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The classical Farkas�lemma

Consider the optimization problem

(P) min f (x) s.t. x 2 A,

where A is the feasible set, with ∅ 6= A � X (the decision
space), and f : X ! R is the objective function.

a 2 A is a global minimum (or minimizer) of (P) when

x 2 A) f (x) � f (a)

A Farkas-type result is a characterization of the inclusion

A � [g � 0] := fx 2 X : g (x) � 0g

By extension: each characterization of the containment of two
sets, A � B, can be seen as an extended Farkas�lemma.
The expression "Farkas�lemma" appears in the title (abstract)
of more than 50 (180) papers reviewed in MathScinet.
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The classical Farkas�lemma

Consider a particle moving within a body
F =

�
x 2 R3 : ft (x) � 0 8t 2 T

	
(T �nite, ft 2 C1

8t 2 T ) owing to the action of a conservative �eld with
potential function f 2 C1.

The set of active constraints of a 2 F is
T (a) := f t 2 T : ft (a) = 0g .

Ostrogradski asserted in 1838 that, if a 2 F is an equilibrium
point (i.e., a local minimum of f on F ), then�

x 2 R3 : hrft (a) , xi � 0 8t 2 T (a)
	

�
�
x 2 R3 : hrf (a) , xi � 0

	 (1)

(true wheneverfrft (a) , t 2 T (a)g is linearly independent).
He also asserted that

(1), �rf (a) 2 cone frft (a) , t 2 T (a)g .
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The classical Farkas�lemma

1894: the physicist Farkas observes that it is necessary to
characterize the inclusion A � [g � 0] when A is described by
means of linear functions and g is linear too.

1902: he gives the 1st correct proof of the linear/linear
Farkas�lemma: given
A = fx 2 Rn : hat , xi � 0 8t 2 Tg 6= ∅, T �nite,

A � fx 2 Rn : ha, xi � 0g
, a 2 cone fat , t 2 Tg

1911: Minkowski proves the a¢ ne/a¢ ne Farkas�lemma:
given A = fx 2 Rn : hat , xi � bt 8t 2 Tg 6= ∅, T �nite,

A � fx 2 Rn : ha, xi � bg

,
�
a
b

�
2 cone

��
at
bt

�
, t 2 T ;

�
0n
1

��
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The classical Farkas�lemma

Some standard applications of the classical Farkas�lemma:

1 Optimality in Nonlinear Programming (Kuhn-Tucker, 1951).
2 Duality theory in Linear Programming (Gale-Kuhn-Tucker,
1951).

3 Data mining (Mangasarian, 2002).
4 Economics (reviewed by Franklin, 1983).
5 Moment problems (idem).

A state-of-the-art survey at the end of the 20th Century:
Jeyakumar (2000).
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The classical Farkas�lemma
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Semi-in�nite Farkas-type results

A Farkas-type result involving

A = fx 2 X : ft (x) � 0 8t 2 Tg

is semi-in�nite when either cardT or dimX is �nite (but not
both).

1924: Haar considers X = C (I ) , where I � R is a compact
interval, equipped with the scalar product

hf , gi =
Z
I
f (s) g (s) ds, a 2 X , and

A = fx 2 X : hat , xi � 0 8t 2 Tg such that fat , t 2 Tg is
linearly independent () T �nite).

He proves the following linear/linear Farkas lemma:

A � fx 2 X : ha, xi � 0g
, a 2 cone fat , t 2 Tg
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Semi-in�nite Farkas-type results

Consider the problem

(LSIP) min hc , xi s.t. x 2 A =: fhat , xi � bt , t 2 Tg ,

where X = Rn and T is in�nite.

1969: Charnes-Cooper-Kortanek prove a strong duality
theorem for (LSIP) under the following CQ:

(FM) cone
��

at
bt

�
, t 2 T ;

�
0n
1

��
is closed.

In many LSIP applications T is compact, t 7! at and t 7! bt
are continuous, and 9x such that hat , xi < b 8t 2 T . Then
(FM) holds.
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Semi-in�nite Farkas-type results

1981: GLP take X = Rn, T arbitrary, and
A = fx 2 Rn : hat , xi � bt 8t 2 Tg 6= ∅, "showing" the
following a¢ ne/a¢ ne Farkas�lemma:

A � fx 2 Rn : ha, xi � bg

,
�
a
b

�
2 cl cone

��
at
bt

�
, t 2 T ;

�
0n
1

��
(2)

As in LP, from (2), a 2 A is a minimizer of (LSIP) i¤

�c 2 cl cone fat , t 2 T (a)g . (3)

Moreover, under the (FM) CQ, we can eliminate "cl" from
(3) (non-asymptotic optimality theorem).
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Semi-in�nite Farkas-type results

The containment of closed convex sets can be easily
characterized from the a¢ ne/a¢ ne Farkas�lemma:

De�ne the weak dual (closed) cone of a closed convex set F
as

K�F :=
��

a
b

�
2 Rn+1 : a0x � b, 8x 2 F

�
Then, given two closed convex sets F and G ,

F � G , K�G � K
�
F

The stability of the inclusion F � G is related with the
condition F � intG .
F and intG are e-convex sets (i.e., intersections of open
halfspaces).
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Semi-in�nite Farkas-type results

De�ne the strict dual (e-convex) cone of an e-convex set F as

K<F :=
��

a
b

�
2 Rn+1 : a0x < b, 8x 2 F

�

2006: GJD show that, given two e-convex sets F and G ,

F � G , K<G � K<F

Some properties of the dual cones:
clK<F = K

�
clF .

