Nuevos resultados sobre e-convexidad

José Vicente Pérez
Dpto. Estadística e Investigación Operativa
Universidad de Alicante

VII Encuentro de Análisis Funcional y Aplicaciones
Jaca, 6-9 de Abril de 2011

Outline

(1) Introduction

- Notation and basic definitions
- On even convexity
(2) Evenly convex functions
- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity
(3) Duality for evenly convex functions
- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions
(4) Fenchel duality in evenly convex optimization problems
- Introduction
- Main results

Outline

(1) Introduction

- Notation and basic definitions
- On even convexity
(2) Evenly convex functions
- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity
(3) Duality for evenly convex functions
- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions

4 Fenchel duality in evenly convex optimization problems

- Introduction
- Main results

Convex Analysis

- X is a separated locally convex real topological vector space, with dual space X^{*} and duality product $\langle\cdot, \cdot\rangle: X^{*} \times X \rightarrow \mathbb{R}$,

$$
\left\langle x^{*}, x\right\rangle:=x^{*}(x)
$$

Convex Analysis

- X is a separated locally convex real topological vector space, with dual space X^{*} and duality product $\langle\cdot, \cdot\rangle: X^{*} \times X \rightarrow \mathbb{R}$,

$$
\left\langle x^{*}, x\right\rangle:=x^{*}(x)
$$

- $K \subset X$ is a cone if $\alpha K \subset K$ for every $\alpha>0$. $C \subset X$ is convex if $(1-\lambda) x+\lambda y \in C$ for all $x, y \in C, 0 \leq \lambda \leq 1$.

Convex Analysis

- X is a separated locally convex real topological vector space, with dual space X^{*} and duality product $\langle\cdot, \cdot\rangle: X^{*} \times X \rightarrow \mathbb{R}$,

$$
\left\langle x^{*}, x\right\rangle:=x^{*}(x)
$$

- $K \subset X$ is a cone if $\alpha K \subset K$ for every $\alpha>0$. $C \subset X$ is convex if $(1-\lambda) x+\lambda y \in C$ for all $x, y \in C, 0 \leq \lambda \leq 1$.
- A face of a convex set C is a convex subset F of C such that $x, y \in C$ and $(x+y) / 2 \in F$ imply that $x, y \in F$.
The extreme points are the faces with a single point.
A face is said to be exposed if it is the set where a certain $x^{*} \in X^{*}$ attains its minimum on C.

Convex Analysis

- X is a separated locally convex real topological vector space, with dual space X^{*} and duality product $\langle\cdot, \cdot\rangle: X^{*} \times X \rightarrow \mathbb{R}$,

$$
\left\langle x^{*}, x\right\rangle:=x^{*}(x)
$$

- $K \subset X$ is a cone if $\alpha K \subset K$ for every $\alpha>0$.
$C \subset X$ is convex if $(1-\lambda) x+\lambda y \in C$ for all $x, y \in C, 0 \leq \lambda \leq 1$.
- A face of a convex set C is a convex subset F of C such that $x, y \in C$ and $(x+y) / 2 \in F$ imply that $x, y \in F$.
The extreme points are the faces with a single point.
A face is said to be exposed if it is the set where a certain $x^{*} \in X^{*}$ attains its minimum on C.
- The recession cone of $C \subset X$ is defined by

$$
0^{+} C:=\{v \in X \mid x+\mu v \in C \quad \forall x \in C \text { and } \forall \mu \geq 0\} .
$$

Convex Analysis

- X is a separated locally convex real topological vector space, with dual space X^{*} and duality product $\langle\cdot, \cdot\rangle: X^{*} \times X \rightarrow \mathbb{R}$,

$$
\left\langle x^{*}, x\right\rangle:=x^{*}(x)
$$

- $K \subset X$ is a cone if $\alpha K \subset K$ for every $\alpha>0$.
$C \subset X$ is convex if $(1-\lambda) x+\lambda y \in C$ for all $x, y \in C, 0 \leq \lambda \leq 1$.
- A face of a convex set C is a convex subset F of C such that $x, y \in C$ and $(x+y) / 2 \in F$ imply that $x, y \in F$.
The extreme points are the faces with a single point.
A face is said to be exposed if it is the set where a certain $x^{*} \in X^{*}$ attains its minimum on C.
- The recession cone of $C \subset X$ is defined by

$$
0^{+} C:=\{v \in X \mid x+\mu v \in C \quad \forall x \in C \text { and } \forall \mu \geq 0\} .
$$

- Notation: conv C, cone C, $\operatorname{rint} C, \operatorname{cl} C\left(\right.$ weak k^{*}-closure if $\left.C \subset X^{*}\right)$.
- The indicator function of $C \subset X, \delta_{C}: X \rightarrow \overline{\mathbb{R}}$, is

$$
\delta_{C}(x):= \begin{cases}0 & \text { if } x \in C \\ +\infty & \text { otherwise } .\end{cases}
$$

- The indicator function of $C \subset X, \delta_{C}: X \rightarrow \overline{\mathbb{R}}$, is

$$
\delta_{C}(x):= \begin{cases}0 & \text { if } x \in C \\ +\infty & \text { otherwise }\end{cases}
$$

- The support function of $C \subset X, \sigma_{C}: X^{*} \rightarrow \overline{\mathbb{R}}$, is

$$
\sigma_{C}\left(x^{*}\right):=\sup _{x \in C}\left\langle x^{*}, x\right\rangle .
$$

- The indicator function of $C \subset X, \delta_{C}: X \rightarrow \overline{\mathbb{R}}$, is

$$
\delta_{C}(x):= \begin{cases}0 & \text { if } x \in C \\ +\infty & \text { otherwise }\end{cases}
$$

- The support function of $C \subset X, \sigma_{C}: X^{*} \rightarrow \overline{\mathbb{R}}$, is

$$
\sigma_{C}\left(x^{*}\right):=\sup _{x \in C}\left\langle x^{*}, x\right\rangle
$$

For a given function $f: X \rightarrow \overline{\mathbb{R}}$ we consider the following notions:

- The effective domain, the sublevel set $(r \in \mathbb{R})$ and the epigraph of f :

$$
\begin{aligned}
\operatorname{dom} f & :=\{x \in X \mid f(x)<+\infty\} \\
L(f, r) & :=\{x \in X \mid f(x) \leq r\} \\
\operatorname{epi} f & :=\{(x, a) \in X \times \mathbb{R} \mid f(x) \leq a\}
\end{aligned}
$$

- The indicator function of $C \subset X, \delta_{C}: X \rightarrow \overline{\mathbb{R}}$, is

$$
\delta_{C}(x):= \begin{cases}0 & \text { if } x \in C \\ +\infty & \text { otherwise }\end{cases}
$$

- The support function of $C \subset X, \sigma_{C}: X^{*} \rightarrow \overline{\mathbb{R}}$, is

$$
\sigma_{C}\left(x^{*}\right):=\sup _{x \in C}\left\langle x^{*}, x\right\rangle
$$

For a given function $f: X \rightarrow \overline{\mathbb{R}}$ we consider the following notions:

- The effective domain, the sublevel set $(r \in \mathbb{R})$ and the epigraph of f :

$$
\begin{aligned}
\operatorname{dom} f & :=\{x \in X \mid f(x)<+\infty\} \\
L(f, r) & :=\{x \in X \mid f(x) \leq r\} \\
\operatorname{epi} f & :=\{(x, a) \in X \times \mathbb{R} \mid f(x) \leq a\}
\end{aligned}
$$

- f is proper if $f>-\infty$ and $\operatorname{dom} f \neq \emptyset$.
- The indicator function of $C \subset X, \delta_{C}: X \rightarrow \overline{\mathbb{R}}$, is

$$
\delta_{C}(x):= \begin{cases}0 & \text { if } x \in C \\ +\infty & \text { otherwise }\end{cases}
$$

- The support function of $C \subset X, \sigma_{C}: X^{*} \rightarrow \overline{\mathbb{R}}$, is

$$
\sigma_{C}\left(x^{*}\right):=\sup _{x \in C}\left\langle x^{*}, x\right\rangle
$$

For a given function $f: X \rightarrow \overline{\mathbb{R}}$ we consider the following notions:

- The effective domain, the sublevel set $(r \in \mathbb{R})$ and the epigraph of f :

$$
\begin{aligned}
\operatorname{dom} f & :=\{x \in X \mid f(x)<+\infty\} \\
L(f, r) & :=\{x \in X \mid f(x) \leq r\} \\
\operatorname{epi} f & :=\{(x, a) \in X \times \mathbb{R} \mid f(x) \leq a\}
\end{aligned}
$$

- f is proper if $f>-\infty$ and $\operatorname{dom} f \neq \emptyset$.
- f is sublinear if epi f is a convex cone.
- The indicator function of $C \subset X, \delta_{C}: X \rightarrow \overline{\mathbb{R}}$, is

$$
\delta_{C}(x):= \begin{cases}0 & \text { if } x \in C \\ +\infty & \text { otherwise } .\end{cases}
$$

- The support function of $C \subset X, \sigma_{C}: X^{*} \rightarrow \overline{\mathbb{R}}$, is

$$
\sigma_{C}\left(x^{*}\right):=\sup _{x \in C}\left\langle x^{*}, x\right\rangle
$$

For a given function $f: X \rightarrow \overline{\mathbb{R}}$ we consider the following notions:

- The effective domain, the sublevel set $(r \in \mathbb{R})$ and the epigraph of f :

$$
\begin{aligned}
\operatorname{dom} f & :=\{x \in X \mid f(x)<+\infty\} \\
L(f, r) & :=\{x \in X \mid f(x) \leq r\} \\
\operatorname{epi} f & :=\{(x, a) \in X \times \mathbb{R} \mid f(x) \leq a\}
\end{aligned}
$$

- f is proper if $f>-\infty$ and $\operatorname{dom} f \neq \emptyset$.
- f is sublinear if epi f is a convex cone.
- The (Fenchel) conjugate of f is the function $f^{*}: X^{*} \rightarrow \overline{\mathbb{R}}$ defined by

$$
f^{*}\left(x^{*}\right):=\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-f(x)\right\}
$$

- f is lsc at $\bar{x} \in X$ if for each $\lambda \in \mathbb{R}$ such that $\lambda<f(\bar{x})$ there exists a neighbourhood of $\bar{x}, V_{\bar{x}}$, such that $\lambda<f(x)$ for all $x \in V_{\bar{x}}$.
- f is lsc at $\bar{x} \in X$ if for each $\lambda \in \mathbb{R}$ such that $\lambda<f(\bar{x})$ there exists a neighbourhood of $\bar{x}, V_{\bar{x}}$, such that $\lambda<f(x)$ for all $x \in V_{\bar{x}}$.
- For $\varepsilon \geq 0$ and $x \in X$ with $f(x) \in \mathbb{R}$ the ε-subdifferential of f at \bar{x} is

$$
\partial_{\varepsilon} f(\bar{x}):=\left\{x^{*} \in X^{*} \mid f(x)-f(\bar{x}) \geq\left\langle x^{*}, x-\bar{x}\right\rangle-\varepsilon, \forall x \in X\right\} ;
$$

otherwise, $\partial_{\varepsilon} f(\bar{x})=\emptyset$.

