \in X \mid f(x) \le r\}\,, \\ \mathrm{epi}\,f &:= & \{(x,a) \in X \times \mathbb{R} \mid f(x) \le a\}\,. \end{array}$$

- f is proper if $f > -\infty$ and dom $f \neq \emptyset$.
- f is sublinear if epi f is a convex cone.

$$\delta_C(x) := \begin{cases} 0 & \text{if } x \in C, \\ +\infty & \text{otherwise.} \end{cases}$$

• The support function of $C \subset X$, $\sigma_C : X^* \to \overline{\mathbb{R}}$, is

$$\sigma_C\left(x^*\right) := \sup_{x \in C} \left\langle x^*, x \right\rangle.$$

For a given function $f: X \to \overline{\mathbb{R}}$ we consider the following notions:

• The effective domain, the sublevel set $(r \in \mathbb{R})$ and the epigraph of f:

$$\begin{array}{lll} \mathrm{dom}\,f &:= & \{x \in X \mid f(x) < +\infty\}\,, \\ L(f,r) &:= & \{x \in X \mid f(x) \leq r\}\,, \\ \mathrm{epi}\,f &:= & \{(x,a) \in X \times \mathbb{R} \mid f(x) \leq a\}\,. \end{array}$$

- f is proper if $f > -\infty$ and dom $f \neq \emptyset$.
- f is sublinear if epi f is a convex cone.
- The (Fenchel) conjugate of f is the function $f^*: X^* \to \overline{\mathbb{R}}$ defined by

$$f^*(x^*) := \sup_{x \in X} \left\{ \langle x^*, x \rangle - f(x) \right\}.$$

• f is lsc at $\bar{x} \in X$ if for each $\lambda \in \mathbb{R}$ such that $\lambda < f(\bar{x})$ there exists a neighbourhood of \bar{x} , $V_{\bar{x}}$, such that $\lambda < f(x)$ for all $x \in V_{\bar{x}}$.

- f is lsc at $\bar{x} \in X$ if for each $\lambda \in \mathbb{R}$ such that $\lambda < f(\bar{x})$ there exists a neighbourhood of \bar{x} , $V_{\bar{x}}$, such that $\lambda < f(x)$ for all $x \in V_{\bar{x}}$.
- For $\varepsilon \ge 0$ and $x \in X$ with $f(x) \in \mathbb{R}$ the ε -subdifferential of f at \bar{x} is

$$\partial_{\varepsilon} f(\bar{x}) := \{ x^* \in X^* \mid f(x) - f(\bar{x}) \ge \langle x^*, x - \bar{x} \rangle - \varepsilon, \ \forall \ x \in X \} ;$$

otherwise, $\partial_{\varepsilon} f(\bar{x}) = \emptyset$.

- f is lsc at $\bar{x} \in X$ if for each $\lambda \in \mathbb{R}$ such that $\lambda < f(\bar{x})$ there exists a neighbourhood of \bar{x} , $V_{\bar{x}}$, such that $\lambda < f(x)$ for all $x \in V_{\bar{x}}$.
- For $\varepsilon \ge 0$ and $x \in X$ with $f(x) \in \mathbb{R}$ the ε -subdifferential of f at \bar{x} is

$$\partial_{\varepsilon} f(\bar{x}) := \{ x^* \in X^* \mid f(x) - f(\bar{x}) \ge \langle x^*, x - \bar{x} \rangle - \varepsilon, \ \forall \ x \in X \} ;$$

otherwise, $\partial_{\varepsilon} f(\bar{x}) = \emptyset$.

Lower semicontinuous hull of f

- $\operatorname{cl} f : X \to \overline{\mathbb{R}}$ with $\operatorname{epi}(\operatorname{cl} f) = \operatorname{cl}(\operatorname{epi} f)$.
- When f is convex:

 f^* is proper \Leftrightarrow cl f is proper \Rightarrow $f^{**} =$ cl f.

- f is lsc at $\bar{x} \in X$ if for each $\lambda \in \mathbb{R}$ such that $\lambda < f(\bar{x})$ there exists a neighbourhood of \bar{x} , $V_{\bar{x}}$, such that $\lambda < f(x)$ for all $x \in V_{\bar{x}}$.
- For $\varepsilon \ge 0$ and $x \in X$ with $f(x) \in \mathbb{R}$ the ε -subdifferential of f at \bar{x} is

$$\partial_{\varepsilon} f(\bar{x}) := \{ x^* \in X^* \mid f(x) - f(\bar{x}) \ge \langle x^*, x - \bar{x} \rangle - \varepsilon, \ \forall \ x \in X \} ;$$

otherwise, $\partial_{\varepsilon} f(\bar{x}) = \emptyset$.

Lower semicontinuous hull of f

- $\operatorname{cl} f : X \to \overline{\mathbb{R}}$ with $\operatorname{epi}(\operatorname{cl} f) = \operatorname{cl}(\operatorname{epi} f)$.
- When f is convex:

 f^* is proper \Leftrightarrow cl f is proper \Rightarrow $f^{**} =$ cl f.

Infimal convolution of $f, g: X \to \overline{\mathbb{R}}$

- $f \Box g : X \to \overline{\mathbb{R}}$ with $(f \Box g)(x) := \inf_{u \in X} \{f(u) + g(x-u)\}.$
- For f, g proper, convex and lsc with dom $f \cap \text{dom } g \neq \emptyset$,

Moreau-Rockafellar formula : $(f+g)^* = \operatorname{cl}(f^* \Box g^*)$.

The Hahn-Banach theorem Separation of convex sets

Separation of convex sets

Theorem

Suppose A and B are disjoint, nonempty, convex sets in a topological (real) vector space X.

(i) If A is open, there exist $v^* \in X^*$ and $\alpha \in \mathbb{R}$ such that

 $\langle v^*, x \rangle < \alpha \le \langle v^*, y \rangle$ for all $x \in A, y \in B$.

(ii) If A is compact, B is closed and X is locally convex, then there exist $v^* \in X^*$, $\alpha \in \mathbb{R}$ and $\varepsilon > 0$ such that

 $\langle v^*, x \rangle \leq \alpha - \varepsilon < \alpha + \varepsilon \leq \langle v^*, y \rangle$ for all $x \in A, y \in B$.

The Hahn-Banach theorem Separation of convex sets

separation of convex set

Theorem

Suppose A and B are disjoint, nonempty, convex sets in a topological (real) vector space X.

(i) If A is open, there exist $v^* \in X^*$ and $\alpha \in \mathbb{R}$ such that

 $\langle v^*, x \rangle < \alpha \le \langle v^*, y \rangle$ for all $x \in A, y \in B$.

(ii) If A is compact, B is closed and X is locally convex, then there exist $v^* \in X^*$, $\alpha \in \mathbb{R}$ and $\varepsilon > 0$ such that

$$\langle v^*, x \rangle \leq \alpha - \varepsilon < \alpha + \varepsilon \leq \langle v^*, y \rangle$$
 for all $x \in A, y \in B$.

- $X^* \neq \{0\} \Rightarrow$ there exist open and closed halfspaces.
- X^* separates points on X, i.e., $\forall x_1, x_2 \in X, \exists x^* \in X^*$ such that

 $\langle x^*, x_1 \rangle \neq \langle x^*, x_2 \rangle.$

• $C \subset X$ is a closed convex set $\Leftrightarrow C$ is the intersection of some family of closed halfspaces.

Outline

Introduction

- Notation and basic definitions
- On even convexity

- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity

- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions

- Introduction
- Main results

A set $C \subset X$ is said to be *evenly convex* (or, in brief, *e-convex*), if it is the intersection of some family, possibly empty, of open halfspaces.

• Equivalently, $C \subset X$ is e-convex if for each $\bar{x} \in X \setminus C$, there exists $x^* \in X^*$ such that $\langle x^*, x \rangle < \langle x^*, \bar{x} \rangle$ for all $x \in C$.

- Equivalently, $C \subset X$ is e-convex if for each $\bar{x} \in X \setminus C$, there exists $x^* \in X^*$ such that $\langle x^*, x \rangle < \langle x^*, \bar{x} \rangle$ for all $x \in C$.
- The intersection of e-convex sets is e-convex.

- Equivalently, $C \subset X$ is e-convex if for each $\bar{x} \in X \setminus C$, there exists $x^* \in X^*$ such that $\langle x^*, x \rangle < \langle x^*, \bar{x} \rangle$ for all $x \in C$.
- The intersection of e-convex sets is e-convex.
- As a consequence of the Hahn-Banach Theorem, every open or closed convex set is e-convex.

- Equivalently, $C \subset X$ is e-convex if for each $\bar{x} \in X \setminus C$, there exists $x^* \in X^*$ such that $\langle x^*, x \rangle < \langle x^*, \bar{x} \rangle$ for all $x \in C$.
- The intersection of e-convex sets is e-convex.
- As a consequence of the Hahn-Banach Theorem, every open or closed convex set is e-convex.