- f is lsc at $\bar{x} \in X$ if for each $\lambda \in \mathbb{R}$ such that $\lambda<f(\bar{x})$ there exists a neighbourhood of $\bar{x}, V_{\bar{x}}$, such that $\lambda<f(x)$ for all $x \in V_{\bar{x}}$.
- For $\varepsilon \geq 0$ and $x \in X$ with $f(x) \in \mathbb{R}$ the ε-subdifferential of f at \bar{x} is

$$
\partial_{\varepsilon} f(\bar{x}):=\left\{x^{*} \in X^{*} \mid f(x)-f(\bar{x}) \geq\left\langle x^{*}, x-\bar{x}\right\rangle-\varepsilon, \forall x \in X\right\} ;
$$

otherwise, $\partial_{\varepsilon} f(\bar{x})=\emptyset$.
Lower semicontinuous hull of f

- cl $f: X \rightarrow \overline{\mathbb{R}}$ with epi $(\operatorname{cl} f)=\operatorname{cl}(\operatorname{epi} f)$.
- When f is convex:

$$
f^{*} \text { is proper } \Leftrightarrow \operatorname{cl} f \text { is proper } \Rightarrow f^{* *}=\operatorname{cl} f .
$$

- f is lsc at $\bar{x} \in X$ if for each $\lambda \in \mathbb{R}$ such that $\lambda<f(\bar{x})$ there exists a neighbourhood of $\bar{x}, V_{\bar{x}}$, such that $\lambda<f(x)$ for all $x \in V_{\bar{x}}$.
- For $\varepsilon \geq 0$ and $x \in X$ with $f(x) \in \mathbb{R}$ the ε-subdifferential of f at \bar{x} is

$$
\partial_{\varepsilon} f(\bar{x}):=\left\{x^{*} \in X^{*} \mid f(x)-f(\bar{x}) \geq\left\langle x^{*}, x-\bar{x}\right\rangle-\varepsilon, \forall x \in X\right\} ;
$$

otherwise, $\partial_{\varepsilon} f(\bar{x})=\emptyset$.
Lower semicontinuous hull of f

- cl $f: X \rightarrow \overline{\mathbb{R}}$ with $\operatorname{epi}(\operatorname{cl} f)=\operatorname{cl}(\operatorname{epi} f)$.
- When f is convex:

$$
f^{*} \text { is proper } \Leftrightarrow \operatorname{cl} f \text { is proper } \Rightarrow f^{* *}=\operatorname{cl} f .
$$

Infimal convolution of $f, g: X \rightarrow \overline{\mathbb{R}}$

- $f \square g: X \rightarrow \overline{\mathbb{R}}$ with $(f \square g)(x):=\inf _{u \in X}\{f(u)+g(x-u)\}$.
- For f, g proper, convex and lsc with $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$,

Moreau-Rockafellar formula : $(f+g)^{*}=\operatorname{cl}\left(f^{*} \square g^{*}\right)$.

The Hahn-Banach theorem

Theorem

Suppose A and B are disjoint, nonempty, convex sets in a topological (real) vector space X.
(i) If A is open, there exist $v^{*} \in X^{*}$ and $\alpha \in \mathbb{R}$ such that

$$
\left\langle v^{*}, x\right\rangle<\alpha \leq\left\langle v^{*}, y\right\rangle \quad \text { for all } x \in A, y \in B
$$

(ii) If A is compact, B is closed and X is locally convex, then there exist $v^{*} \in X^{*}, \alpha \in \mathbb{R}$ and $\varepsilon>0$ such that

$$
\left\langle v^{*}, x\right\rangle \leq \alpha-\varepsilon<\alpha+\varepsilon \leq\left\langle v^{*}, y\right\rangle \quad \text { for all } x \in A, y \in B
$$

The Hahn-Banach theorem

Theorem

Suppose A and B are disjoint, nonempty, convex sets in a topological (real) vector space X.
(i) If A is open, there exist $v^{*} \in X^{*}$ and $\alpha \in \mathbb{R}$ such that

$$
\left\langle v^{*}, x\right\rangle<\alpha \leq\left\langle v^{*}, y\right\rangle \quad \text { for all } x \in A, y \in B .
$$

(ii) If A is compact, B is closed and X is locally convex, then there exist $v^{*} \in X^{*}, \alpha \in \mathbb{R}$ and $\varepsilon>0$ such that

$$
\left\langle v^{*}, x\right\rangle \leq \alpha-\varepsilon<\alpha+\varepsilon \leq\left\langle v^{*}, y\right\rangle \quad \text { for all } x \in A, y \in B .
$$

- $X^{*} \neq\{0\} \Rightarrow$ there exist open and closed halfspaces.
- X^{*} separates points on X, i.e., $\forall x_{1}, x_{2} \in X, \exists x^{*} \in X^{*}$ such that

$$
\left\langle x^{*}, x_{1}\right\rangle \neq\left\langle x^{*}, x_{2}\right\rangle
$$

- $C \subset X$ is a closed convex set $\Leftrightarrow C$ is the intersection of some family of closed halfspaces.

Outline

(1) Introduction

- Notation and basic definitions
- On even convexity
(2) Evenly convex functions
- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity
(3) Duality for evenly convex functions
- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions
(4) Fenchel duality in evenly convex optimization problems
- Introduction
- Main results

Evenly convex sets

Definition (Fenchel, 1952)

A set $C \subset X$ is said to be evenly convex (or, in brief, e-convex), if it is the intersection of some family, possibly empty, of open halfspaces.

Evenly convex sets

Definition (Fenchel, 1952)

A set $C \subset X$ is said to be evenly convex (or, in brief, e-convex), if it is the intersection of some family, possibly empty, of open halfspaces.

- Equivalently, $C \subset X$ is e-convex if for each $\bar{x} \in X \backslash C$, there exists $x^{*} \in X^{*}$ such that $\left\langle x^{*}, x\right\rangle<\left\langle x^{*}, \bar{x}\right\rangle$ for all $x \in C$.

Evenly convex sets

Definition (Fenchel, 1952)

A set $C \subset X$ is said to be evenly convex (or, in brief, e-convex), if it is the intersection of some family, possibly empty, of open halfspaces.

- Equivalently, $C \subset X$ is e-convex if for each $\bar{x} \in X \backslash C$, there exists $x^{*} \in X^{*}$ such that $\left\langle x^{*}, x\right\rangle<\left\langle x^{*}, \bar{x}\right\rangle$ for all $x \in C$.
- The intersection of e-convex sets is e-convex.

Evenly convex sets

Definition (Fenchel, 1952)

A set $C \subset X$ is said to be evenly convex (or, in brief, e-convex), if it is the intersection of some family, possibly empty, of open halfspaces.

- Equivalently, $C \subset X$ is e-convex if for each $\bar{x} \in X \backslash C$, there exists $x^{*} \in X^{*}$ such that $\left\langle x^{*}, x\right\rangle<\left\langle x^{*}, \bar{x}\right\rangle$ for all $x \in C$.
- The intersection of e-convex sets is e-convex.
- As a consequence of the Hahn-Banach Theorem, every open or closed convex set is e-convex.

Evenly convex sets

Definition (Fenchel, 1952)

A set $C \subset X$ is said to be evenly convex (or, in brief, e-convex), if it is the intersection of some family, possibly empty, of open halfspaces.

- Equivalently, $C \subset X$ is e-convex if for each $\bar{x} \in X \backslash C$, there exists $x^{*} \in X^{*}$ such that $\left\langle x^{*}, x\right\rangle<\left\langle x^{*}, \bar{x}\right\rangle$ for all $x \in C$.
- The intersection of e-convex sets is e-convex.
- As a consequence of the Hahn-Banach Theorem, every open or closed convex set is e-convex.

$$
\left\{\left\langle a_{t}, x\right\rangle \geq b_{t}, t \in T\right\}
$$

\downarrow
closed convex set

Evenly convex sets

Definition (Fenchel, 1952)

A set $C \subset X$ is said to be evenly convex (or, in brief, e-convex), if it is the intersection of some family, possibly empty, of open halfspaces.

- Equivalently, $C \subset X$ is e-convex if for each $\bar{x} \in X \backslash C$, there exists $x^{*} \in X^{*}$ such that $\left\langle x^{*}, x\right\rangle<\left\langle x^{*}, \bar{x}\right\rangle$ for all $x \in C$.
- The intersection of e-convex sets is e-convex.
- As a consequence of the Hahn-Banach Theorem, every open or closed convex set is e-convex.

$$
\left\{\left\langle a_{t}, x\right\rangle \geq b_{t}, t \in T\right\} \quad \Rightarrow \quad\left\{\left\langle a_{t}, x\right\rangle>b_{t}, t \in S ;\left\langle a_{t}, x\right\rangle \geq b_{t}, t \in W\right\}
$$

$$
\Uparrow
$$

closed convex set

Evenly convex sets

Definition (Fenchel, 1952)

A set $C \subset X$ is said to be evenly convex (or, in brief, e-convex), if it is the intersection of some family, possibly empty, of open halfspaces.

- Equivalently, $C \subset X$ is e-convex if for each $\bar{x} \in X \backslash C$, there exists $x^{*} \in X^{*}$ such that $\left\langle x^{*}, x\right\rangle<\left\langle x^{*}, \bar{x}\right\rangle$ for all $x \in C$.
- The intersection of e-convex sets is e-convex.
- As a consequence of the Hahn-Banach Theorem, every open or closed convex set is e-convex.

$$
\left\{\left\langle a_{t}, x\right\rangle \geq b_{t}, t \in T\right\} \quad \Rightarrow \quad\left\{\left\langle a_{t}, x\right\rangle>b_{t}, t \in S ;\left\langle a_{t}, x\right\rangle \geq b_{t}, t \in W\right\}
$$

Evenly convex sets

Definition (Fenchel, 1952)

A set $C \subset X$ is said to be evenly convex (or, in brief, e-convex), if it is the intersection of some family, possibly empty, of open halfspaces.

- Equivalently, $C \subset X$ is e-convex if for each $\bar{x} \in X \backslash C$, there exists $x^{*} \in X^{*}$ such that $\left\langle x^{*}, x\right\rangle<\left\langle x^{*}, \bar{x}\right\rangle$ for all $x \in C$.
- The intersection of e-convex sets is e-convex.
- As a consequence of the Hahn-Banach Theorem, every open or closed convex set is e-convex.

$$
\left\{\left\langle a_{t}, x\right\rangle \geq b_{t}, t \in T\right\} \quad \Rightarrow \quad\left\{\left\langle a_{t}, x\right\rangle>b_{t}, t \in S ;\left\langle a_{t}, x\right\rangle \geq b_{t}, t \in W\right\}
$$

Some References

R．V．Klee（1968）：Maximal separation theorems for convex sets，Trans．Amer． Math．Soc．134，133－147．

J．E．Martínez－Legaz（1981）：Un concepto de conjugación，aplicación a las funciones cuasiconvexas，PhD thesis，Universidad de Barcelona．

U．Passy，E．Z．Prisman（1984）：Conjugacy in quasiconvex programming，Math． Program．30，121－146．

宣
A．Daniilidis，J．E．Martínez－Legaz（2002）：Characterizations of evenly convex sets and evenly quasiconvex functions，J．Math．Anal．Appl．273，58－66．

M．A．Goberna，V．Jornet，M．M．L．Rodríguez（2003）：On linear systems containing strict inequalities，Linear Algebra Appl．360，151－171．

M．A．Goberna，M．M．L．Rodríguez（2006）：Analyzing linear systems containing strict inequalities via evenly convex hulls，European J．Oper．Res．169，1079－1095．

M．A．Goberna，V．Jeyakumar，N．Dihn（2006）：Dual characterizations of set containments with strict convex inequalities，J．Global Optim．34，33－54．
显
V．Klee，E．Maluta，C．Zanco（2007）：Basic properties of evenly convex sets，J． Convex Anal．14，137－148．

Main Properties

Proposition (Goberna et al. 2003)

Given $\emptyset \neq C \subsetneq \mathbb{R}^{n}$, the following conditions are equivalent to each other:
(i) C is e-convex.
(ii) C is a convex set and for each $x \notin C$ there exists a hyperplane H such that $x \in H$ and $H \cap C=\emptyset$.
(iii) C is the result of eliminating from a closed convex set the union of a certain family of its exposed faces.
(iv) C is a convex set and for any convex set $K \subset(\mathrm{cl} C) \backslash C$, there exists a hyperplane containing K and not intersecting C.

Main Properties

Proposition (Goberna et al. 2003)

Given $\emptyset \neq C \subsetneq \mathbb{R}^{n}$, the following conditions are equivalent to each other:
(i) C is e-convex.
(ii) C is a convex set and for each $x \notin C$ there exists a hyperplane H such that $x \in H$ and $H \cap C=\emptyset$.
(iii) C is the result of eliminating from a closed convex set the union of a certain family of its exposed faces.
(iv) C is a convex set and for any convex set $K \subset(\mathrm{cl} C) \backslash C$, there exists a hyperplane containing K and not intersecting C.

If $C \subset X$ is e-convex, then:

- $x \in C, y \in \operatorname{cl} C \Rightarrow] x, y[\subset C$.
- $0^{+} C=0^{+}(\mathrm{cl} C)$.

Main Properties

Proposition (Goberna et al. 2003)

Given $\emptyset \neq C \subsetneq \mathbb{R}^{n}$, the following conditions are equivalent to each other:
(i) C is e-convex.
(ii) C is a convex set and for each $x \notin C$ there exists a hyperplane H such that $x \in H$ and $H \cap C=\emptyset$.
(iii) C is the result of eliminating from a closed convex set the union of a certain family of its exposed faces.
(iv) C is a convex set and for any convex set $K \subset(\mathrm{cl} C) \backslash C$, there exists a hyperplane containing K and not intersecting C.

If $C \subset X$ is e-convex, then:

- $x \in C, y \in \operatorname{cl} C \Rightarrow] x, y[\subset C$.
- $0^{+} C=0^{+}(\mathrm{cl} C)$.

The e-convex hull of $C \subset X$, eco C, is the intersection of all the open halfspaces containing C, i.e., the smallest e-convex set that contains C.

Main Properties

- $\operatorname{conv} C \subset \operatorname{eco} C \subset \operatorname{cl} \operatorname{conv} C$.

Main Properties

- $\operatorname{conv} C \subset \operatorname{eco} C \subset \operatorname{cl}$ conv C.
- $\bar{x} \notin \operatorname{eco} C \Leftrightarrow \exists x^{*} \in X^{*}$ such that $\left\langle x^{*}, x\right\rangle<\left\langle x^{*}, \bar{x}\right\rangle$ for all $x \in C$. In particular, $0 \notin \operatorname{eco} C \Leftrightarrow\{\langle z, x\rangle<0, x \in C\}$ is consistent.

Main Properties

- $\operatorname{conv} C \subset \operatorname{eco} C \subset \operatorname{cl}$ conv C.
- $\bar{x} \notin \operatorname{eco} C \Leftrightarrow \exists x^{*} \in X^{*}$ such that $\left\langle x^{*}, x\right\rangle<\left\langle x^{*}, \bar{x}\right\rangle$ for all $x \in C$. In particular, $0 \notin \operatorname{eco} C \Leftrightarrow\{\langle z, x\rangle<0, x \in C\}$ is consistent.
- If $C_{1} \subset X$ and $C_{2} \subset Y$, then

$$
\operatorname{eco}\left(C_{1} \times C_{2}\right)=\left(\operatorname{eco} C_{1}\right) \times\left(\operatorname{eco} C_{2}\right) .
$$

Therefore, C_{1} and C_{2} are e-convex $\Leftrightarrow C_{1} \times C_{2}$ is e-convex.

Main Properties

- $\operatorname{conv} C \subset \operatorname{eco} C \subset \operatorname{cl}$ conv C.
- $\bar{x} \notin \operatorname{eco} C \Leftrightarrow \exists x^{*} \in X^{*}$ such that $\left\langle x^{*}, x\right\rangle<\left\langle x^{*}, \bar{x}\right\rangle$ for all $x \in C$.

In particular, $0 \notin \operatorname{eco} C \Leftrightarrow\{\langle z, x\rangle<0, x \in C\}$ is consistent.

- If $C_{1} \subset X$ and $C_{2} \subset Y$, then

$$
\operatorname{eco}\left(C_{1} \times C_{2}\right)=\left(\operatorname{eco} C_{1}\right) \times\left(\operatorname{eco} C_{2}\right) .
$$

Therefore, C_{1} and C_{2} are e-convex $\Leftrightarrow C_{1} \times C_{2}$ is e-convex.

- Given a family of nonempty sets in X, eco $\left(\cap_{i \in I} C_{i}\right) \subset \cap_{i \in I}\left(\right.$ eco $\left.C_{i}\right)$.

Main Properties

- $\operatorname{conv} C \subset \operatorname{eco} C \subset \operatorname{cl}$ conv C.
- $\bar{x} \notin \operatorname{eco} C \Leftrightarrow \exists x^{*} \in X^{*}$ such that $\left\langle x^{*}, x\right\rangle<\left\langle x^{*}, \bar{x}\right\rangle$ for all $x \in C$.

In particular, $0 \notin \operatorname{eco} C \Leftrightarrow\{\langle z, x\rangle<0, x \in C\}$ is consistent.

- If $C_{1} \subset X$ and $C_{2} \subset Y$, then

$$
\operatorname{eco}\left(C_{1} \times C_{2}\right)=\left(\operatorname{eco} C_{1}\right) \times\left(\operatorname{eco} C_{2}\right) .
$$

Therefore, C_{1} and C_{2} are e-convex $\Leftrightarrow C_{1} \times C_{2}$ is e-convex.

- Given a family of nonempty sets in X, eco $\left(\cap_{i \in I} C_{i}\right) \subset \cap_{i \in I}\left(\operatorname{eco} C_{i}\right)$.
- Even convexity is not preserved by linear transformations.

Main Properties

- conv $C \subset \operatorname{eco} C \subset \mathrm{cl}$ conv C.
- $\bar{x} \notin \operatorname{eco} C \Leftrightarrow \exists x^{*} \in X^{*}$ such that $\left\langle x^{*}, x\right\rangle<\left\langle x^{*}, \bar{x}\right\rangle$ for all $x \in C$.

In particular, $0 \notin \mathrm{eco} C \Leftrightarrow\{\langle z, x\rangle<0, x \in C\}$ is consistent.

- If $C_{1} \subset X$ and $C_{2} \subset Y$, then

$$
\operatorname{eco}\left(C_{1} \times C_{2}\right)=\left(\operatorname{eco} C_{1}\right) \times\left(\operatorname{eco} C_{2}\right)
$$

Therefore, C_{1} and C_{2} are e-convex $\Leftrightarrow C_{1} \times C_{2}$ is e-convex.

- Given a family of nonempty sets in X, eco $\left(\cap_{i \in I} C_{i}\right) \subset \cap_{i \in I}\left(\operatorname{eco} C_{i}\right)$.
- Even convexity is not preserved by linear transformations.

Proposition (Goberna et al. 2006)

If $C \subset \mathbb{R}^{m}$ and $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a linear transformation, then

$$
A(\operatorname{eco} C) \subset \operatorname{eco} A C
$$

Main Properties

- conv $C \subset$ eco $C \subset \operatorname{cl}$ conv C.
- $\bar{x} \notin \operatorname{eco} C \Leftrightarrow \exists x^{*} \in X^{*}$ such that $\left\langle x^{*}, x\right\rangle<\left\langle x^{*}, \bar{x}\right\rangle$ for all $x \in C$.

In particular, $0 \notin \mathrm{eco} C \Leftrightarrow\{\langle z, x\rangle<0, x \in C\}$ is consistent.

- If $C_{1} \subset X$ and $C_{2} \subset Y$, then

$$
\operatorname{eco}\left(C_{1} \times C_{2}\right)=\left(\operatorname{eco} C_{1}\right) \times\left(\operatorname{eco} C_{2}\right)
$$

Therefore, C_{1} and C_{2} are e-convex $\Leftrightarrow C_{1} \times C_{2}$ is e-convex.

- Given a family of nonempty sets in X, eco $\left(\cap_{i \in I} C_{i}\right) \subset \cap_{i \in I}\left(\operatorname{eco} C_{i}\right)$.
- Even convexity is not preserved by linear transformations.

Proposition (Goberna et al. 2006)

If $C \subset \mathbb{R}^{m}$ and $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a linear transformation, then

$$
A(\operatorname{eco} C) \subset \operatorname{eco} A C
$$

- If $C_{1}, C_{2} \subset X$, then eco $C_{1}+\operatorname{eco} C_{2} \subset \operatorname{eco}\left(C_{1}+C_{2}\right)$.
- For any $D \subset X \times Y, \operatorname{proj}_{X}($ eco $D) \subset \operatorname{eco}\left(\operatorname{proj}_{X} D\right)$.

Outline

(1) Introduction

- Notation and basic definitions
- On even convexity
(2) Evenly convex functions
- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity
(3) Duality for evenly convex functions
- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions

4 Fenchel duality in evenly convex optimization problems

- Introduction
- Main results

Definition

A function $f: X \rightarrow \overline{\mathbb{R}}$ is said to be evenly convex (or, in brief, e-convex), if its epigraph, epi f, is an e-convex set in $X \times \mathbb{R}$.

Definition

A function $f: X \rightarrow \overline{\mathbb{R}}$ is said to be evenly convex (or, in brief, e-convex), if its epigraph, epi f, is an e-convex set in $X \times \mathbb{R}$.

U
lsc convex functions
epi f closed convex

quasiconvex functions I
 $L(f, r)$ convex $\forall r \in \mathbb{R}$

\neq

Definition

A function $f: X \rightarrow \overline{\mathbb{R}}$ is said to be evenly convex (or, in brief, e-convex), if its epigraph, epi f, is an e-convex set in $X \times \mathbb{R}$.

U

> | evenly quasiconvex functions |
| :--- |
| $L(f, r)$ evenly convex $\forall r \in \mathbb{R}$ |

u

lsc quasiconvex functions
$L(f, r)$ closed convex $\forall r \in \mathbb{R}$

lsc quasiconvex functions § $L(f, r)$ closed convex $\forall r \in \mathbb{R}$

Definition

A function $f: X \rightarrow \overline{\mathbb{R}}$ is said to be evenly convex (or, in brief, e-convex), if its epigraph, epi f, is an e-convex set in $X \times \mathbb{R}$.

UH

U
lsc convex functions
epi f closed convex

quasiconvex functions §
 $L(f, r)$ convex $\forall r \in \mathbb{R}$

U

> | evenly quasiconvex functions |
| :--- |
| $L(f, r)$ evenly convex $\forall r \in \mathbb{R}$ |

U
lsc quasiconvex functions § $L(f, r)$ closed convex $\forall r \in \mathbb{R}$

Outline

(1) Introduction

- Notation and basic definitions
- On even convexity
(2) Evenly convex functions
- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity
(3) Duality for evenly convex functions
- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions
(5) Fenchel duality in evenly convex optimization problems
- Introduction
- Main results

On the effective domain

- The effective domain of an e-convex function is not necessarily an e-convex set in X.

Example

Consider the function $f: \mathbb{R}^{2} \rightarrow \overline{\mathbb{R}}$ defined by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}x_{1} \ln \frac{x_{1}}{x_{2}} & \text { if } 0<x_{1} \leq 1,0<x_{2} \leq x_{1} \\ 0 & \text { if } x_{1}=x_{2}=0 \\ +\infty & \text { otherwise }\end{cases}
$$

On the effective domain

Proposition

Let f be an e-convex function. If either

- f is improper, or
- f is proper and bounded from above on $\operatorname{dom} f$, then $\operatorname{dom} f$ is an e-convex set.

On the effective domain

Proposition

Let f be an e-convex function. If either

- f is improper, or
- f is proper and bounded from above on $\operatorname{dom} f$,
then $\operatorname{dom} f$ is an e-convex set.

Proposition

Let f be an improper function such that $f\left(x_{0}\right)=-\infty$ for some $x_{0} \in X$. If f is e-convex, then $f(x)=-\infty$ for all $x \in \operatorname{dom} f$.

On the effective domain

Proposition

Let f be an e-convex function. If either

- f is improper, or
- f is proper and bounded from above on $\operatorname{dom} f$,
then $\operatorname{dom} f$ is an e-convex set.

Proposition

Let f be an improper function such that $f\left(x_{0}\right)=-\infty$ for some $x_{0} \in X$. If f is e-convex, then $f(x)=-\infty$ for all $x \in \operatorname{dom} f$.