- Equivalently, $C \subset X$ is e-convex if for each $\bar{x} \in X \setminus C$, there exists $x^* \in X^*$ such that $\langle x^*, x \rangle < \langle x^*, \bar{x} \rangle$ for all $x \in C$.
- The intersection of e-convex sets is e-convex.
- As a consequence of the Hahn-Banach Theorem, every open or closed convex set is e-convex.

$$\begin{aligned} \{\langle a_t, x \rangle \geq b_t, \ t \in T\} & \Rightarrow \quad \{\langle a_t, x \rangle > b_t, \ t \in S; \langle a_t, x \rangle \geq b_t, \ t \in W\} \\ & \updownarrow \\ & \text{closed convex set} \end{aligned}$$

- Equivalently, $C \subset X$ is e-convex if for each $\bar{x} \in X \setminus C$, there exists $x^* \in X^*$ such that $\langle x^*, x \rangle < \langle x^*, \bar{x} \rangle$ for all $x \in C$.
- The intersection of e-convex sets is e-convex.
- As a consequence of the Hahn-Banach Theorem, every open or closed convex set is e-convex.

- Equivalently, $C \subset X$ is e-convex if for each $\bar{x} \in X \setminus C$, there exists $x^* \in X^*$ such that $\langle x^*, x \rangle < \langle x^*, \bar{x} \rangle$ for all $x \in C$.
- The intersection of e-convex sets is e-convex.
- As a consequence of the Hahn-Banach Theorem, every open or closed convex set is e-convex.

$$\begin{aligned} \{\langle a_t, x \rangle \ge b_t, \ t \in T\} & \Rightarrow \quad \{\langle a_t, x \rangle > b_t, \ t \in S; \langle a_t, x \rangle \ge b_t, \ t \in W\} \\ & \uparrow & \uparrow \\ & closed \ convex \ set & \Rightarrow \qquad evenly \ convex \ set \end{aligned}$$

Some References

V. Klee (1968): Maximal separation theorems for convex sets, Trans. Amer. Math. Soc. 134, 133-147.

- J.E. Martínez-Legaz (1981): Un concepto de conjugación, aplicación a las funciones cuasiconvexas, PhD thesis, Universidad de Barcelona.
- U. Passy, E.Z. Prisman (1984): Conjugacy in quasiconvex programming, Math. Program. 30, 121-146.
- A. Daniilidis, J.E. Martínez-Legaz (2002): Characterizations of evenly convex sets and evenly quasiconvex functions, J. Math. Anal. Appl. 273, 58-66.
- M.A. Goberna, V. Jornet, M.M.L. Rodríguez (2003): On linear systems containing strict inequalities, *Linear Algebra Appl.* 360, 151–171.
- M.A. Goberna, M.M.L. Rodríguez (2006): Analyzing linear systems containing strict inequalities via evenly convex hulls, European J. Oper. Res. 169, 1079–1095.
- M.A. Goberna, V. Jeyakumar, N. Dihn (2006): Dual characterizations of set containments with strict convex inequalities, J. Global Optim. 34, 33–54.
- V. Klee, E. Maluta, C. Zanco (2007): Basic properties of evenly convex sets, J. Convex Anal. 14, 137-148.

Proposition (Goberna et al. 2003)

Given $\emptyset \neq C \subsetneq \mathbb{R}^n$, the following conditions are equivalent to each other: (i) C is e-convex.

- (ii) C is a convex set and for each $x \notin C$ there exists a hyperplane H such that $x \in H$ and $H \cap C = \emptyset$.
- (iii) C is the result of eliminating from a closed convex set the union of a certain family of its exposed faces.
- (iv) C is a convex set and for any convex set $K \subset (\operatorname{cl} C) \setminus C$, there exists a hyperplane containing K and not intersecting C.

Proposition (Goberna et al. 2003)

Given $\emptyset \neq C \subsetneq \mathbb{R}^n$, the following conditions are equivalent to each other: (i) C is e-convex.

- (ii) C is a convex set and for each $x \notin C$ there exists a hyperplane H such that $x \in H$ and $H \cap C = \emptyset$.
- (iii) C is the result of eliminating from a closed convex set the union of a certain family of its exposed faces.
- (iv) C is a convex set and for any convex set $K \subset (\operatorname{cl} C) \setminus C$, there exists a hyperplane containing K and not intersecting C.

If $C \subset X$ is e-convex, then:

- $x \in C, y \in \operatorname{cl} C \Rightarrow]x, y[\subset C.$
- $0^+C = 0^+(\operatorname{cl} C).$

Proposition (Goberna et al. 2003)

Given $\emptyset \neq C \subsetneq \mathbb{R}^n$, the following conditions are equivalent to each other: (i) C is e-convex.

- (ii) C is a convex set and for each $x \notin C$ there exists a hyperplane H such that $x \in H$ and $H \cap C = \emptyset$.
- (iii) C is the result of eliminating from a closed convex set the union of a certain family of its exposed faces.
- (iv) C is a convex set and for any convex set $K \subset (\operatorname{cl} C) \setminus C$, there exists a hyperplane containing K and not intersecting C.

If $C \subset X$ is e-convex, then:

- $x \in C, y \in \operatorname{cl} C \Rightarrow]x, y[\subset C.$
- $0^+C = 0^+(\operatorname{cl} C).$

The *e-convex hull* of $C \subset X$, eco C, is the intersection of all the open halfspaces containing C, i.e., the smallest e-convex set that contains C.

• $\operatorname{conv} C \subset \operatorname{eco} C \subset \operatorname{cl} \operatorname{conv} C$.

Main Properties

- $\operatorname{conv} C \subset \operatorname{eco} C \subset \operatorname{cl} \operatorname{conv} C$.
- $\bar{x} \notin \text{eco} C \Leftrightarrow \exists x^* \in X^* \text{ such that } \langle x^*, x \rangle < \langle x^*, \bar{x} \rangle \text{ for all } x \in C.$ In particular, $0 \notin \text{eco} C \Leftrightarrow \{\langle z, x \rangle < 0, x \in C\}$ is consistent.

Main Properties

• $\operatorname{conv} C \subset \operatorname{eco} C \subset \operatorname{cl} \operatorname{conv} C$.

- $\bar{x} \notin \text{eco} C \Leftrightarrow \exists x^* \in X^* \text{ such that } \langle x^*, x \rangle < \langle x^*, \bar{x} \rangle \text{ for all } x \in C.$ In particular, $0 \notin \text{eco} C \Leftrightarrow \{\langle z, x \rangle < 0, x \in C\}$ is consistent.
- If $C_1 \subset X$ and $C_2 \subset Y$, then

 $eco(C_1 \times C_2) = (eco C_1) \times (eco C_2).$

Therefore, C_1 and C_2 are e-convex $\Leftrightarrow C_1 \times C_2$ is e-convex.
Introduction

On even convexity

Main Properties

• $\operatorname{conv} C \subset \operatorname{eco} C \subset \operatorname{cl} \operatorname{conv} C$.

- $\bar{x} \notin \text{eco} C \Leftrightarrow \exists x^* \in X^* \text{ such that } \langle x^*, x \rangle < \langle x^*, \bar{x} \rangle \text{ for all } x \in C.$ In particular, $0 \notin \text{eco} C \Leftrightarrow \{\langle z, x \rangle < 0, x \in C\}$ is consistent.
- If $C_1 \subset X$ and $C_2 \subset Y$, then

 $eco(C_1 \times C_2) = (eco C_1) \times (eco C_2).$

Therefore, C_1 and C_2 are e-convex $\Leftrightarrow C_1 \times C_2$ is e-convex.

• Given a family of nonempty sets in X, $eco(\cap_{i \in I} C_i) \subset \cap_{i \in I} (eco C_i)$.

Introduction

On even convexity

Main Properties

• $\operatorname{conv} C \subset \operatorname{eco} C \subset \operatorname{cl} \operatorname{conv} C$.

- $\bar{x} \notin \text{eco} C \Leftrightarrow \exists x^* \in X^* \text{ such that } \langle x^*, x \rangle < \langle x^*, \bar{x} \rangle \text{ for all } x \in C.$ In particular, $0 \notin \text{eco} C \Leftrightarrow \{\langle z, x \rangle < 0, x \in C\}$ is consistent.
- If $C_1 \subset X$ and $C_2 \subset Y$, then

 $eco(C_1 \times C_2) = (eco C_1) \times (eco C_2).$

Therefore, C_1 and C_2 are e-convex $\Leftrightarrow C_1 \times C_2$ is e-convex.

- Given a family of nonempty sets in X, $eco(\cap_{i \in I} C_i) \subset \cap_{i \in I} (eco C_i)$.
- Even convexity is **not** preserved by linear transformations.

Introduction

On even convexity

Main Properties

• $\operatorname{conv} C \subset \operatorname{eco} C \subset \operatorname{cl} \operatorname{conv} C$.

- $\bar{x} \notin \operatorname{eco} C \Leftrightarrow \exists x^* \in X^*$ such that $\langle x^*, x \rangle < \langle x^*, \bar{x} \rangle$ for all $x \in C$. In particular, $0 \notin \text{eco} C \Leftrightarrow \{\langle z, x \rangle < 0, x \in C\}$ is consistent.
- If $C_1 \subset X$ and $C_2 \subset Y$, then

 $eco(C_1 \times C_2) = (eco C_1) \times (eco C_2).$

Therefore, C_1 and C_2 are e-convex $\Leftrightarrow C_1 \times C_2$ is e-convex.

- Given a family of nonempty sets in X, $eco(\cap_{i \in I} C_i) \subset \cap_{i \in I} (eco C_i)$.
- Even convexity is **not** preserved by linear transformations.