Theorem

Let f be an improper function s.t. $f\left(x_{0}\right)=-\infty$ for some $x_{0} \in X$. Then,

$$
f \text { is e-convex } \Leftrightarrow \quad \operatorname{dom} f \text { is e-convex and } .
$$

Characterization

Theorem

Let $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be a proper function. Then,

$$
f \text { is e-convex } \Leftrightarrow f \text { is convex and lsc on eco }(\operatorname{dom} f) .
$$

Characterization

Theorem

Let $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be a proper function. Then,

$$
f \text { is e-convex } \Leftrightarrow f \text { is convex and lsc on eco }(\operatorname{dom} f) .
$$

Sketch of the Proof:
(\Rightarrow) It is well-known that f is convex and lsc on $\operatorname{rint}(\operatorname{dom} f)$.

- We prove that f is lsc on eco $(\operatorname{dom} f) \backslash \operatorname{rint}(\operatorname{dom} f) \subset \operatorname{rbd}(\operatorname{dom} f)$.

Characterization

Theorem

Let $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be a proper function. Then,

$$
f \text { is e-convex } \Leftrightarrow f \text { is convex and lsc on eco }(\operatorname{dom} f) .
$$

Sketch of the Proof:
(\Rightarrow) It is well-known that f is convex and lsc on $\operatorname{rint}(\operatorname{dom} f)$.

- We prove that f is lsc on eco $(\operatorname{dom} f) \backslash \operatorname{rint}(\operatorname{dom} f) \subset \operatorname{rbd}(\operatorname{dom} f)$.
(\Leftarrow) For any $(\bar{x}, \bar{a}) \notin$ epi $f, \exists H$ such that $(\bar{x}, \bar{a}) \in H$ and $H \cap$ epi $f=\emptyset$?
- $\bar{x} \notin \operatorname{eco}(\operatorname{dom} f)$: Easy!
- $\bar{x} \in \operatorname{eco}(\operatorname{dom} f) \backslash \operatorname{rint}(\operatorname{dom} f):(\bar{x}, \bar{a}) \notin \operatorname{cl}(\operatorname{epi} f)$.
- $\bar{x} \in \operatorname{rint}(\operatorname{dom} f)$:

Characterization

Theorem

Let $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be a proper function. Then,

$$
f \text { is e-convex } \Leftrightarrow f \text { is convex and lsc on eco }(\operatorname{dom} f) .
$$

Sketch of the Proof:
(\Rightarrow) It is well-known that f is convex and lsc on $\operatorname{rint}(\operatorname{dom} f)$.

- We prove that f is lsc on eco $(\operatorname{dom} f) \backslash \operatorname{rint}(\operatorname{dom} f) \subset \operatorname{rbd}(\operatorname{dom} f)$.
(\Leftarrow) For any $(\bar{x}, \bar{a}) \notin$ epi $f, \exists H$ such that $(\bar{x}, \bar{a}) \in H$ and $H \cap$ epi $f=\emptyset$?
- $\bar{x} \notin \operatorname{eco}(\operatorname{dom} f)$: Easy!
- $\bar{x} \in \operatorname{eco}(\operatorname{dom} f) \backslash \operatorname{rint}(\operatorname{dom} f):(\bar{x}, \bar{a}) \notin \operatorname{cl}(\operatorname{epi} f)$.
- $\bar{x} \in \operatorname{rint}(\operatorname{dom} f):$ We consider the following result:

Theorem (Rockafellar, 1970)

Let $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be a proper convex function and $\bar{x} \in \operatorname{rint}(\operatorname{dom} f)$. Then, $\exists u \in \mathbb{R}^{n}$ such that $a-f(\bar{x}) \geq\langle u, x-\bar{x}\rangle$ for all $(x, a) \in \operatorname{epi} f$.

On the strict epigraph

- The strict epigraph of an e-convex function is not necessarily an e-convex set.

Example

Consider the function $f: \mathbb{R} \rightarrow \overline{\mathbb{R}}$ defined by

$$
f(x)= \begin{cases}-\sqrt{1-x^{2}} & \text { if }-1 \leq x \leq 1 \\ +\infty & \text { otherwise }\end{cases}
$$

On the strict epigraph

- The strict epigraph of an e-convex function is not necessarily an e-convex set.

Example

Consider the function $f: \mathbb{R} \rightarrow \overline{\mathbb{R}}$ defined by

$$
f(x)= \begin{cases}-\sqrt{1-x^{2}} & \text { if }-1 \leq x \leq 1 \\ +\infty & \text { otherwise }\end{cases}
$$

Proposition

If f is a function such that epis f is e-convex, then f is e-convex.

On the strict epigraph

- The strict epigraph of an e-convex function is not necessarily an e-convex set.

Example

Consider the function $f: \mathbb{R} \rightarrow \overline{\mathbb{R}}$ defined by

$$
f(x)= \begin{cases}-\sqrt{1-x^{2}} & \text { if }-1 \leq x \leq 1, \\ +\infty & \text { otherwise }\end{cases}
$$

Proposition

If f is a function such that epis f is e-convex, then f is e-convex.

Proposition

Let $\emptyset \neq C \subset X \times \mathbb{R}$ be an e-convex set such that $(0,1) \in 0^{+} C$. Then, the function $f_{C}: X \rightarrow \overline{\mathbb{R}}$ is e-convex.

$$
f_{C}(x):=\inf \{a \in \mathbb{R} \mid(x, a) \in C\}
$$

Proposition

Let $\emptyset \neq C \subset X \times \mathbb{R}$ be an e-convex set such that $(0,1) \in 0^{+} C$. Then, the function $f_{C}: X \rightarrow \overline{\mathbb{R}}$ is e-convex.

$$
f_{C}(x):=\inf \{a \in \mathbb{R} \mid(x, a) \in C\} .
$$

Example (Klee et al. 2007)

Consider the e-convex set $C:=\operatorname{conv}(R \cup \Gamma) \backslash\{p, q\} \subset \mathbb{R}^{2} \times \mathbb{R}$.

$$
\operatorname{proj}_{R^{2}} C=G
$$

Proposition

Let $\emptyset \neq C \subset X \times \mathbb{R}$ be an e-convex set such that $(0,1) \in 0^{+} C$. Then, the function $f_{C}: X \rightarrow \overline{\mathbb{R}}$ is e-convex.

$$
f_{C}(x):=\inf \{a \in \mathbb{R} \mid(x, a) \in C\} .
$$

Example (Klee et al. 2007)

Consider the e-convex set $C:=\operatorname{conv}(R \cup \Gamma) \backslash\{p, q\} \subset \mathbb{R}^{2} \times \mathbb{R}$.

Observe that $(0,1) \notin 0^{+} C=\left\{0_{n}\right\}$ (C is bounded), but the function $f_{C}: \mathbb{R}^{2} \rightarrow \overline{\mathbb{R}}$ is not e-convex.

Outline

(1) Introduction

- Notation and basic definitions
- On even convexity
(2) Evenly convex functions
- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity
(3) Duality for evenly convex functions
- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions

4 Fenchel duality in evenly convex optimization problems

- Introduction
- Main results

Main operations

Proposition

(i) f is e-convex, $\alpha>0 \Rightarrow \alpha f$ is e-convex.
(ii) $\left\{f_{i}, i \in I\right\}$ are e-convex $\Rightarrow \sup _{i \in I} f_{i}$ is e-convex.
(iii) f, g are proper e-convex $\Rightarrow f+g$ is e-convex.

Main operations

Proposition

(i) f is e-convex, $\alpha>0 \Rightarrow \alpha f$ is e-convex.
(ii) $\left\{f_{i}, i \in I\right\}$ are e-convex $\Rightarrow \sup _{i \in I} f_{i}$ is e-convex.
(iii) f, g are proper e-convex $\Rightarrow f+g$ is e-convex.

Sketch of the Proof:

- $\operatorname{dom}(f+g)=\operatorname{dom} f \cap \operatorname{dom} g$.
- The characterization theorem for proper e-convex functions is used.
- eco $(\operatorname{dom} f \cap \operatorname{dom} g) \subset \operatorname{eco}(\operatorname{dom} f) \cap \operatorname{eco}(\operatorname{dom} g)$.

Main operations

Proposition

(i) f is e-convex, $\alpha>0 \Rightarrow \alpha f$ is e-convex.
(ii) $\left\{f_{i}, i \in I\right\}$ are e-convex $\Rightarrow \sup _{i \in I} f_{i}$ is e-convex.
(iii) f, g are proper e-convex $\Rightarrow f+g$ is e-convex.

Sketch of the Proof:

- $\operatorname{dom}(f+g)=\operatorname{dom} f \cap \operatorname{dom} g$.
- The characterization theorem for proper e-convex functions is used.
- eco $(\operatorname{dom} f \cap \operatorname{dom} g) \subset \operatorname{eco}(\operatorname{dom} f) \cap \operatorname{eco}(\operatorname{dom} g)$.

Proposition

Let f and g be e-convex functions and assume that f is improper. Then,

$$
f+g \text { is } e \text {-convex } \Leftrightarrow \operatorname{dom}(f+g) \text { is an e-convex set. }
$$

E-convex hull function

Definition

The e-convex hull of f, eco f, is the largest e-convex minorant of f. f is said to be e-convex at $x_{0} \in X$ if $(\operatorname{eco} f)\left(x_{0}\right)=f\left(x_{0}\right)$.

E-convex hull function

Definition

The e-convex hull of f, eco f, is the largest e-convex minorant of f. f is said to be e-convex at $x_{0} \in X$ if $(\operatorname{eco} f)\left(x_{0}\right)=f\left(x_{0}\right)$.

Proposition

For any $f: X \rightarrow \overline{\mathbb{R}}$ and $x \in X$, one has

$$
(\operatorname{eco} f)(x)=\inf \{a \in \mathbb{R} \mid(x, a) \in \operatorname{eco}(\operatorname{epi} f)\} .
$$

E-convex hull function

Definition

The e-convex hull of f, eco f, is the largest e-convex minorant of f. f is said to be e-convex at $x_{0} \in X$ if $(\operatorname{eco} f)\left(x_{0}\right)=f\left(x_{0}\right)$.

Proposition

For any $f: X \rightarrow \overline{\mathbb{R}}$ and $x \in X$, one has

$$
(\operatorname{eco} f)(x)=\inf \{a \in \mathbb{R} \mid(x, a) \in \operatorname{eco}(\operatorname{epi} f)\} .
$$

- cl conv $f \leq \operatorname{eco} f \leq f$.
- $\operatorname{dom}(\operatorname{eco} f) \subset \operatorname{eco}(\operatorname{dom} f)$.
- eco $(\operatorname{dom} f)=\operatorname{eco}(\operatorname{dom}(\operatorname{eco} f))$.
- epi $(\operatorname{eco} f) \subset \operatorname{eco}\left(\operatorname{epi}_{s} f\right) \subset \operatorname{eco}(\operatorname{epi} f) \subset \operatorname{epi}(\operatorname{eco} f)$.

E-convex hull function

Definition

The e-convex hull of f, eco f, is the largest e-convex minorant of f. f is said to be e-convex at $x_{0} \in X$ if $(\operatorname{eco} f)\left(x_{0}\right)=f\left(x_{0}\right)$.

Proposition

For any $f: X \rightarrow \overline{\mathbb{R}}$ and $x \in X$, one has

$$
(\operatorname{eco} f)(x)=\inf \{a \in \mathbb{R} \mid(x, a) \in \operatorname{eco}(\operatorname{epi} f)\}
$$

- cl conv $f \leq \operatorname{eco} f \leq f$.
- $\operatorname{dom}(\operatorname{eco} f) \subset \operatorname{eco}(\operatorname{dom} f)$.
- eco $(\operatorname{dom} f)=\operatorname{eco}(\operatorname{dom}(\operatorname{eco} f))$.
- $\operatorname{epi}_{s}(\operatorname{eco} f) \subset \operatorname{eco}\left(\operatorname{epi}_{s} f\right) \subset \operatorname{eco}(\operatorname{epi} f) \subset \operatorname{epi}(\operatorname{eco} f)$.
- f is e-convex at $x_{0} \in X \Leftrightarrow\left(x_{0}, a\right) \notin \operatorname{eco}(\mathrm{epi} f)$ for all $a<f\left(x_{0}\right)$.
- f is e-convex $\Leftrightarrow f$ is e-convex at x_{0}, for every $x_{0} \in X$.