Proposition (Goberna et al. 2006)

If $C \subset \mathbb{R}^m$ and $A : \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation, then

 $A(\operatorname{eco} C) \subset \operatorname{eco} AC.$

Main Properties

• $\operatorname{conv} C \subset \operatorname{eco} C \subset \operatorname{cl} \operatorname{conv} C$.

- $\bar{x} \notin \operatorname{eco} C \Leftrightarrow \exists x^* \in X^*$ such that $\langle x^*, x \rangle < \langle x^*, \bar{x} \rangle$ for all $x \in C$. In particular, $0 \notin \operatorname{eco} C \Leftrightarrow \{\langle z, x \rangle < 0, x \in C\}$ is consistent.
- If $C_1 \subset X$ and $C_2 \subset Y$, then

 $\operatorname{eco}\left(C_1 \times C_2\right) = \left(\operatorname{eco} C_1\right) \times \left(\operatorname{eco} C_2\right).$

Therefore, C_1 and C_2 are e-convex $\Leftrightarrow C_1 \times C_2$ is e-convex.

- Given a family of nonempty sets in X, $eco(\cap_{i \in I} C_i) \subset \cap_{i \in I} (eco C_i)$.
- Even convexity is **not** preserved by linear transformations.

Proposition (Goberna et al. 2006)

If $C \subset \mathbb{R}^m$ and $A : \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation, then

 $A(\operatorname{eco} C) \subset \operatorname{eco} AC.$

- If $C_1, C_2 \subset X$, then $\operatorname{eco} C_1 + \operatorname{eco} C_2 \subset \operatorname{eco} (C_1 + C_2)$.
- For any $D \subset X \times Y$, $\operatorname{proj}_X (\operatorname{eco} D) \subset \operatorname{eco} (\operatorname{proj}_X D)$.

Outline

Introduction

- Notation and basic definitions
- On even convexity

2 Evenly convex functions

• Introduction: Motivation

- Basic properties of e-convex functions
- Functional operations preserving even convexity

3 Duality for evenly convex functions

- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions

I Fenchel duality in evenly convex optimization problems

- Introduction
- Main results

Outline

Introduction

- Notation and basic definitions
- On even convexity

2 Evenly convex functions

• Introduction: Motivation

• Basic properties of e-convex functions

• Functional operations preserving even convexity

3 Duality for evenly convex functions

- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions

I Fenchel duality in evenly convex optimization problems

- Introduction
- Main results

• The effective domain of an e-convex function is not necessarily an e-convex set in X.

Example

Consider the function $f: \mathbb{R}^2 \to \overline{\mathbb{R}}$ defined by

$$f(x_1, x_2) = \begin{cases} x_1 \ln \frac{x_1}{x_2} & \text{if } 0 < x_1 \le 1, \ 0 < x_2 \le x_1, \\ 0 & \text{if } x_1 = x_2 = 0, \\ +\infty & \text{otherwise.} \end{cases}$$

Proposition

Let f be an e-convex function. If either

- \bullet f is improper, or
- f is proper and bounded from above on dom f,

then $\operatorname{dom} f$ is an e-convex set.

Proposition

Let f be an e-convex function. If either

- \bullet f is improper, or
- f is proper and bounded from above on dom f,

then $\operatorname{dom} f$ is an e-convex set.

Proposition

Let f be an improper function such that $f(x_0) = -\infty$ for some $x_0 \in X$. If f is e-convex, then $f(x) = -\infty$ for all $x \in \text{dom } f$.

Proposition

Let f be an e-convex function. If either

- \bullet f is improper, or
- f is proper and bounded from above on dom f,

then $\operatorname{dom} f$ is an e-convex set.

Proposition

Let f be an improper function such that $f(x_0) = -\infty$ for some $x_0 \in X$. If f is e-convex, then $f(x) = -\infty$ for all $x \in \text{dom } f$.

Theorem

Let f be an improper function s.t. $f(x_0) = -\infty$ for some $x_0 \in X$. Then,

$$f \text{ is } e\text{-convex } \Leftrightarrow \quad \begin{array}{l} \operatorname{dom} f \text{ is } e\text{-convex and} \\ f(x) = -\infty \quad \forall x \in \operatorname{dom} f. \end{array}$$

Theorem

Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a proper function. Then,

f is e-convex \Leftrightarrow f is convex and lsc on eco(dom f).

Theorem

Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a proper function. Then,

f is e-convex \Leftrightarrow f is convex and lsc on eco(dom f).

Sketch of the Proof:

- (\Rightarrow) It is well-known that f is convex and lsc on rint (dom f).
 - We prove that f is lsc on $eco(dom f) \setminus rint(dom f) \subset rbd(dom f)$.

Theorem

Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a proper function. Then,

 $f \text{ is } e\text{-convex} \Leftrightarrow f \text{ is convex and } \operatorname{lsc} on \operatorname{eco}(\operatorname{dom} f).$

Sketch of the Proof:

- (\Rightarrow) It is well-known that f is convex and lsc on rint (dom f).
 - We prove that f is lsc on $eco(dom f) \setminus rint(dom f) \subset rbd(dom f)$.

 $(\Leftarrow) \ \text{ For any } (\bar{x},\bar{a}) \notin \operatorname{epi} f, \ \exists \ H \ \text{such that } (\bar{x},\bar{a}) \in H \ \text{and} \ H \cap \operatorname{epi} f = \emptyset \ ?$

- $\bar{x} \notin \operatorname{eco} (\operatorname{dom} f)$: Easy!
- $\bar{x} \in eco(dom f) \setminus rint(dom f): (\bar{x}, \bar{a}) \notin cl(epi f).$
- $\bar{x} \in \operatorname{rint} (\operatorname{dom} f)$:

Theorem

Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a proper function. Then,

f is e-convex \Leftrightarrow f is convex and lsc on eco(dom f).

Sketch of the Proof:

- (\Rightarrow) It is well-known that f is convex and lsc on rint (dom f).
 - We prove that f is lsc on $eco(dom f) \setminus rint(dom f) \subset rbd(dom f)$.
- $(\Leftarrow) \ \text{ For any } (\bar{x},\bar{a}) \notin \operatorname{epi} f, \ \exists \ H \ \text{such that } (\bar{x},\bar{a}) \in H \ \text{and} \ H \cap \operatorname{epi} f = \emptyset \ ?$
 - $\bar{x} \notin \operatorname{eco}(\operatorname{dom} f)$: Easy!
 - $\bar{x} \in eco (dom f) \setminus rint (dom f): (\bar{x}, \bar{a}) \notin cl (epi f).$
 - $\bar{x} \in \operatorname{rint} (\operatorname{dom} f)$: We consider the following result:

Theorem (Rockafellar, 1970)

Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a proper convex function and $\overline{x} \in \operatorname{rint} (\operatorname{dom} f)$. Then, $\exists u \in \mathbb{R}^n$ such that $a - f(\overline{x}) \geq \langle u, x - \overline{x} \rangle$ for all $(x, a) \in \operatorname{epi} f$.

On the strict epigraph

• The strict epigraph of an e-convex function is not necessarily an e-convex set.

Example

Consider the function $f : \mathbb{R} \to \overline{\mathbb{R}}$ defined by

$$f(x) = \begin{cases} -\sqrt{1-x^2} & \text{if } -1 \le x \le 1, \\ +\infty & \text{otherwise.} \end{cases}$$

On the strict epigraph

• The strict epigraph of an e-convex function is not necessarily an e-convex set.

Example

Consider the function $f : \mathbb{R} \to \overline{\mathbb{R}}$ defined by

$$f(x) = \begin{cases} -\sqrt{1-x^2} & \text{if } -1 \le x \le 1, \\ +\infty & \text{otherwise.} \end{cases}$$

Proposition

If f is a function such that $epi_s f$ is e-convex, then f is e-convex.

On the strict epigraph

• The strict epigraph of an e-convex function is not necessarily an e-convex set.

Example

Consider the function $f : \mathbb{R} \to \overline{\mathbb{R}}$ defined by

$$f(x) = \begin{cases} -\sqrt{1-x^2} & \text{if } -1 \le x \le 1, \\ +\infty & \text{otherwise.} \end{cases}$$

Proposition

If f is a function such that $epi_s f$ is e-convex, then f is e-convex.

Proposition

Let $\emptyset \neq C \subset X \times \mathbb{R}$ be an e-convex set such that $(0,1) \in 0^+C$. Then, the function $f_C : X \to \overline{\mathbb{R}}$ is e-convex.

 $f_C(x) := \inf \{ a \in \mathbb{R} \mid (x, a) \in C \}.$

Proposition

Let $\emptyset \neq C \subset X \times \mathbb{R}$ be an e-convex set such that $(0,1) \in 0^+C$. Then, the function $f_C : X \to \overline{\mathbb{R}}$ is e-convex.

 $f_C(x) := \inf \{ a \in \mathbb{R} \mid (x, a) \in C \}.$

Example (Klee et al. 2007)

Consider the e-convex set $C := \operatorname{conv}(R \cup \Gamma) \setminus \{p, q\} \subset \mathbb{R}^2 \times \mathbb{R}$.

Proposition

Let $\emptyset \neq C \subset X \times \mathbb{R}$ be an e-convex set such that $(0,1) \in 0^+C$. Then, the function $f_C : X \to \overline{\mathbb{R}}$ is e-convex.

 $f_C(x) := \inf \{ a \in \mathbb{R} \mid (x, a) \in C \}.$

Example (Klee et al. 2007)

Consider the e-convex set $C := \operatorname{conv}(R \cup \Gamma) \setminus \{p, q\} \subset \mathbb{R}^2 \times \mathbb{R}$.

Observe that $(0,1) \notin 0^+ C = \{0_n\}$ (*C* is bounded), but the function $f_C : \mathbb{R}^2 \to \overline{\mathbb{R}}$ is not e-convex.

Outline

Introduction

- Notation and basic definitions
- On even convexity

2 Evenly convex functions

- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity

3 Duality for evenly convex functions

- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions

I Fenchel duality in evenly convex optimization problems

- Introduction
- Main results

Main operations

Proposition

- (i) f is e-convex, $\alpha > 0 \Rightarrow \alpha f$ is e-convex.
- (ii) $\{f_i, i \in I\}$ are e-convex $\Rightarrow \sup_{i \in I} f_i$ is e-convex.

(iii) f, g are proper e-convex $\Rightarrow f + g$ is e-convex.

Main operations

Proposition

(i) f is e-convex, $\alpha > 0 \Rightarrow \alpha f$ is e-convex.

(ii) $\{f_i, i \in I\}$ are e-convex $\Rightarrow \sup_{i \in I} f_i$ is e-convex.

(iii) f, g are proper e-convex $\Rightarrow f + g$ is e-convex.

Sketch of the Proof:

- dom $(f + g) = \operatorname{dom} f \cap \operatorname{dom} g$.
- The characterization theorem for proper e-convex functions is used.
- $\operatorname{eco}(\operatorname{dom} f \cap \operatorname{dom} g) \subset \operatorname{eco}(\operatorname{dom} f) \cap \operatorname{eco}(\operatorname{dom} g).$

Main operations

Proposition

(i) f is e-convex, $\alpha > 0 \Rightarrow \alpha f$ is e-convex.

(*ii*) $\{f_i, i \in I\}$ are e-convex $\Rightarrow \sup_{i \in I} f_i$ is e-convex.

(iii) f, g are proper e-convex $\Rightarrow f + g$ is e-convex.

Sketch of the Proof:

- dom $(f + g) = \operatorname{dom} f \cap \operatorname{dom} g$.
- The characterization theorem for proper e-convex functions is used.
- $eco(dom f \cap dom g) \subset eco(dom f) \cap eco(dom g).$

Proposition

Let f and g be e-convex functions and assume that f is improper. Then,

f + g is e-convex $\Leftrightarrow \operatorname{dom}(f + g)$ is an e-convex set.

Definition

The *e-convex hull* of f, eco f, is the largest e-convex minorant of f.

f is said to be *e-convex at* $x_0 \in X$ if $(eco f)(x_0) = f(x_0)$.

Definition

The *e-convex hull* of f, eco f, is the largest e-convex minorant of f.

f is said to be *e-convex at* $x_0 \in X$ if $(eco f)(x_0) = f(x_0)$.

Proposition

For any $f: X \to \overline{\mathbb{R}}$ and $x \in X$, one has

 $(\operatorname{eco} f)(x) = \inf \{ a \in \mathbb{R} \mid (x, a) \in \operatorname{eco} (\operatorname{epi} f) \}.$

Definition

The *e-convex hull* of f, eco f, is the largest e-convex minorant of f.

f is said to be *e-convex at* $x_0 \in X$ if $(eco f)(x_0) = f(x_0)$.

Proposition

For any $f: X \to \overline{\mathbb{R}}$ and $x \in X$, one has

 $(\operatorname{eco} f)(x) = \inf \{a \in \mathbb{R} \mid (x, a) \in \operatorname{eco} (\operatorname{epi} f) \}.$

- $\operatorname{cl}\operatorname{conv} f \leq \operatorname{eco} f \leq f$.
- dom $(\operatorname{eco} f) \subset \operatorname{eco} (\operatorname{dom} f)$.
- eco(dom f) = eco(dom(eco f)).
- $\operatorname{epi}_s(\operatorname{eco} f) \subset \operatorname{eco}(\operatorname{epi}_s f) \subset \operatorname{eco}(\operatorname{epi} f) \subset \operatorname{epi}(\operatorname{eco} f).$

Definition

The *e-convex hull* of f, eco f, is the largest e-convex minorant of f.

f is said to be *e-convex at* $x_0 \in X$ if $(eco f)(x_0) = f(x_0)$.

Proposition

For any $f: X \to \overline{\mathbb{R}}$ and $x \in X$, one has

 $(\operatorname{eco} f)(x) = \inf \{ a \in \mathbb{R} \mid (x, a) \in \operatorname{eco} (\operatorname{epi} f) \}.$

- $\operatorname{cl}\operatorname{conv} f \leq \operatorname{eco} f \leq f$.
- dom $(\operatorname{eco} f) \subset \operatorname{eco} (\operatorname{dom} f)$.
- eco(dom f) = eco(dom(eco f)).
- $\operatorname{epi}_s(\operatorname{eco} f) \subset \operatorname{eco}(\operatorname{epi}_s f) \subset \operatorname{eco}(\operatorname{epi} f) \subset \operatorname{epi}(\operatorname{eco} f).$
- f is e-convex at $x_0 \in X \Leftrightarrow (x_0, a) \notin eco(epi f)$ for all $a < f(x_0)$.
- f is e-convex \Leftrightarrow f is e-convex at x_0 , for every $x_0 \in X$.

Outline

Introduction

- Notation and basic definitions
- On even convexity

2 Evenly convex functions

- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity

3 Duality for evenly convex functions

- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions

I Fenchel duality in evenly convex optimization problems

- Introduction
- Main results

 $L := \overline{\mathbb{R}} \times \{0, 1\}$ with the lexicographic order \leq_L is a complete chain.

 $(a_1, a_2) \leq_L (b_1, b_2) \iff (a_1 < b_1) \text{ or } (a_1 = b_1, a_2 \leq b_2)$

 $L := \overline{\mathbb{R}} \times \{0, 1\}$ with the lexicographic order \leq_L is a complete chain.

$$(a_1, a_2) \leq_L (b_1, b_2) \iff (a_1 < b_1) \text{ or } (a_1 = b_1, a_2 \leq b_2)$$

Definition

The *e-support function* of $C \subset X$ is $\tau_C : X^* \to L$ defined by

$$\tau_C(x^*) := \sup_L \left\{ \left(\left\langle x^*, x \right\rangle, 1 \right) \mid x \in C \right\}.$$

 $L := \overline{\mathbb{R}} \times \{0, 1\}$ with the lexicographic order \leq_L is a complete chain.

$$(a_1, a_2) \leq_L (b_1, b_2) \iff (a_1 < b_1) \text{ or } (a_1 = b_1, a_2 \leq b_2)$$

Definition

The *e-support function* of $C \subset X$ is $\tau_C : X^* \to L$ defined by

$$\tau_C(x^*) := \sup_L \left\{ \left(\left\langle x^*, x \right\rangle, 1 \right) \mid x \in C \right\}.$$

• For any $C \subset X$ and $(\alpha, \beta) \in L$, one has

 $C \subset \{x \in X \mid (\langle x^*, x \rangle, 1) \leq_L (\alpha, \beta)\} \Leftrightarrow \tau_C(x^*) \leq_L (\alpha, \beta).$

 $L := \overline{\mathbb{R}} \times \{0, 1\}$ with the lexicographic order \leq_L is a complete chain.

$$(a_1, a_2) \leq_L (b_1, b_2) \iff (a_1 < b_1) \text{ or } (a_1 = b_1, a_2 \leq b_2)$$

Definition

The *e-support function* of $C \subset X$ is $\tau_C : X^* \to L$ defined by

$$\tau_C(x^*) := \sup_L \left\{ \left(\left\langle x^*, x \right\rangle, 1 \right) \mid x \in C \right\}.$$

• For any $C \subset X$ and $(\alpha, \beta) \in L$, one has

 $C \subset \left\{ x \in X \mid \left(\left\langle x^*, x \right\rangle, 1 \right) \leq_L \left(\alpha, \beta \right) \right\} \ \Leftrightarrow \ \tau_C(x^*) \leq_L \left(\alpha, \beta \right).$

• Geometric interpretation: τ_C describes all the closed and the open halfspaces containing C.

$$\begin{aligned} \left\{ x \in X \mid \left(\left\langle x^*, x \right\rangle, 1 \right) \leq_L \left(\alpha, 1 \right) \right\} &= \left\{ x \in X \mid \left\langle x^*, x \right\rangle \leq \alpha \right\} \\ \left\{ x \in X \mid \left(\left\langle x^*, x \right\rangle, 1 \right) \leq_L \left(\alpha, 0 \right) \right\} &= \left\{ x \in X \mid \left\langle x^*, x \right\rangle < \alpha \right\} \end{aligned}$$
Relationship between τ_C and σ_C

 $L := \overline{\mathbb{R}} \times \{0, 1\}$ with the lexicographic order \leq_L is a complete chain.

$$(a_1, a_2) \leq_L (b_1, b_2) \iff (a_1 < b_1) \text{ or } (a_1 = b_1, a_2 \leq b_2)$$