Outline

(1) Introduction

- Notation and basic definitions
- On even convexity

2. Evenly convex functions

- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity
(3) Duality for evenly convex functions
- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions
(5) Fenchel duality in evenly convex optimization problems
- Introduction
- Main results

The e-support function τ_{C}

$L:=\overline{\mathbb{R}} \times\{0,1\}$ with the lexicographic order \leq_{L} is a complete chain.

$$
\left(a_{1}, a_{2}\right) \leq_{L}\left(b_{1}, b_{2}\right) \Leftrightarrow\left(a_{1}<b_{1}\right) \text { or }\left(a_{1}=b_{1}, a_{2} \leq b_{2}\right)
$$

The e-support function τ_{C}

$L:=\overline{\mathbb{R}} \times\{0,1\}$ with the lexicographic order \leq_{L} is a complete chain.

$$
\left(a_{1}, a_{2}\right) \leq_{L}\left(b_{1}, b_{2}\right) \Leftrightarrow\left(a_{1}<b_{1}\right) \text { or }\left(a_{1}=b_{1}, a_{2} \leq b_{2}\right)
$$

Definition

The e-support function of $C \subset X$ is $\tau_{C}: X^{*} \rightarrow L$ defined by

$$
\tau_{C}\left(x^{*}\right):=\sup _{L}\left\{\left(\left\langle x^{*}, x\right\rangle, 1\right) \mid x \in C\right\} .
$$

The e-support function τ_{C}

$L:=\overline{\mathbb{R}} \times\{0,1\}$ with the lexicographic order \leq_{L} is a complete chain.

$$
\left(a_{1}, a_{2}\right) \leq_{L}\left(b_{1}, b_{2}\right) \Leftrightarrow\left(a_{1}<b_{1}\right) \text { or }\left(a_{1}=b_{1}, a_{2} \leq b_{2}\right)
$$

Definition

The e-support function of $C \subset X$ is $\tau_{C}: X^{*} \rightarrow L$ defined by

$$
\tau_{C}\left(x^{*}\right):=\sup _{L}\left\{\left(\left\langle x^{*}, x\right\rangle, 1\right) \mid x \in C\right\} .
$$

- For any $C \subset X$ and $(\alpha, \beta) \in L$, one has

$$
C \subset\left\{x \in X \mid\left(\left\langle x^{*}, x\right\rangle, 1\right) \leq_{L}(\alpha, \beta)\right\} \Leftrightarrow \tau_{C}\left(x^{*}\right) \leq_{L}(\alpha, \beta) .
$$

The e-support function τ_{C}

$L:=\overline{\mathbb{R}} \times\{0,1\}$ with the lexicographic order \leq_{L} is a complete chain.

$$
\left(a_{1}, a_{2}\right) \leq_{L}\left(b_{1}, b_{2}\right) \Leftrightarrow\left(a_{1}<b_{1}\right) \text { or }\left(a_{1}=b_{1}, a_{2} \leq b_{2}\right)
$$

Definition

The e-support function of $C \subset X$ is $\tau_{C}: X^{*} \rightarrow L$ defined by

$$
\tau_{C}\left(x^{*}\right):=\sup _{L}\left\{\left(\left\langle x^{*}, x\right\rangle, 1\right) \mid x \in C\right\} .
$$

- For any $C \subset X$ and $(\alpha, \beta) \in L$, one has

$$
C \subset\left\{x \in X \mid\left(\left\langle x^{*}, x\right\rangle, 1\right) \leq_{L}(\alpha, \beta)\right\} \Leftrightarrow \tau_{C}\left(x^{*}\right) \leq_{L}(\alpha, \beta) .
$$

- Geometric interpretation: τ_{C} describes all the closed and the open halfspaces containing C.

$$
\begin{aligned}
& \left\{x \in X \mid\left(\left\langle x^{*}, x\right\rangle, 1\right) \leq_{L}(\alpha, 1)\right\}=\left\{x \in X \mid\left\langle x^{*}, x\right\rangle \leq \alpha\right\} \\
& \left\{x \in X \mid\left(\left\langle x^{*}, x\right\rangle, 1\right) \leq_{L}(\alpha, 0)\right\}=\left\{x \in X \mid\left\langle x^{*}, x\right\rangle<\alpha\right\}
\end{aligned}
$$

Relationship between τ_{C} and σ_{C}

$L:=\overline{\mathbb{R}} \times\{0,1\}$ with the lexicographic order \leq_{L} is a complete chain.

$$
\left(a_{1}, a_{2}\right) \leq_{L}\left(b_{1}, b_{2}\right) \Leftrightarrow\left(a_{1}<b_{1}\right) \text { or }\left(a_{1}=b_{1}, a_{2} \leq b_{2}\right)
$$

Definition

The e-support function of $C \subset X$ is $\tau_{C}: X^{*} \rightarrow L$ defined by

$$
\tau_{C}\left(x^{*}\right):=\sup _{L}\left\{\left(\left\langle x^{*}, x\right\rangle, 1\right) \mid x \in C\right\}
$$

Proposition

For any $C \subset X$ and $x^{*} \in X^{*}$, one has

$$
\tau_{C}\left(x^{*}\right)=\left(\sigma_{C}\left(x^{*}\right), \eta_{C}\left(x^{*}\right)\right)
$$

where $\eta_{C}: X^{*} \rightarrow\{0,1\}$ is the function defined by

$$
\eta_{C}\left(x^{*}\right):= \begin{cases}0 & \text { if }\left\langle x^{*}, x\right\rangle<\sigma_{C}\left(x^{*}\right) \forall x \in C \\ 1 & \text { if } \exists x \in C \mid\left\langle x^{*}, x\right\rangle=\sigma_{C}\left(x^{*}\right)\end{cases}
$$

Relationship between C and $\mathcal{T}_{\tau_{C}}$

- For any $g: X^{*} \rightarrow L$, we define the e-convex set

$$
\mathcal{T}_{g}:=\left\{x \in X \mid\left(\left\langle x^{*}, x\right\rangle, 1\right) \leq_{L} g\left(x^{*}\right), \forall x^{*} \in X^{*}\right\} .
$$

Relationship between C and $\mathcal{T}_{\tau_{C}}$

- For any $g: X^{*} \rightarrow L$, we define the e-convex set

$$
\mathcal{T}_{g}:=\left\{x \in X \mid\left(\left\langle x^{*}, x\right\rangle, 1\right) \leq_{L} g\left(x^{*}\right), \forall x^{*} \in X^{*}\right\}
$$

Theorem

For any $C \subset X$, one has

$$
\operatorname{eco} C=\mathcal{T}_{\tau_{C}}
$$

Relationship between C and $\mathcal{T}_{\tau_{C}}$

- For any $g: X^{*} \rightarrow L$, we define the e-convex set

$$
\mathcal{T}_{g}:=\left\{x \in X \mid\left(\left\langle x^{*}, x\right\rangle, 1\right) \leq_{L} g\left(x^{*}\right), \forall x^{*} \in X^{*}\right\}
$$

Theorem

For any $C \subset X$, one has

$$
\operatorname{eco} C=\mathcal{T}_{\tau_{C}}
$$

Corollary

Given $C, D \subset X$, the following statements hold:

- C is e-convex $\Leftrightarrow C=\mathcal{T}_{\tau_{C}}$.
- C is e-convex $\Leftrightarrow C$ is the solution set of the general linear system

$$
\left\{\left\langle x^{*}, x\right\rangle<\sigma_{C}\left(x^{*}\right), \forall x^{*}\left|\eta_{C}\left(x^{*}\right)=0 ;\left\langle x^{*}, x\right\rangle \leq \sigma_{C}\left(x^{*}\right), \forall x^{*}\right| \eta_{C}\left(x^{*}\right)=1\right\} .
$$

- eco $C \subset$ eco $D \Leftrightarrow \tau_{C} \leq_{L} \tau_{D}$.
- $\tau_{C}=\tau_{\text {eco } C}$.

Characterization of τ_{C}

Theorem (Rockafellar, 1970)

The functions which are the support functions of non-empty (closed) convex sets are the closed proper sublinear functions.

- What conditions should satisfy a function $g: X^{*} \rightarrow L$ for being the e-support function of some non-empty set?

Characterization of τ_{C}

Theorem (Rockafellar, 1970)

The functions which are the support functions of non-empty (closed) convex sets are the closed proper sublinear functions.

- What conditions should satisfy a function $g: X^{*} \rightarrow L$ for being the e-support function of some non-empty set?

Theorem

Let $g: \mathbb{R}^{n} \rightarrow L$ be a function such that $g=(\sigma, \eta)$. Then,
g is the e-support function of some non-empty e-convex set $C\left(g=\tau_{C}\right)$ if and only if the following conditions hold:
(i) σ is sublinear, lsc and does not take $-\infty$.
(ii) if $\sigma\left(x^{*}\right)=-\sigma\left(-x^{*}\right)$ then $\eta\left(x^{*}\right)=1$.
(iii) if $\partial \sigma\left(x^{*}\right)=\emptyset$ then $\eta\left(x^{*}\right)=0$.
(iv) if there exists $\hat{x} \in \mathbb{R}^{n}$ such that $\eta(\hat{x})=0$ and $\partial \sigma\left(x^{*}\right) \subset \partial \sigma(\hat{x})$, then $\eta\left(x^{*}\right)=0$.

Consequences

- The mapping $C \mapsto \tau_{C}$ is a bijection from the family of non-empty e-convex sets in \mathbb{R}^{n}, to the family of functions $g=(\sigma, \eta): \mathbb{R}^{n} \rightarrow L$ satisfying conditions (i) to ($i v$).
The converse bijection is the mapping $g \mapsto \mathcal{T}_{g}$.

Consequences

- The mapping $C \mapsto \tau_{C}$ is a bijection from the family of non-empty e-convex sets in \mathbb{R}^{n}, to the family of functions $g=(\sigma, \eta): \mathbb{R}^{n} \rightarrow L$ satisfying conditions (i) to ($i v$).
The converse bijection is the mapping $g \mapsto \mathcal{T}_{g}$.
- If $C \subset \mathbb{R}^{n}$ is e-convex, then

$$
C \text { is closed } \Leftrightarrow \eta_{C}\left(x^{*}\right)=1 \quad \forall x^{*} \in \mathbb{R}^{n} \mid \partial \sigma_{C}\left(x^{*}\right) \neq \emptyset .
$$

Consequences

- The mapping $C \mapsto \tau_{C}$ is a bijection from the family of non-empty e-convex sets in \mathbb{R}^{n}, to the family of functions $g=(\sigma, \eta): \mathbb{R}^{n} \rightarrow L$ satisfying conditions (i) to ($i v$).
The converse bijection is the mapping $g \mapsto \mathcal{T}_{g}$.
- If $C \subset \mathbb{R}^{n}$ is e-convex, then

$$
C \text { is closed } \Leftrightarrow \eta_{C}\left(x^{*}\right)=1 \quad \forall x^{*} \in \mathbb{R}^{n} \mid \partial \sigma_{C}\left(x^{*}\right) \neq \emptyset .
$$

- If $C \subset \mathbb{R}^{n}$ is convex, then

$$
C \text { is open } \Leftrightarrow \eta_{C}\left(x^{*}\right)=0 \forall x^{*} \in \mathbb{R}^{n} \backslash\{0\} .
$$

Consequences

- The mapping $C \mapsto \tau_{C}$ is a bijection from the family of non-empty e-convex sets in \mathbb{R}^{n}, to the family of functions $g=(\sigma, \eta): \mathbb{R}^{n} \rightarrow L$ satisfying conditions (i) to ($i v$).
The converse bijection is the mapping $g \mapsto \mathcal{T}_{g}$.
- If $C \subset \mathbb{R}^{n}$ is e-convex, then

$$
C \text { is closed } \Leftrightarrow \eta_{C}\left(x^{*}\right)=1 \quad \forall x^{*} \in \mathbb{R}^{n} \mid \partial \sigma_{C}\left(x^{*}\right) \neq \emptyset .
$$

- If $C \subset \mathbb{R}^{n}$ is convex, then

$$
C \text { is open } \Leftrightarrow \eta_{C}\left(x^{*}\right)=0 \forall x^{*} \in \mathbb{R}^{n} \backslash\{0\} .
$$

- If $C \subset \mathbb{R}^{n}$ is convex, then
C is relatively open $\Leftrightarrow \eta_{C}\left(x^{*}\right)=0 \forall x^{*} \in \mathbb{R}^{n} \mid \sigma_{C}\left(x^{*}\right) \neq-\sigma_{C}\left(-x^{*}\right)$.