Definition

The *e-support function* of $C \subset X$ is $\tau_C : X^* \to L$ defined by

$$\tau_C(x^*) := \sup_L \left\{ \left(\left\langle x^*, x \right\rangle, 1 \right) \mid x \in C \right\}.$$

Proposition

For any $C \subset X$ and $x^* \in X^*$, one has

$$\tau_C(x^*) = \left(\sigma_C(x^*), \eta_C(x^*)\right),$$

where $\eta_C: X^* \to \{0, 1\}$ is the function defined by

$$\eta_C(x^*) := \begin{cases} 0 & \text{if } \langle x^*, x \rangle < \sigma_C(x^*) \ \forall x \in C, \\ 1 & \text{if } \exists x \in C \mid \langle x^*, x \rangle = \sigma_C(x^*). \end{cases}$$

Relationship between C and \mathcal{T}_{τ_C}

• For any $g: X^* \to L$, we define the e-convex set

 $\mathcal{T}_g := \left\{ x \in X \mid (\langle x^*, x \rangle, 1) \leq_L g(x^*), \, \forall x^* \in X^* \right\}.$

Relationship between C and \mathcal{T}_{τ_C}

• For any $g: X^* \to L$, we define the e-convex set

 $\mathcal{T}_{g} := \left\{ x \in X \mid \left(\left\langle x^{*}, x \right\rangle, 1 \right) \leq_{L} g(x^{*}), \ \forall x^{*} \in X^{*} \right\}.$

Theorem

For any $C \subset X$, one has

 $\operatorname{eco} C = \mathcal{T}_{\tau_C}.$

Relationship between C and \mathcal{T}_{τ_C}

• For any $g: X^* \to L$, we define the e-convex set

$$\mathcal{T}_g := \left\{ x \in X \mid \left(\left\langle x^*, x \right\rangle, 1 \right) \leq_L g(x^*), \, \forall x^* \in X^* \right\}.$$

Theorem

For any $C \subset X$, one has

$$eco C = \mathcal{T}_{\tau_C}.$$

Corollary

Given $C, D \subset X$, the following statements hold:

• C is e-convex
$$\Leftrightarrow C = \mathcal{T}_{\tau_C}$$
.

• C is e-convex \Leftrightarrow C is the solution set of the general linear system

 $\left\{ \langle x^*, x \rangle < \sigma_C(x^*), \, \forall x^* \mid \eta_C(x^*) = 0; \, \, \langle x^*, x \rangle \leq \sigma_C(x^*), \, \forall x^* \mid \eta_C(x^*) = 1 \right\}.$

• $\operatorname{eco} C \subset \operatorname{eco} D \Leftrightarrow \tau_C \leq_L \tau_D.$

•
$$\tau_C = \tau_{\operatorname{eco} C}$$
.

Characterization of τ_C

Theorem (Rockafellar, 1970)

The functions which are the support functions of non-empty (closed) convex sets are the closed proper sublinear functions.

• What conditions should satisfy a function $g: X^* \to L$ for being the e-support function of some non-empty set?

Characterization of τ_C

Theorem (Rockafellar, 1970)

The functions which are the support functions of non-empty (closed) convex sets are the closed proper sublinear functions.

• What conditions should satisfy a function $g: X^* \to L$ for being the e-support function of some non-empty set?

Theorem

Let
$$g: \mathbb{R}^n \to L$$
 be a function such that $g = (\sigma, \eta)$. Then,
 g is the e-support function of some non-empty e-convex set C $(g = \tau_C)$
if and only if the following conditions hold:
(i) σ is sublinear, lsc and does not take $-\infty$.
(ii) if $\sigma(x^*) = -\sigma(-x^*)$ then $\eta(x^*) = 1$.
(iii) if $\partial\sigma(x^*) = \emptyset$ then $\eta(x^*) = 0$.
(iv) if there exists $\hat{x} \in \mathbb{R}^n$ such that $\eta(\hat{x}) = 0$ and $\partial\sigma(x^*) \subset \partial\sigma(\hat{x})$, then
 $\eta(x^*) = 0$.

• The mapping $C \mapsto \tau_C$ is a bijection from the family of non-empty e-convex sets in \mathbb{R}^n , to the family of functions $g = (\sigma, \eta) : \mathbb{R}^n \to L$ satisfying conditions (i) to (iv).

The converse bijection is the mapping $g \mapsto \mathcal{T}_g$.

• The mapping $C \mapsto \tau_C$ is a bijection from the family of non-empty e-convex sets in \mathbb{R}^n , to the family of functions $g = (\sigma, \eta) : \mathbb{R}^n \to L$ satisfying conditions (i) to (iv).

The converse bijection is the mapping $g \mapsto \mathcal{T}_g$.

• If $C \subset \mathbb{R}^n$ is e-convex, then

 $C \text{ is closed } \Leftrightarrow \eta_C(x^*) = 1 \quad \forall x^* \in \mathbb{R}^n \mid \partial \sigma_C(x^*) \neq \emptyset.$

• The mapping $C \mapsto \tau_C$ is a bijection from the family of non-empty e-convex sets in \mathbb{R}^n , to the family of functions $g = (\sigma, \eta) : \mathbb{R}^n \to L$ satisfying conditions (i) to (iv).

The converse bijection is the mapping $g \mapsto \mathcal{T}_g$.

• If $C \subset \mathbb{R}^n$ is e-convex, then

C is closed $\Leftrightarrow \eta_C(x^*) = 1 \quad \forall x^* \in \mathbb{R}^n \mid \partial \sigma_C(x^*) \neq \emptyset.$

• If $C \subset \mathbb{R}^n$ is convex, then

$$C \text{ is open } \Leftrightarrow \eta_C(x^*) = 0 \quad \forall x^* \in \mathbb{R}^n \setminus \{0\}.$$

• The mapping $C \mapsto \tau_C$ is a bijection from the family of non-empty e-convex sets in \mathbb{R}^n , to the family of functions $g = (\sigma, \eta) : \mathbb{R}^n \to L$ satisfying conditions (i) to (iv).

The converse bijection is the mapping $g \mapsto \mathcal{T}_g$.

• If $C \subset \mathbb{R}^n$ is e-convex, then

 $C \text{ is closed } \Leftrightarrow \eta_C(x^*) = 1 \quad \forall x^* \in \mathbb{R}^n \mid \partial \sigma_C(x^*) \neq \emptyset.$

• If $C \subset \mathbb{R}^n$ is convex, then

$$C \text{ is open } \Leftrightarrow \eta_C(x^*) = 0 \quad \forall x^* \in \mathbb{R}^n \setminus \{0\}.$$

• If $C \subset \mathbb{R}^n$ is convex, then

C is relatively open $\Leftrightarrow \eta_C(x^*) = 0 \quad \forall x^* \in \mathbb{R}^n \, | \, \sigma_C(x^*) \neq -\sigma_C(-x^*).$

Outline

Introduction

- Notation and basic definitions
- On even convexity

2 Evenly convex functions

- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity

3 Duality for evenly convex functions

- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions

Fenchel duality in evenly convex optimization problems

- Introduction
- Main results

Definition

Let $C \subset X$. A function $a: X \to \overline{\mathbb{R}}$ is called *C*-affine if there exist $y^* \in X^*$ and $\beta \in \mathbb{R}$ such that

$$a(x) = \begin{cases} \langle y^*, x \rangle - \beta & \text{if } x \in C, \\ +\infty & \text{if } x \notin C. \end{cases}$$

• If C is e-convex, then every C-affine function is e-convex.

Definition

Let $C \subset X$. A function $a: X \to \overline{\mathbb{R}}$ is called *C*-affine if there exist $y^* \in X^*$ and $\beta \in \mathbb{R}$ such that

$$a(x) = \begin{cases} \langle y^*, x \rangle - \beta & \text{if } x \in C, \\ +\infty & \text{if } x \notin C. \end{cases}$$

• If C is e-convex, then every C-affine function is e-convex.

For any $f: X \to \overline{\mathbb{R}}$, if $M_f := \operatorname{eco}(\operatorname{dom} f)$, we define the set \mathcal{H}_f as

 $\mathcal{H}_f := \left\{ a : X \to \overline{\mathbb{R}} \mid a \text{ is } M_f \text{-affine, } a \leq f \right\}.$

Definition

Let $C \subset X$. A function $a : X \to \overline{\mathbb{R}}$ is called *C*-affine if there exist $y^* \in X^*$ and $\beta \in \mathbb{R}$ such that

$$a(x) = \begin{cases} \langle y^*, x \rangle - \beta & \text{if } x \in C, \\ +\infty & \text{if } x \notin C. \end{cases}$$

• If C is e-convex, then every C-affine function is e-convex.

For any $f: X \to \overline{\mathbb{R}}$, if $M_f := \operatorname{eco}(\operatorname{dom} f)$, we define the set \mathcal{H}_f as

$$\mathcal{H}_f := \left\{ a : X \to \overline{\mathbb{R}} \mid a \text{ is } M_f \text{-affine, } a \leq f \right\}.$$

Lemma

For any $f: X \to \overline{\mathbb{R}}$, one has

$$\mathcal{H}_f = \mathcal{H}_{\mathrm{eco}\,f}.$$

Proposition

Let $f: X \to \overline{\mathbb{R}}$. The following statements are equivalent:

(*i*)
$$\mathcal{H}_f \neq \emptyset$$
.