Outline

(1) Introduction

- Notation and basic definitions
- On even convexity

2. Evenly convex functions

- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity
(3) Duality for evenly convex functions
- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions

4 Fenchel duality in evenly convex optimization problems

- Introduction
- Main results

Characterization (1)

Definition

Let $C \subset X$. A function $a: X \rightarrow \overline{\mathbb{R}}$ is called C-affine if there exist $y^{*} \in X^{*}$ and $\beta \in \mathbb{R}$ such that

$$
a(x)= \begin{cases}\left\langle y^{*}, x\right\rangle-\beta & \text { if } x \in C, \\ +\infty & \text { if } x \notin C .\end{cases}
$$

- If C is e-convex, then every C-affine function is e-convex.

Characterization (1)

Definition

Let $C \subset X$. A function $a: X \rightarrow \overline{\mathbb{R}}$ is called C-affine if there exist $y^{*} \in X^{*}$ and $\beta \in \mathbb{R}$ such that

$$
a(x)= \begin{cases}\left\langle y^{*}, x\right\rangle-\beta & \text { if } x \in C, \\ +\infty & \text { if } x \notin C .\end{cases}
$$

- If C is e-convex, then every C-affine function is e-convex.

For any $f: X \rightarrow \overline{\mathbb{R}}$, if $M_{f}:=\operatorname{eco}(\operatorname{dom} f)$, we define the set \mathcal{H}_{f} as

$$
\mathcal{H}_{f}:=\left\{a: X \rightarrow \overline{\mathbb{R}} \mid a \text { is } M_{f} \text {-affine, } a \leq f\right\} .
$$

Characterization (1)

Definition

Let $C \subset X$. A function $a: X \rightarrow \overline{\mathbb{R}}$ is called C-affine if there exist $y^{*} \in X^{*}$ and $\beta \in \mathbb{R}$ such that

$$
a(x)= \begin{cases}\left\langle y^{*}, x\right\rangle-\beta & \text { if } x \in C, \\ +\infty & \text { if } x \notin C .\end{cases}
$$

- If C is e-convex, then every C-affine function is e-convex.

For any $f: X \rightarrow \overline{\mathbb{R}}$, if $M_{f}:=\operatorname{eco}(\operatorname{dom} f)$, we define the set \mathcal{H}_{f} as

$$
\mathcal{H}_{f}:=\left\{a: X \rightarrow \overline{\mathbb{R}} \mid a \text { is } M_{f} \text {-affine, } a \leq f\right\} .
$$

Lemma

For any $f: X \rightarrow \overline{\mathbb{R}}$, one has

$$
\mathcal{H}_{f}=\mathcal{H}_{\text {eco } f}
$$

Characterization (1)

Proposition

Let $f: X \rightarrow \overline{\mathbb{R}}$. The following statements are equivalent:
(i) $\mathcal{H}_{f} \neq \emptyset$.
(ii) eco f is proper or $f \equiv+\infty$.
(iii) f has a proper e-convex minorant.

Characterization (1)

Proposition

Let $f: X \rightarrow \overline{\mathbb{R}}$. The following statements are equivalent:
(i) $\mathcal{H}_{f} \neq \emptyset$.
(ii) eco f is proper or $f \equiv+\infty$.
(iii) f has a proper e-convex minorant.

Theorem

Let $f: X \rightarrow \overline{\mathbb{R}}$ be a function such that $f \not \equiv-\infty$ and $f \not \equiv+\infty$. Then

$$
f \text { is proper and e-convex } \Leftrightarrow f=\sup \left\{a \mid a \in \mathcal{H}_{f}\right\} .
$$

Characterization (1)

Proposition

Let $f: X \rightarrow \overline{\mathbb{R}}$. The following statements are equivalent:
(i) $\mathcal{H}_{f} \neq \emptyset$.
(ii) eco f is proper or $f \equiv+\infty$.
(iii) f has a proper e-convex minorant.

Theorem

Let $f: X \rightarrow \overline{\mathbb{R}}$ be a function such that $f \not \equiv-\infty$ and $f \not \equiv+\infty$. Then

$$
f \text { is proper and e-convex } \Leftrightarrow f=\sup \left\{a \mid a \in \mathcal{H}_{f}\right\} \text {. }
$$

- For any proper function f,
f is e-convex $\Leftrightarrow f$ is convex and lsc on $\operatorname{eco}(\operatorname{dom} f)$.

Characterization (1)

Proposition

Let $f: X \rightarrow \overline{\mathbb{R}}$. The following statements are equivalent:
(i) $\mathcal{H}_{f} \neq \emptyset$.
(ii) eco f is proper or $f \equiv+\infty$.
(iii) f has a proper e-convex minorant.

Theorem

Let $f: X \rightarrow \overline{\mathbb{R}}$ be a function such that $f \not \equiv-\infty$ and $f \not \equiv+\infty$. Then

$$
f \text { is proper and e-convex } \Leftrightarrow f=\sup \left\{a \mid a \in \mathcal{H}_{f}\right\} \text {. }
$$

- For any proper function f,
f is e-convex $\Leftrightarrow f$ is convex and lsc on $\operatorname{eco}(\operatorname{dom} f)$.
- If f has a proper e-convex minorant, then $\operatorname{eco} f=\sup \left\{a \mid a \in \mathcal{H}_{f}\right\}$.

Characterization (2)

Definition

Let \mathcal{C} be the family of all e-convex sets in X. A function $a: X \rightarrow \overline{\mathbb{R}}$ is called \mathcal{C}-affine if there exists $C \in \mathcal{C}$ such that a is C-affine.

Characterization (2)

Definition

Let \mathcal{C} be the family of all e-convex sets in X. A function $a: X \rightarrow \overline{\mathbb{R}}$ is called \mathcal{C}-affine if there exists $C \in \mathcal{C}$ such that a is C-affine.

For any $f: X \rightarrow \overline{\mathbb{R}}$, we define the set \mathcal{C}_{f} as

$$
\mathcal{C}_{f}:=\{a: X \rightarrow \overline{\mathbb{R}} \mid a \text { is } \mathcal{C} \text {-affine, } a \leq f\} .
$$

- For any $a \in \mathcal{C}_{f}$, one has $\operatorname{eco}(\operatorname{dom} f) \subset \operatorname{dom} a$.

Characterization (2)

Definition

Let \mathcal{C} be the family of all e-convex sets in X. A function $a: X \rightarrow \overline{\mathbb{R}}$ is called \mathcal{C}-affine if there exists $C \in \mathcal{C}$ such that a is C-affine.

For any $f: X \rightarrow \overline{\mathbb{R}}$, we define the set \mathcal{C}_{f} as

$$
\mathcal{C}_{f}:=\{a: X \rightarrow \overline{\mathbb{R}} \mid a \text { is } \mathcal{C} \text {-affine, } a \leq f\} .
$$

- For any $a \in \mathcal{C}_{f}$, one has $\operatorname{eco}(\operatorname{dom} f) \subset \operatorname{dom} a$.

Theorem

Let $f: X \rightarrow \overline{\mathbb{R}}$ be a function such that $f \not \equiv-\infty$ and $f \not \equiv+\infty$. Then

$$
f \text { is proper and e-convex } \Leftrightarrow f=\sup \left\{a \mid a \in \mathcal{C}_{f}\right\} .
$$

Characterization (3)

Definition

A function $a: X \rightarrow \overline{\mathbb{R}}$ is called e-affine if there exist $y^{*}, z^{*} \in X^{*}$ and $\alpha, \beta \in \mathbb{R}$ such that

$$
a(x)= \begin{cases}\left\langle y^{*}, x\right\rangle-\beta & \text { if }\left\langle z^{*}, x\right\rangle<\alpha \\ +\infty & \text { if }\left\langle z^{*}, x\right\rangle \geq \alpha\end{cases}
$$

Characterization (3)

Definition

A function $a: X \rightarrow \overline{\mathbb{R}}$ is called e-affine if there exist $y^{*}, z^{*} \in X^{*}$ and $\alpha, \beta \in \mathbb{R}$ such that

$$
a(x)= \begin{cases}\left\langle y^{*}, x\right\rangle-\beta & \text { if }\left\langle z^{*}, x\right\rangle<\alpha \\ +\infty & \text { if }\left\langle z^{*}, x\right\rangle \geq \alpha\end{cases}
$$

For any $f: X \rightarrow \overline{\mathbb{R}}$, we define the set \mathcal{E}_{f} as

$$
\mathcal{E}_{f}:=\{a: X \rightarrow \overline{\mathbb{R}} \mid a \text { is e-affine, } a \leq f\} .
$$

Characterization (3)

Definition

A function $a: X \rightarrow \overline{\mathbb{R}}$ is called e-affine if there exist $y^{*}, z^{*} \in X^{*}$ and $\alpha, \beta \in \mathbb{R}$ such that

$$
a(x)= \begin{cases}\left\langle y^{*}, x\right\rangle-\beta & \text { if }\left\langle z^{*}, x\right\rangle<\alpha \\ +\infty & \text { if }\left\langle z^{*}, x\right\rangle \geq \alpha\end{cases}
$$

For any $f: X \rightarrow \overline{\mathbb{R}}$, we define the set \mathcal{E}_{f} as

$$
\mathcal{E}_{f}:=\{a: X \rightarrow \overline{\mathbb{R}} \mid a \text { is e-affine, } a \leq f\}
$$

Theorem

Let $f: X \rightarrow \overline{\mathbb{R}}$ be a function such that $f \not \equiv-\infty$ and $f \not \equiv+\infty$. Then

$$
f \text { is proper and e-convex } \Leftrightarrow f=\sup \left\{a \mid a \in \mathcal{E}_{f}\right\} .
$$

Characterization (3)

Definition

A function $a: X \rightarrow \overline{\mathbb{R}}$ is called e-affine if there exist $y^{*}, z^{*} \in X^{*}$ and $\alpha, \beta \in \mathbb{R}$ such that

$$
a(x)= \begin{cases}\left\langle y^{*}, x\right\rangle-\beta & \text { if }\left\langle z^{*}, x\right\rangle<\alpha \\ +\infty & \text { if }\left\langle z^{*}, x\right\rangle \geq \alpha\end{cases}
$$

For any $f: X \rightarrow \overline{\mathbb{R}}$, we define the set \mathcal{E}_{f} as

$$
\mathcal{E}_{f}:=\{a: X \rightarrow \overline{\mathbb{R}} \mid a \text { is e-affine, } a \leq f\}
$$

Theorem

Let $f: X \rightarrow \overline{\mathbb{R}}$ be a function such that $f \not \equiv-\infty$ and $f \not \equiv+\infty$. Then

$$
f \text { is proper and e-convex } \Leftrightarrow f=\sup \left\{a \mid a \in \mathcal{E}_{f}\right\} .
$$

- eco $(\operatorname{dom} f)=\bigcap_{a \in \mathcal{E}_{f}} \operatorname{dom} a$, for any proper e-convex function f.

Outline

(1) Introduction

- Notation and basic definitions
- On even convexity

2. Evenly convex functions

- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity
(3) Duality for evenly convex functions
- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions

4 Fenchel duality in evenly convex optimization problems

- Introduction
- Main results

Generalized convex conjugation

Moreau (1970), Martínez-Legaz (2005)

- X, W arbitrary sets.
- $c: X \times W \rightarrow \overline{\mathbb{R}}$ is called the coupling function.
- $c^{\prime}: W \times X \rightarrow \overline{\mathbb{R}}$ is given by $c^{\prime}(w, x)=c(x, w) \quad \forall x \in X, w \in W$.
- Conventions: $+\infty-(+\infty)=-\infty+(+\infty)=-\infty$.

Generalized convex conjugation

Moreau (1970), Martínez-Legaz (2005)

- X, W arbitrary sets.
- $c: X \times W \rightarrow \overline{\mathbb{R}}$ is called the coupling function.
- $c^{\prime}: W \times X \rightarrow \overline{\mathbb{R}}$ is given by $c^{\prime}(w, x)=c(x, w) \quad \forall x \in X, w \in W$.
- Conventions: $+\infty-(+\infty)=-\infty+(+\infty)=-\infty$.
- The c-conjugate of $f: X \rightarrow \overline{\mathbb{R}}$ is the function $f^{c}: W \rightarrow \overline{\mathbb{R}}$ defined by

$$
f^{c}(w):=\sup _{x \in X}\{c(x, w)-f(x)\}
$$

- The c^{\prime}-conjugate of $g: W \rightarrow \overline{\mathbb{R}}$ is the function $g^{c^{\prime}}: X \rightarrow \overline{\mathbb{R}}$ defined by

$$
g^{c^{\prime}}(x):=\sup _{w \in W}\left\{c^{\prime}(w, x)-g(w)\right\}
$$

Generalized convex conjugation

Moreau (1970), Martínez-Legaz (2005)

- X, W arbitrary sets.
- $c: X \times W \rightarrow \overline{\mathbb{R}}$ is called the coupling function.
- $c^{\prime}: W \times X \rightarrow \overline{\mathbb{R}}$ is given by $c^{\prime}(w, x)=c(x, w) \quad \forall x \in X, w \in W$.
- Conventions: $+\infty-(+\infty)=-\infty+(+\infty)=-\infty$.
- The c-conjugate of $f: X \rightarrow \overline{\mathbb{R}}$ is the function $f^{c}: W \rightarrow \overline{\mathbb{R}}$ defined by

$$
f^{c}(w):=\sup _{x \in X}\{c(x, w)-f(x)\}
$$

- The c^{\prime}-conjugate of $g: W \rightarrow \overline{\mathbb{R}}$ is the function $g^{c^{\prime}}: X \rightarrow \overline{\mathbb{R}}$ defined by

$$
g^{c^{\prime}}(x):=\sup _{w \in W}\left\{c^{\prime}(w, x)-g(w)\right\}
$$

- Fenchel conjugate: $X, W=X^{*}, c\left(x, x^{*}\right)=\left\langle x^{*}, x\right\rangle, f^{c}=f^{*}$.

$$
f^{*}\left(x^{*}\right)=\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-f(x)\right\}
$$

A new conjugation scheme

- Consider X and $W=X^{*} \times X^{*} \times \mathbb{R}$, and the coupling function

$$
c\left(x,\left(y^{*}, z^{*}, \alpha\right)\right):= \begin{cases}\left\langle y^{*}, x\right\rangle & \text { if }\left\langle z^{*}, x\right\rangle<\alpha \\ +\infty & \text { if }\left\langle z^{*}, x\right\rangle \geq \alpha .\end{cases}
$$

A new conjugation scheme

- Consider X and $W=X^{*} \times X^{*} \times \mathbb{R}$, and the coupling function

$$
c\left(x,\left(y^{*}, z^{*}, \alpha\right)\right):= \begin{cases}\left\langle y^{*}, x\right\rangle & \text { if }\left\langle z^{*}, x\right\rangle<\alpha \\ +\infty & \text { if }\left\langle z^{*}, x\right\rangle \geq \alpha\end{cases}
$$

- For any $f: X \rightarrow \overline{\mathbb{R}}$ and $\left(y^{*}, z^{*}, \alpha\right) \in W$, one has

$$
f^{c}\left(y^{*}, z^{*}, \alpha\right)= \begin{cases}f^{*}(y) & \text { if }\left\langle z^{*}, x\right\rangle<\alpha \forall x \in \operatorname{dom} f \\ +\infty & \text { otherwise }\end{cases}
$$

A new conjugation scheme

- Consider X and $W=X^{*} \times X^{*} \times \mathbb{R}$, and the coupling function

$$
c\left(x,\left(y^{*}, z^{*}, \alpha\right)\right):= \begin{cases}\left\langle y^{*}, x\right\rangle & \text { if }\left\langle z^{*}, x\right\rangle<\alpha \\ +\infty & \text { if }\left\langle z^{*}, x\right\rangle \geq \alpha\end{cases}
$$

- For any $f: X \rightarrow \overline{\mathbb{R}}$ and $\left(y^{*}, z^{*}, \alpha\right) \in W$, one has

$$
f^{c}\left(y^{*}, z^{*}, \alpha\right)= \begin{cases}f^{*}(y) & \text { if }\left\langle z^{*}, x\right\rangle<\alpha \forall x \in \operatorname{dom} f \\ +\infty & \text { otherwise }\end{cases}
$$

Proposition

$$
f^{c c^{\prime}}= \begin{cases}f^{* *}+\delta_{\operatorname{eco}(\operatorname{dom} f)} & \text { if } \operatorname{dom} f^{*} \neq \emptyset, \\ -\infty & \text { if } \operatorname{dom} f^{*}=\emptyset\end{cases}
$$

A new conjugation scheme

- Consider X and $W=X^{*} \times X^{*} \times \mathbb{R}$, and the coupling function

$$
c\left(x,\left(y^{*}, z^{*}, \alpha\right)\right):= \begin{cases}\left\langle y^{*}, x\right\rangle & \text { if }\left\langle z^{*}, x\right\rangle<\alpha \\ +\infty & \text { if }\left\langle z^{*}, x\right\rangle \geq \alpha\end{cases}
$$

- For any $f: X \rightarrow \overline{\mathbb{R}}$ and $\left(y^{*}, z^{*}, \alpha\right) \in W$, one has

$$
f^{c}\left(y^{*}, z^{*}, \alpha\right)= \begin{cases}f^{*}(y) & \text { if }\left\langle z^{*}, x\right\rangle<\alpha \forall x \in \operatorname{dom} f \\ +\infty & \text { otherwise }\end{cases}
$$

Proposition

$$
f^{c c^{\prime}}= \begin{cases}f^{* *}+\delta_{\operatorname{eco}(\operatorname{dom} f)} & \text { if } \operatorname{dom} f^{*} \neq \emptyset, \\ -\infty & \text { if } \operatorname{dom} f^{*}=\emptyset\end{cases}
$$

- c-elementary functions: $x \in X \mapsto c\left(x,\left(y^{*}, z^{*}, \alpha\right)\right)-\beta \in \overline{\mathbb{R}}$. c^{\prime}-elementary functions: $\left(y^{*}, z^{*}, \alpha\right) \in W \mapsto c^{\prime}\left(\left(y^{*}, z^{*}, \alpha\right), x\right)-\beta \in \overline{\mathbb{R}}$.
- The c-elementary functions are the e-affine functions.
- $\Phi_{c}\left(\Phi_{c^{\prime}}\right)$: the set of c-elementary (c^{\prime}-elementary) functions.
- A function $f: X \rightarrow \overline{\mathbb{R}}$ is called Φ-convex if it is the pointwise supremum of a subset of Φ.
- The Φ_{c}-convex functions are the e-convex functions*. A function is called e^{\prime}-convex if it is $\Phi_{c^{\prime}}$-convex.
- A function $f: X \rightarrow \overline{\mathbb{R}}$ is called Φ-convex if it is the pointwise supremum of a subset of Φ.
- The Φ_{c}-convex functions are the e-convex functions*.

A function is called e^{\prime}-convex if it is $\Phi_{c^{\prime}}$-convex.

Proposition

Let $f: X \rightarrow \overline{\mathbb{R}}$ and $g: W \rightarrow \overline{\mathbb{R}}$. Then,
(i) f^{c} is e^{\prime}-convex, $g^{c^{\prime}}$ is e-convex.
(ii) $f^{c c^{\prime}} \leq f, g^{c^{\prime} c} \leq g$.
(iii) $f^{c c^{\prime} c}=f^{c}, g^{c^{\prime} c c^{\prime}}=g^{c^{\prime}}$.

- A function $f: X \rightarrow \overline{\mathbb{R}}$ is called Φ-convex if it is the pointwise supremum of a subset of Φ.
- The Φ_{c}-convex functions are the e-convex functions*.

A function is called e^{\prime}-convex if it is $\Phi_{c^{\prime}}$-convex.

Proposition

Let $f: X \rightarrow \overline{\mathbb{R}}$ and $g: W \rightarrow \overline{\mathbb{R}}$. Then,
(i) f^{c} is e^{\prime}-convex, $g^{c^{\prime}}$ is e-convex.
(ii) $f^{c c^{\prime}} \leq f, g^{c^{\prime} c} \leq g$.
(iii) $f^{c c^{\prime} c}=f^{c}, g^{c^{\prime} c c^{\prime}}=g^{c^{\prime}}$.

Proposition

If $f: X \rightarrow \overline{\mathbb{R}}$ has a proper e-convex minorant, then eco $f=f^{c c c^{\prime}}$. For any $g: W \rightarrow \overline{\mathbb{R}}$, $\mathrm{e}^{\prime} \operatorname{co} g=g^{c^{\prime} c}$.

- A function $f: X \rightarrow \overline{\mathbb{R}}$ is called Φ-convex if it is the pointwise supremum of a subset of Φ.
- The Φ_{c}-convex functions are the e-convex functions*.

A function is called e^{\prime}-convex if it is $\Phi_{c^{\prime}}$-convex.

Proposition

Let $f: X \rightarrow \overline{\mathbb{R}}$ and $g: W \rightarrow \overline{\mathbb{R}}$. Then,
(i) f^{c} is e^{\prime}-convex, $g^{c^{\prime}}$ is e-convex.
(ii) $f^{c c^{\prime}} \leq f, g^{c^{\prime} c} \leq g$.
(iii) $f^{c c^{\prime} c}=f^{c}, g^{c^{\prime} c c^{\prime}}=g^{c^{\prime}}$.

Proposition

If $f: X \rightarrow \overline{\mathbb{R}}$ has a proper e-convex minorant, then eco $f=f^{c c c^{\prime}}$. For any $g: W \rightarrow \overline{\mathbb{R}}$, e' $\operatorname{co} g=g^{c^{\prime} c}$.

$$
\begin{aligned}
& f \text { is e-convex } \Leftrightarrow f=f^{c c^{\prime}} . \\
& g \text { is } e^{\prime} \text {-convex } \Leftrightarrow g=g^{c^{\prime} c} .
\end{aligned}
$$

Outline

(1) Introduction

- Notation and basic definitions
- On even convexity

2. Evenly convex functions

- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity
(3) Duality for evenly convex functions
- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions
(4) Fenchel duality in evenly convex optimization problems
- Introduction
- Main results

Generalized Optimization

Consider the primal problem

$$
(G P) \quad \operatorname{Inf}_{x \in X} F(x),
$$

where $F: X \rightarrow \overline{\mathbb{R}}$ is a proper function, and the pertubation function $\Phi: X \times \Theta \rightarrow \overline{\mathbb{R}}$ having the property that, for every $x \in X$,

$$
\Phi\left(x, 0_{\Theta}\right)=F(x) .
$$

The infimum value function $p: \Theta \rightarrow \overline{\mathbb{R}}$ is defined by

$$
p(u):=\inf _{x \in X} \Phi(x, u)
$$

The dual problem of $(G P)$ associated to Φ is

$$
(G D) \quad \operatorname{Sup}_{u^{*} \in \Theta^{*}}-\Phi^{*}\left(0, u^{*}\right)=\operatorname{Sup}_{u^{*} \in \Theta^{*}}-p^{*}\left(u^{*}\right) .
$$

Generalized Optimization

Consider the primal problem

$$
(G P) \quad \operatorname{Inf}_{x \in X} F(x),
$$

where $F: X \rightarrow \overline{\mathbb{R}}$ is a proper function, and the pertubation function $\Phi: X \times \Theta \rightarrow \overline{\mathbb{R}}$ having the property that, for every $x \in X$,

$$
\Phi\left(x, 0_{\Theta}\right)=F(x) .
$$

The infimum value function $p: \Theta \rightarrow \overline{\mathbb{R}}$ is defined by

$$
p(u):=\inf _{x \in X} \Phi(x, u)
$$

The dual problem of $(G P)$ associated to Φ is

$$
(G D) \quad \operatorname{Sup}_{u^{*} \in \Theta^{*}}-\Phi^{*}\left(0, u^{*}\right)=\operatorname{Sup}_{u^{*} \in \Theta^{*}}-p^{*}\left(u^{*}\right) .
$$

One has weak duality, i.e.,

$$
v(G D)=p^{* *}\left(0_{\Theta}\right) \leq p\left(0_{\Theta}\right)=v(G P) .
$$

Generalized Optimization

Consider the primal problem

$$
(G P) \quad \operatorname{Inf}_{x \in X} F(x),
$$

where $F: X \rightarrow \overline{\mathbb{R}}$ is a proper function, and the pertubation function $\Phi: X \times \Theta \rightarrow \overline{\mathbb{R}}$ having the property that, for every $x \in X$,

$$
\Phi\left(x, 0_{\Theta}\right)=F(x) .
$$

The infimum value function $p: \Theta \rightarrow \overline{\mathbb{R}}$ is defined by

$$
p(u):=\inf _{x \in X} \Phi(x, u)
$$

The dual problem of $(G P)$ associated to Φ is

$$
(G D) \quad \operatorname{Sup}_{u^{*} \in \Theta^{*}}-\Phi^{*}\left(0, u^{*}\right)=\operatorname{Sup}_{u^{*} \in \Theta^{*}}-p^{*}\left(u^{*}\right) .
$$

We have strong duality if
$v(G D)=v(G P)$ and the dual problem is solvable when $v(G P)$ is finite.