(ii) eco f is proper or $f \equiv +\infty$.

(iii) f has a proper e-convex minorant.

Proposition

Let $f: X \to \overline{\mathbb{R}}$. The following statements are equivalent:

- (*i*) $\mathcal{H}_f \neq \emptyset$.
- (ii) eco f is proper or $f \equiv +\infty$.
- (iii) f has a proper e-convex minorant.

Theorem

Let
$$f: X \to \overline{\mathbb{R}}$$
 be a function such that $f \not\equiv -\infty$ and $f \not\equiv +\infty$. Then
 f is proper and e-convex $\Leftrightarrow f = \sup \{a \mid a \in \mathcal{H}_f\}.$

Proposition

Let $f: X \to \overline{\mathbb{R}}$. The following statements are equivalent:

(i)
$$\mathcal{H}_f \neq \emptyset$$
.

(ii) eco f is proper or $f \equiv +\infty$.

(iii) f has a proper e-convex minorant.

Theorem

Let
$$f: X \to \mathbb{R}$$
 be a function such that $f \not\equiv -\infty$ and $f \not\equiv +\infty$. Then
 f is proper and e-convex $\Leftrightarrow f = \sup \{a \mid a \in \mathcal{H}_f\}.$

• For any proper function f,

f is e-convex \Leftrightarrow f is convex and lsc on eco(dom f).

Proposition

Let $f: X \to \overline{\mathbb{R}}$. The following statements are equivalent:

(i)
$$\mathcal{H}_f \neq \emptyset$$
.

(ii) eco f is proper or $f \equiv +\infty$.

(iii) f has a proper e-convex minorant.

Theorem

Let
$$f: X \to \mathbb{R}$$
 be a function such that $f \not\equiv -\infty$ and $f \not\equiv +\infty$. Then
 f is proper and e-convex $\Leftrightarrow f = \sup \{a \mid a \in \mathcal{H}_f\}.$

• For any proper function f,

f is e-convex \Leftrightarrow f is convex and lsc on eco(dom f).

• If f has a proper e-convex minorant, then $eco f = \sup \{a \mid a \in \mathcal{H}_f\}$.

Definition

Let \mathcal{C} be the family of all e-convex sets in X. A function $a: X \to \overline{\mathbb{R}}$ is called \mathcal{C} -affine if there exists $C \in \mathcal{C}$ such that a is C-affine.

Definition

Let \mathcal{C} be the family of all e-convex sets in X. A function $a: X \to \overline{\mathbb{R}}$ is called \mathcal{C} -affine if there exists $C \in \mathcal{C}$ such that a is C-affine.

For any $f: X \to \overline{\mathbb{R}}$, we define the set \mathcal{C}_f as

 $\mathcal{C}_f := \left\{ a : X \to \overline{\mathbb{R}} \mid a \text{ is } \mathcal{C}\text{-affine, } a \leq f \right\}.$

• For any $a \in \mathcal{C}_f$, one has $eco(\operatorname{dom} f) \subset \operatorname{dom} a$.

Definition

Let \mathcal{C} be the family of all e-convex sets in X. A function $a: X \to \overline{\mathbb{R}}$ is called \mathcal{C} -affine if there exists $C \in \mathcal{C}$ such that a is C-affine.

For any $f: X \to \overline{\mathbb{R}}$, we define the set \mathcal{C}_f as

 $\mathcal{C}_f := \left\{ a : X \to \overline{\mathbb{R}} \mid a \text{ is } \mathcal{C}\text{-affine, } a \leq f \right\}.$

• For any $a \in \mathcal{C}_f$, one has $eco(\operatorname{dom} f) \subset \operatorname{dom} a$.

Theorem

Let
$$f: X \to \overline{\mathbb{R}}$$
 be a function such that $f \not\equiv -\infty$ and $f \not\equiv +\infty$. Then

 $f \text{ is proper and } e\text{-convex } \Leftrightarrow f = \sup \{a \mid a \in \mathcal{C}_f\}.$

Definition

A function $a: X \to \overline{\mathbb{R}}$ is called *e-affine* if there exist $y^*, z^* \in X^*$ and $\alpha, \beta \in \mathbb{R}$ such that

$$a(x) = \begin{cases} \langle y^*, x \rangle - \beta & \text{if } \langle z^*, x \rangle < \alpha, \\ +\infty & \text{if } \langle z^*, x \rangle \ge \alpha. \end{cases}$$

Definition

A function $a: X \to \overline{\mathbb{R}}$ is called *e-affine* if there exist $y^*, z^* \in X^*$ and $\alpha, \beta \in \mathbb{R}$ such that

$$a(x) = \begin{cases} \langle y^*, x \rangle - \beta & \text{if } \langle z^*, x \rangle < \alpha, \\ +\infty & \text{if } \langle z^*, x \rangle \ge \alpha. \end{cases}$$

For any $f: X \to \overline{\mathbb{R}}$, we define the set \mathcal{E}_f as

 $\mathcal{E}_f := \left\{ a : X \to \overline{\mathbb{R}} \mid a \text{ is } e\text{-affine, } a \leq f \right\}.$

Definition

A function $a: X \to \overline{\mathbb{R}}$ is called *e-affine* if there exist $y^*, z^* \in X^*$ and $\alpha, \beta \in \mathbb{R}$ such that

$$a(x) = \begin{cases} \langle y^*, x \rangle - \beta & \text{if } \langle z^*, x \rangle < \alpha, \\ +\infty & \text{if } \langle z^*, x \rangle \ge \alpha. \end{cases}$$

For any $f: X \to \overline{\mathbb{R}}$, we define the set \mathcal{E}_f as

 $\mathcal{E}_f := \left\{ a : X \to \overline{\mathbb{R}} \mid a \text{ is } e\text{-affine, } a \leq f \right\}.$

Theorem

Let $f: X \to \overline{\mathbb{R}}$ be a function such that $f \not\equiv -\infty$ and $f \not\equiv +\infty$. Then f is proper and e-convex $\Leftrightarrow f = \sup \{a \mid a \in \mathcal{E}_f\}.$

Definition

A function $a: X \to \overline{\mathbb{R}}$ is called *e-affine* if there exist $y^*, z^* \in X^*$ and $\alpha, \beta \in \mathbb{R}$ such that

$$a(x) = \begin{cases} \langle y^*, x \rangle - \beta & \text{if } \langle z^*, x \rangle < \alpha, \\ +\infty & \text{if } \langle z^*, x \rangle \ge \alpha. \end{cases}$$

For any $f: X \to \overline{\mathbb{R}}$, we define the set \mathcal{E}_f as

 $\mathcal{E}_f := \left\{ a : X \to \overline{\mathbb{R}} \mid a \text{ is } e\text{-affine, } a \leq f \right\}.$

Theorem

Let $f: X \to \overline{\mathbb{R}}$ be a function such that $f \not\equiv -\infty$ and $f \not\equiv +\infty$. Then f is proper and e-convex $\Leftrightarrow f = \sup \{a \mid a \in \mathcal{E}_f\}.$

• $eco(dom f) = \bigcap_{a \in \mathcal{E}_f} dom a$, for any proper e-convex function f.

Outline

Introduction

- Notation and basic definitions
- On even convexity

2 Evenly convex functions

- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity

3 Duality for evenly convex functions

- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions

Fenchel duality in evenly convex optimization problems

- Introduction
- Main results

Generalized convex conjugation

Moreau (1970), Martínez-Legaz (2005)

- X, W arbitrary sets.
- $c: X \times W \to \overline{\mathbb{R}}$ is called the coupling function.
- $c': W \times X \to \overline{\mathbb{R}}$ is given by $c'(w, x) = c(x, w) \quad \forall x \in X, w \in W.$
- Conventions: $+\infty (+\infty) = -\infty + (+\infty) = -\infty$.

Generalized convex conjugation

Moreau (1970), Martínez-Legaz (2005)

- X, W arbitrary sets.
- $c: X \times W \to \overline{\mathbb{R}}$ is called the coupling function.
- $c': W \times X \to \overline{\mathbb{R}}$ is given by $c'(w, x) = c(x, w) \quad \forall x \in X, w \in W.$
- Conventions: $+\infty (+\infty) = -\infty + (+\infty) = -\infty$.
- The *c*-conjugate of $f: X \to \overline{\mathbb{R}}$ is the function $f^c: W \to \overline{\mathbb{R}}$ defined by

$$f^{c}(w) := \sup_{x \in X} \{c(x, w) - f(x)\}.$$

• The c'-conjugate of $g: W \to \overline{\mathbb{R}}$ is the function $g^{c'}: X \to \overline{\mathbb{R}}$ defined by

$$g^{c'}(x) := \sup_{w \in W} \{c'(w, x) - g(w)\}.$$

Generalized convex conjugation

Moreau (1970), Martínez-Legaz (2005)