Convex Optimization

Let us consider the primal problem

$$
\text { (P) } \quad \operatorname{Inf}_{x \in A} f(x)
$$

where $f: X \rightarrow \overline{\mathbb{R}}$ is proper closed convex and $\emptyset \neq A \subset X$ is closed convex, and the perturbation function $\Phi: X \times X \rightarrow \overline{\mathbb{R}}$ defined by

$$
\Phi(x, u):= \begin{cases}f(x+u) & \text { if } x \in A \\ +\infty & \text { otherwise }\end{cases}
$$

The Fenchel dual problem of (P) is

$$
\text { (D) } \operatorname{Sup}_{u^{*} \in X^{*}}-p^{*}\left(u^{*}\right)
$$

Convex Optimization

Let us consider the primal problem

$$
\text { (P) } \quad \operatorname{Inf}_{x \in A} f(x)
$$

where $f: X \rightarrow \overline{\mathbb{R}}$ is proper closed convex and $\emptyset \neq A \subset X$ is closed convex, and the perturbation function $\Phi: X \times X \rightarrow \overline{\mathbb{R}}$ defined by

$$
\Phi(x, u):= \begin{cases}f(x+u) & \text { if } x \in A \\ +\infty & \text { otherwise }\end{cases}
$$

The Fenchel dual problem of (P) is

$$
\text { (D) } \operatorname{Sup}_{u^{*} \in X^{*}}-p^{*}\left(u^{*}\right)=\operatorname{Sup}_{u^{*} \in X^{*}}-f^{*}\left(u^{*}\right)-\delta_{A}^{*}\left(-u^{*}\right) .
$$

Convex Optimization

Let us consider the primal problem

$$
\text { (P) } \quad \operatorname{Inf}_{x \in A} f(x)
$$

where $f: X \rightarrow \overline{\mathbb{R}}$ is proper closed convex and $\emptyset \neq A \subset X$ is closed convex, and the perturbation function $\Phi: X \times X \rightarrow \overline{\mathbb{R}}$ defined by

$$
\Phi(x, u):= \begin{cases}f(x+u) & \text { if } x \in A, \\ +\infty & \text { otherwise } .\end{cases}
$$

The Fenchel dual problem of (P) is
(D) $\operatorname{Sup}_{u^{*} \in X^{*}}-p^{*}\left(u^{*}\right)=\operatorname{Sup}_{u^{*} \in X^{*}}-f^{*}\left(u^{*}\right)-\delta_{A}^{*}\left(-u^{*}\right)$.

Theorem (Burachik \& Jeyakumar, 2005)

If $A \cap \operatorname{dom} f \neq \emptyset$ and the set epi $f^{*}+\operatorname{epi} \delta_{A}^{*}$ is weak*-closed, then strong duality holds for $(P)-(D)$, i.e.,

$$
\inf _{x \in A} f(x)=\max _{u^{*} \in X^{*}}\left\{-f^{*}\left(u^{*}\right)-\delta_{A}^{*}\left(-u^{*}\right)\right\}
$$

Outline

(1) Introduction

- Notation and basic definitions
- On even convexity
(2) Evenly convex functions
- Introduction: Motivation
- Basic properties of e-convex functions
- Functional operations preserving even convexity
(3) Duality for evenly convex functions
- A new support function for e-convex sets
- New characterizations of e-convex functions
- A conjugation scheme for e-convex functions
(4) Fenchel duality in evenly convex optimization problems
- Introduction
- Main results

Definition

A set $D \subset W \times \mathbb{R}$ is called e^{\prime}-convex if there exists an e^{\prime}-convex function $k: W \rightarrow \overline{\mathbb{R}}$ such that $D=$ epi k. The e'-convex hull of $D \subset W \times \mathbb{R}, \mathrm{e}^{\prime}$ co D, is the smallest e^{\prime}-convex containing D.

- For any $D \subset W \times \mathbb{R}$, one has e'co $D=\operatorname{epi} f_{D}^{c^{\prime} c}$.

Definition

A set $D \subset W \times \mathbb{R}$ is called e^{\prime}-convex if there exists an e^{\prime}-convex function $k: W \rightarrow \overline{\mathbb{R}}$ such that $D=$ epi k. The e^{\prime}-convex hull of $D \subset W \times \mathbb{R}, \mathrm{e}^{\prime}$ co D, is the smallest e^{\prime}-convex containing D.

- For any $D \subset W \times \mathbb{R}$, one has $\mathrm{e}^{\prime} \operatorname{co} D=\operatorname{epi} f_{D}^{c^{\prime} c}$.

Definition

Given $f, g: X \rightarrow \overline{\mathbb{R}}$, a function $a: X \rightarrow \overline{\mathbb{R}}$ belongs to $\widetilde{\mathcal{E}}_{f+g}$ if there exist $a_{1} \in \mathcal{E}_{f}$ and $a_{2} \in \mathcal{E}_{g}$ such that, if

$$
a_{i}(\cdot):= \begin{cases}\left\langle y_{i}^{*}, \cdot\right\rangle-\beta_{i} & \text { if }\left\langle z_{i}^{*}, \cdot\right\rangle<\alpha_{i} \\ +\infty & \text { otherwise }\end{cases}
$$

for $i=1,2$, then

$$
a(\cdot)= \begin{cases}\left\langle y_{1}^{*}+y_{2}^{*}, \cdot\right\rangle-\left(\beta_{1}+\beta_{2}\right) & \text { if }\left\langle z_{1}^{*}+z_{2}^{*}, \cdot\right\rangle<\alpha_{1}+\alpha_{2} \\ +\infty & \text { otherwise }\end{cases}
$$

- $\widetilde{\mathcal{E}}_{f+g} \subset \mathcal{E}_{f+g}$.

Evenly Convex Optimization

Let us consider the primal problem

$$
\text { (P) } \quad \operatorname{Inf}_{x \in A} f(x)
$$

where $f: X \rightarrow \overline{\mathbb{R}}$ is proper e-convex and $\emptyset \neq A \subset X$ is e-convex, and the perturbation function $\Phi: X \times X \rightarrow \overline{\mathbb{R}}$ defined by

$$
\Phi(x, u):= \begin{cases}f(x+u) & \text { if } x \in A \\ +\infty & \text { otherwise }\end{cases}
$$

The Fenchel dual problem of (P) is
(D) $\operatorname{Sup}_{u^{*}, 0^{*} \in X^{*}}-p^{c}\left(u^{*}, v^{*}, \alpha\right)$

$$
\begin{gathered}
u^{*}, v^{*} \in X^{*} \\
\alpha>0
\end{gathered}
$$

Evenly Convex Optimization

Let us consider the primal problem

$$
(P) \quad \operatorname{Inf}_{x \in A} f(x)
$$

where $f: X \rightarrow \overline{\mathbb{R}}$ is proper e-convex and $\emptyset \neq A \subset X$ is e-convex, and the perturbation function $\Phi: X \times X \rightarrow \overline{\mathbb{R}}$ defined by

$$
\Phi(x, u):= \begin{cases}f(x+u) & \text { if } x \in A \\ +\infty & \text { otherwise }\end{cases}
$$

The Fenchel dual problem of (P) is
(D) $\operatorname{Sup}_{\substack{u^{*}, v^{*} \in X^{*} \\ \alpha>0}}-p^{c}\left(u^{*}, v^{*}, \alpha\right)=\operatorname{Sup}_{\substack{u^{*}, v^{*} \in X^{*} \\ \alpha_{1}+\alpha_{2}>0}}-f^{c}\left(u^{*}, v^{*}, \alpha_{1}\right)-\delta_{A}^{c}\left(-u^{*},-v^{*}, \alpha_{2}\right)$.

Evenly Convex Optimization

Let us consider the primal problem

$$
(P) \quad \operatorname{Inf}_{x \in A} f(x)
$$

where $f: X \rightarrow \overline{\mathbb{R}}$ is proper e-convex and $\emptyset \neq A \subset X$ is e-convex, and the perturbation function $\Phi: X \times X \rightarrow \overline{\mathbb{R}}$ defined by

$$
\Phi(x, u):= \begin{cases}f(x+u) & \text { if } x \in A \\ +\infty & \text { otherwise }\end{cases}
$$

The Fenchel dual problem of (P) is
(D) $\operatorname{Sup}_{\substack{u^{*}, v^{*} \in X^{*} \\ \alpha>0}}-p^{c}\left(u^{*}, v^{*}, \alpha\right)=\operatorname{Sup}_{\substack{u^{*}, v^{*} \in X^{*} \\ \alpha_{1}+\alpha_{2}>0}}-f^{c}\left(u^{*}, v^{*}, \alpha_{1}\right)-\delta_{A}^{c}\left(-u^{*},-v^{*}, \alpha_{2}\right)$.

Theorem

If $A \cap \operatorname{dom} f \neq \emptyset$, the set epi $f^{c}+\operatorname{epi} \delta_{A}^{c}$ is e^{\prime}-convex and $f+g=\sup \left\{a \mid a \in \widetilde{\mathcal{E}}_{f+g}\right\}$, then strong duality holds for $(P)-(D)$.

Main References

R．I．Boţ：Conjugate Duality in Convex Optimization，Lecture Notes in Economics and Mathematical Systems 637，Springer－Verlag，Berlin Heidelberg（2010）．

I．Ekeland，R．Temam：Convex Analysis and Variational Problems， North－Holland Publishing Company，Amsterdam－Oxford， 1976.

R．T．Rockafellar：Conjugate Duality and Optimization，CBMS－NSF Regional Conference Series in Applied Mathematics 16， 1974.

W．Fenchel：A remark on convex sets and polarity，Communications du Séminaire Mathématique de l＇Université de Lund，Supplement（1952），82－89．

着
R．S．Burachik，V．Jeyakumar：A new geometric condition for Fenchel＇s duality in infinite dimensional spaces，Math．Program． 104 （2005），Ser．B，229－233．

M．M．L．Rodríguez，J．Vicente－Pérez：On evenly convex functions，J．Convex Anal． 18 （2011），in press．

J．E．Martínez－Legaz，J．Vicente－Pérez：The e－support function of an e－convex set and conjugacy for e－convex functions，J．Math．Anal．Appl． 376 （2011），602－612．

夆
M．D．Fajardo，J．Vicente－Pérez，M．M．L．Rodríguez：Fenchel duality in evenly convex optimization problems．October 2010，submitted．