- X, W arbitrary sets.
- $c: X \times W \to \overline{\mathbb{R}}$ is called the coupling function.
- $c': W \times X \to \overline{\mathbb{R}}$ is given by $c'(w, x) = c(x, w) \quad \forall x \in X, w \in W.$
- Conventions: $+\infty (+\infty) = -\infty + (+\infty) = -\infty$.
- The *c*-conjugate of $f: X \to \overline{\mathbb{R}}$ is the function $f^c: W \to \overline{\mathbb{R}}$ defined by

$$f^{c}(w) := \sup_{x \in X} \{c(x, w) - f(x)\}.$$

• The c'-conjugate of $g: W \to \overline{\mathbb{R}}$ is the function $g^{c'}: X \to \overline{\mathbb{R}}$ defined by

$$g^{c'}(x) := \sup_{w \in W} \{c'(w, x) - g(w)\}.$$

• Fenchel conjugate: $X, W = X^*, c(x, x^*) = \langle x^*, x \rangle, f^c = f^*.$

$$f^*(x^*) = \sup_{x \in X} \left\{ \langle x^*, x \rangle - f(x) \right\}.$$

• Consider X and $W = X^* \times X^* \times \mathbb{R}$, and the coupling function

$$c(x, (y^*, z^*, \alpha)) := \begin{cases} \langle y^*, x \rangle & \text{if } \langle z^*, x \rangle < \alpha, \\ +\infty & \text{if } \langle z^*, x \rangle \ge \alpha. \end{cases}$$

• Consider X and $W = X^* \times X^* \times \mathbb{R}$, and the coupling function

$$c(x, (y^*, z^*, \alpha)) := \begin{cases} \langle y^*, x \rangle & \text{if } \langle z^*, x \rangle < \alpha, \\ +\infty & \text{if } \langle z^*, x \rangle \ge \alpha. \end{cases}$$

• For any $f: X \to \overline{\mathbb{R}}$ and $(y^*, z^*, \alpha) \in W$, one has

$$f^{c}(y^{*}, z^{*}, \alpha) = \begin{cases} f^{*}(y) & \text{if } \langle z^{*}, x \rangle < \alpha \ \forall x \in \text{dom} f, \\ +\infty & \text{otherwise.} \end{cases}$$

• Consider X and $W = X^* \times X^* \times \mathbb{R}$, and the coupling function

$$c(x, (y^*, z^*, \alpha)) := \begin{cases} \langle y^*, x \rangle & \text{if } \langle z^*, x \rangle < \alpha, \\ +\infty & \text{if } \langle z^*, x \rangle \ge \alpha. \end{cases}$$

• For any $f: X \to \overline{\mathbb{R}}$ and $(y^*, z^*, \alpha) \in W$, one has

$$f^{c}(y^{*}, z^{*}, \alpha) = \begin{cases} f^{*}(y) & \text{if } \langle z^{*}, x \rangle < \alpha \ \forall x \in \text{dom} f, \\ +\infty & \text{otherwise.} \end{cases}$$

Proposition

$$f^{cc'} = \begin{cases} f^{**} + \delta_{\text{eco}(\text{dom } f)} & \text{if } \text{dom } f^* \neq \emptyset, \\ -\infty & \text{if } \text{dom } f^* = \emptyset. \end{cases}$$

• Consider X and $W = X^* \times X^* \times \mathbb{R}$, and the coupling function

$$c\left(x,\left(y^{*},z^{*},\alpha\right)\right) := \begin{cases} \langle y^{*},x\rangle & \text{if } \langle z^{*},x\rangle < \alpha, \\ +\infty & \text{if } \langle z^{*},x\rangle \geq \alpha. \end{cases}$$

• For any $f: X \to \overline{\mathbb{R}}$ and $(y^*, z^*, \alpha) \in W$, one has

$$f^{c}(y^{*}, z^{*}, \alpha) = \begin{cases} f^{*}(y) & \text{if } \langle z^{*}, x \rangle < \alpha \ \forall x \in \text{dom} f, \\ +\infty & \text{otherwise.} \end{cases}$$

Proposition

$$f^{cc'} = \begin{cases} f^{**} + \delta_{\text{eco}(\text{dom } f)} & \text{if } \text{dom } f^* \neq \emptyset, \\ -\infty & \text{if } \text{dom } f^* = \emptyset. \end{cases}$$

- c-elementary functions: $x \in X \mapsto c(x, (y^*, z^*, \alpha)) \beta \in \overline{\mathbb{R}}$. c'-elementary functions: $(y^*, z^*, \alpha) \in W \mapsto c'((y^*, z^*, \alpha), x) - \beta \in \overline{\mathbb{R}}$.
- The *c*-elementary functions are the *e*-affine functions.
- Φ_c ($\Phi_{c'}$) : the set of *c*-elementary (*c'*-elementary) functions.

- A function f : X → ℝ is called Φ-convex if it is the pointwise supremum of a subset of Φ.
- The Φ_c -convex functions are the e-convex functions^{*}. A function is called e'-convex if it is $\Phi_{c'}$ -convex.

- A function $f: X \to \overline{\mathbb{R}}$ is called Φ -convex if it is the pointwise supremum of a subset of Φ .
- The Φ_c -convex functions are the e-convex functions^{*}. A function is called e'-convex if it is $\Phi_{c'}$ -convex.

Proposition

Let
$$f: X \to \overline{\mathbb{R}}$$
 and $g: W \to \overline{\mathbb{R}}$. Then
(i) f^c is e' -convex, $g^{c'}$ is e-convex.
(ii) $f^{cc'} \leq f, g^{c'c} \leq g.$
(iii) $f^{cc'c} = f^c, g^{c'cc'} = g^{c'}.$

- A function $f: X \to \overline{\mathbb{R}}$ is called Φ -convex if it is the pointwise supremum of a subset of Φ .
- The Φ_c -convex functions are the e-convex functions^{*}. A function is called e'-convex if it is $\Phi_{c'}$ -convex.

Proposition

Let
$$f: X \to \overline{\mathbb{R}}$$
 and $g: W \to \overline{\mathbb{R}}$. Then,
(i) f^c is e' -convex, $g^{c'}$ is e-convex.
(ii) $f^{cc'} \leq f, g^{c'c} \leq g.$
(iii) $f^{cc'c} = f^c, g^{c'cc'} = g^{c'}.$

Proposition

If $f: X \to \overline{\mathbb{R}}$ has a proper e-convex minorant, then $\operatorname{eco} f = f^{cc'}$. For any $g: W \to \overline{\mathbb{R}}$, $e' \operatorname{co} g = g^{c'c}$.
- A function $f: X \to \overline{\mathbb{R}}$ is called Φ -convex if it is the pointwise supremum of a subset of Φ .
- The Φ_c -convex functions are the e-convex functions^{*}. A function is called e'-convex if it is $\Phi_{c'}$ -convex.

Proposition

Let
$$f: X \to \overline{\mathbb{R}}$$
 and $g: W \to \overline{\mathbb{R}}$. Then,
(i) f^c is e' -convex, $g^{c'}$ is e-convex.
(ii) $f^{cc'} \leq f, g^{c'c} \leq g.$
(iii) $f^{cc'c} = f^c, g^{c'cc'} = g^{c'}.$

Proposition

If $f: X \to \overline{\mathbb{R}}$ has a proper e-convex minorant, then $\operatorname{eco} f = f^{cc'}$. For any $g: W \to \overline{\mathbb{R}}$, $e' \operatorname{co} g = g^{c'c}$. f is e-convex $\Leftrightarrow f = f^{cc'}$. g is e'-convex $\Leftrightarrow g = g^{c'c}$.

Outline

Introduction

- Notation and basic definitions
- On even convexity

2 Evenly convex functions

- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity

3 Duality for evenly convex functions

- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions

4 Fenchel duality in evenly convex optimization problems

- Introduction
- Main results

Generalized Optimization

Consider the primal problem

$$(GP) \quad \inf_{x \in X} F(x) ,$$

where $F: X \to \overline{\mathbb{R}}$ is a proper function, and the pertubation function $\Phi: X \times \Theta \to \overline{\mathbb{R}}$ having the property that, for every $x \in X$,

$$\Phi\left(x,0_\Theta\right)=F(x).$$

The infimum value function $p: \Theta \to \overline{\mathbb{R}}$ is defined by

$$p\left(u\right) := \inf_{x \in X} \Phi\left(x, u\right).$$

The dual problem of (GP) associated to Φ is

$$(GD) \quad \sup_{u^* \in \Theta^*} -\Phi^* \left(0, u^* \right) = \sup_{u^* \in \Theta^*} -p^* \left(u^* \right).$$

Generalized Optimization

Consider the primal problem

$$(GP) \quad \inf_{x \in X} F(x) ,$$

where $F: X \to \overline{\mathbb{R}}$ is a proper function, and the pertubation function $\Phi: X \times \Theta \to \overline{\mathbb{R}}$ having the property that, for every $x \in X$,

$$\Phi\left(x,0_{\Theta}\right) = F(x).$$

The infimum value function $p: \Theta \to \overline{\mathbb{R}}$ is defined by

$$p\left(u\right) := \inf_{x \in X} \Phi\left(x, u\right).$$

The dual problem of (GP) associated to Φ is

$$(GD) \quad \sup_{u^* \in \Theta^*} \ -\Phi^*\left(0, u^*\right) = \sup_{u^* \in \Theta^*} \ -p^*\left(u^*\right).$$

One has weak duality, i.e.,

$$v(GD) = p^{**}(0_{\Theta}) \leq p(0_{\Theta}) = v(GP).$$

Generalized Optimization

Consider the primal problem

$$(GP) \quad \inf_{x \in X} F(x) ,$$

where $F: X \to \overline{\mathbb{R}}$ is a proper function, and the pertubation function $\Phi: X \times \Theta \to \overline{\mathbb{R}}$ having the property that, for every $x \in X$,

$$\Phi\left(x,0_{\Theta}\right) = F(x).$$

The infimum value function $p: \Theta \to \overline{\mathbb{R}}$ is defined by

$$p\left(u\right) := \inf_{x \in X} \Phi\left(x, u\right).$$

The dual problem of (GP) associated to Φ is

$$(GD) \quad \sup_{u^* \in \Theta^*} \ -\Phi^*\left(0, u^*\right) = \sup_{u^* \in \Theta^*} \ -p^*\left(u^*\right).$$

We have strong duality if

v(GD) = v(GP) and the dual problem is solvable when v(GP) is finite.

Convex Optimization

Let us consider the primal problem

$$P) \quad \inf_{x \in A} f(x)$$

where $f: X \to \overline{\mathbb{R}}$ is proper closed convex and $\emptyset \neq A \subset X$ is closed convex, and the perturbation function $\Phi: X \times X \to \overline{\mathbb{R}}$ defined by

$$\Phi(x, u) := \begin{cases} f(x+u) & \text{if } x \in A, \\ +\infty & \text{otherwise.} \end{cases}$$

(D)
$$\sup_{u^* \in X^*} -p^*(u^*)$$

Convex Optimization

Let us consider the primal problem

$$(P) \quad \inf_{x \in A} f(x)$$

where $f: X \to \overline{\mathbb{R}}$ is proper closed convex and $\emptyset \neq A \subset X$ is closed convex, and the perturbation function $\Phi: X \times X \to \overline{\mathbb{R}}$ defined by

$$\Phi(x, u) := \begin{cases} f(x+u) & \text{if } x \in A, \\ +\infty & \text{otherwise.} \end{cases}$$

(D)
$$\sup_{u^* \in X^*} -p^*(u^*) = \sup_{u^* \in X^*} -f^*(u^*) - \delta_A^*(-u^*).$$

Convex Optimization

Let us consider the primal problem

$$(P) \quad \inf_{x \in A} f(x)$$

where $f: X \to \overline{\mathbb{R}}$ is proper closed convex and $\emptyset \neq A \subset X$ is closed convex, and the perturbation function $\Phi: X \times X \to \overline{\mathbb{R}}$ defined by

$$\Phi(x,u) := \begin{cases} f(x+u) & \text{if } x \in A, \\ +\infty & \text{otherwise.} \end{cases}$$

The Fenchel dual problem of (P) is

$$(D) \quad \sup_{u^* \in X^*} -p^* \left(u^* \right) = \sup_{u^* \in X^*} -f^* \left(u^* \right) - \delta^*_A \left(-u^* \right).$$

Theorem (Burachik & Jeyakumar, 2005)

If $A \cap \text{dom } f \neq \emptyset$ and the set $\text{epi } f^* + \text{epi } \delta^*_A$ is weak*-closed, then strong duality holds for (P)-(D), i.e.,

$$\inf_{x \in A} f(x) = \max_{u^* \in X^*} \left\{ -f^*(u^*) - \delta^*_A(-u^*) \right\}.$$

Outline

Introduction

- Notation and basic definitions
- On even convexity

2 Evenly convex functions

- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity

3 Duality for evenly convex functions

- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions

I Fenchel duality in evenly convex optimization problems

- Introduction
- Main results

Definition

A set $D \subset W \times \mathbb{R}$ is called e'-convex if there exists an e'-convex function $k: W \to \overline{\mathbb{R}}$ such that $D = \operatorname{epi} k$. The e'-convex hull of $D \subset W \times \mathbb{R}$, e'co D, is the smallest e'-convex containing D.

• For any $D \subset W \times \mathbb{R}$, one has $e' co D = epi f_D^{c'c}$.

Definition

A set $D \subset W \times \mathbb{R}$ is called **e'-convex** if there exists an e'-convex function $k: W \to \overline{\mathbb{R}}$ such that $D = \operatorname{epi} k$. The **e'-convex hull** of $D \subset W \times \mathbb{R}$, e'co D, is the smallest e'-convex containing D.

• For any $D \subset W \times \mathbb{R}$, one has $e' co D = epi f_D^{c'c}$.

Definition

Given $f, g: X \to \overline{\mathbb{R}}$, a function $a: X \to \overline{\mathbb{R}}$ belongs to $\widetilde{\mathcal{E}}_{f+g}$ if there exist $a_1 \in \mathcal{E}_f$ and $a_2 \in \mathcal{E}_g$ such that, if

$$a_i(\cdot) := \begin{cases} \langle y_i^*, \cdot \rangle - \beta_i & \text{if } \langle z_i^*, \cdot \rangle < \alpha_i, \\ +\infty & \text{otherwise,} \end{cases}$$

for i = 1, 2, then

$$a\left(\cdot\right) = \begin{cases} \langle y_1^* + y_2^*, \cdot \rangle - (\beta_1 + \beta_2) & \text{if } \langle z_1^* + z_2^*, \cdot \rangle < \alpha_1 + \alpha_2, \\ +\infty & \text{otherwise.} \end{cases}$$

•
$$\widetilde{\mathcal{E}}_{f+g} \subset \mathcal{E}_{f+g}$$
.

Evenly Convex Optimization

Let us consider the primal problem

$$(P) \quad \inf_{x \in A} f(x)$$

where $f: X \to \overline{\mathbb{R}}$ is proper e-convex and $\emptyset \neq A \subset X$ is e-convex, and the perturbation function $\Phi: X \times X \to \overline{\mathbb{R}}$ defined by

$$\Phi(x, u) := \begin{cases} f(x+u) & \text{if } x \in A, \\ +\infty & \text{otherwise.} \end{cases}$$

$$(D) \quad \sup_{\substack{u^*, v^* \in X^* \\ \alpha > 0}} -p^c \left(u^*, v^*, \alpha\right)$$

Evenly Convex Optimization

Let us consider the primal problem

$$(P) \quad \inf_{x \in A} f(x)$$

where $f: X \to \overline{\mathbb{R}}$ is proper e-convex and $\emptyset \neq A \subset X$ is e-convex, and the perturbation function $\Phi: X \times X \to \overline{\mathbb{R}}$ defined by

$$\Phi(x, u) := \begin{cases} f(x+u) & \text{if } x \in A, \\ +\infty & \text{otherwise.} \end{cases}$$

$$(D) \quad \sup_{\substack{u^*, v^* \in X^* \\ \alpha > 0}} -p^c \left(u^*, v^*, \alpha\right) = \sup_{\substack{u^*, v^* \in X^* \\ \alpha_1 + \alpha_2 > 0}} -f^c \left(u^*, v^*, \alpha_1\right) - \delta_A^c \left(-u^*, -v^*, \alpha_2\right).$$

Evenly Convex Optimization

Let us consider the primal problem

$$(P) \quad \inf_{x \in A} f(x)$$

where $f: X \to \overline{\mathbb{R}}$ is proper e-convex and $\emptyset \neq A \subset X$ is e-convex, and the perturbation function $\Phi: X \times X \to \overline{\mathbb{R}}$ defined by

$$\Phi(x, u) := \begin{cases} f(x+u) & \text{if } x \in A, \\ +\infty & \text{otherwise.} \end{cases}$$

The Fenchel dual problem of (P) is

$$(D) \quad \sup_{\substack{u^*, v^* \in X^* \\ \alpha > 0}} -p^c \left(u^*, v^*, \alpha\right) = \sup_{\substack{u^*, v^* \in X^* \\ \alpha_1 + \alpha_2 > 0}} -f^c \left(u^*, v^*, \alpha_1\right) - \delta_A^c \left(-u^*, -v^*, \alpha_2\right).$$

Theorem

If
$$A \cap \operatorname{dom} f \neq \emptyset$$
, the set $\operatorname{epi} f^c + \operatorname{epi} \delta^c_A$ is e' -convex and $f + g = \sup \left\{ a \mid a \in \widetilde{\mathcal{E}}_{f+g} \right\}$, then strong duality holds for (P) - (D) .

Main References

R.I. Boţ: *Conjugate Duality in Convex Optimization*, Lecture Notes in Economics and Mathematical Systems 637, Springer-Verlag, Berlin Heidelberg (2010).

I. Ekeland, R. Temam: Convex Analysis and Variational Problems, North-Holland Publishing Company, Amsterdam-Oxford, 1976.

- R.T. Rockafellar: *Conjugate Duality and Optimization*, CBMS-NSF Regional Conference Series in Applied Mathematics 16, 1974.
- W. Fenchel: A remark on convex sets and polarity, Communications du Séminaire Mathématique de l'Université de Lund, Supplement (1952), 82–89.

- R.S. Burachik, V. Jeyakumar: A new geometric condition for Fenchel's duality in infinite dimensional spaces, *Math. Program.* 104 (2005), Ser. B, 229–233.
- M.M.L. Rodríguez, J. Vicente-Pérez: On evenly convex functions, J. Convex Anal. 18 (2011), in press.
- J.E. Martínez-Legaz, J. Vicente-Pérez: The e-support function of an e-convex set and conjugacy for e-convex functions, J. Math. Anal. Appl. 376 (2011), 602–612.

M.D. Fajardo, J. Vicente-Pérez, M.M.L. Rodríguez: Fenchel duality in evenly convex optimization problems. October 2010, *submitted*.