F is open i¤ K<F [ f0n+1g is closed. Then,
K<F = K

�
clF n f0n+1g .

If K<F is relatively open, then F is closed.

If F is compact, then K<F = intK�clF (open).
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If K<F is relatively open, then F is closed.

If F is compact, then K<F = intK�clF (open).
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In�nite Farkas-type results

1966: Chu considers a lcHtvs X , whose topological dual X � is
equipped with the w �� topology, T is arbitrary, a, at 2 X �,
bt , b 2 R, and A = fx 2 X : hat , xi � bt 8t 2 Tg 6= ∅.

His a�ne/a¢ ne Farkas�lemma establishes that

A � fx 2 X : ha, xi � bg
, (a, b) 2 cl cone f(at , bt ), t 2 T ; (0, 1)g

Denote by Γ (X ) the set of proper lsc convex functions from
X .

2006: DGL replace the continuous a¢ ne functionals by
elements of Γ (X ) , exploiting the fact that these functions are
the supremum of continuous a¢ ne functionals.
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In�nite Farkas-type results

More precisely, de�ning the Fenchel conjugate of h 2 Γ (X ) as

h�(u) = supfhu, xi � h(x) : x 2 dom hg,
one gets h�� = h.

Let X , X � and T be as above, f , ft 2 Γ (X ) , 8t 2 T , and
A = fx 2 X : ft (x) � 0 8t 2 Tg 6= ∅.
The convex/convex Farkas�lemma establishes that

A � [f � 0], epif � � cl cone

([
t2T

epif �t

)

This version does not provide a characterization of global
optimality.
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In�nite Farkas-type results

We say that the Farkas-Minkowski CQ holds whenever

(FM) cone

([
t2T

epif �t

)
is weak�-closed.

2007: DGLS provide the following asymptotic
convex/reverse-convex Farkas�lemma: if (FM) holds, then

A � [f � 0], 0 2 cl

 
epif � + cone

([
t2T

epif �t

)!

Recall the closedness condition of Burachik-Jeyakumar
(2005):

(CC) epif � + cl cone

([
t2T

epif �t

)
is weak�-closed
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In�nite Farkas-type results

Each of the following conditions implies (CC):

1 epif � + cone fSt2T epif �t g is weak�-closed.
2 (FM) holds and f is linear.
3 (FM) holds and f is continuous at some point of F .

2007: DGLS provide the following non-asymptotic
convex/reverse-convex Farkas�lemma: if (CC) holds, then

A � [f � 0], 0 2 epif � + cone

([
t2T
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)

Miguel A. Goberna



In�nite Farkas-type results

Each of the following conditions implies (CC):

1 epif � + cone fSt2T epif �t g is weak�-closed.

2 (FM) holds and f is linear.
3 (FM) holds and f is continuous at some point of F .

2007: DGLS provide the following non-asymptotic
convex/reverse-convex Farkas�lemma: if (CC) holds, then

A � [f � 0], 0 2 epif � + cone

([
t2T

epif �t

)

Miguel A. Goberna



In�nite Farkas-type results

Each of the following conditions implies (CC):

1 epif � + cone fSt2T epif �t g is weak�-closed.
2 (FM) holds and f is linear.

3 (FM) holds and f is continuous at some point of F .

2007: DGLS provide the following non-asymptotic
convex/reverse-convex Farkas�lemma: if (CC) holds, then

A � [f � 0], 0 2 epif � + cone

([
t2T

epif �t

)

Miguel A. Goberna



In�nite Farkas-type results

Each of the following conditions implies (CC):

1 epif � + cone fSt2T epif �t g is weak�-closed.
2 (FM) holds and f is linear.
3 (FM) holds and f is continuous at some point of F .

2007: DGLS provide the following non-asymptotic
convex/reverse-convex Farkas�lemma: if (CC) holds, then

A � [f � 0], 0 2 epif � + cone

([
t2T

epif �t

)

Miguel A. Goberna



In�nite Farkas-type results

Each of the following conditions implies (CC):

1 epif � + cone fSt2T epif �t g is weak�-closed.
2 (FM) holds and f is linear.
3 (FM) holds and f is continuous at some point of F .

2007: DGLS provide the following non-asymptotic
convex/reverse-convex Farkas�lemma: if (CC) holds, then

A � [f � 0], 0 2 epif � + cone

([
t2T

epif �t

)

Miguel A. Goberna



In�nite Farkas-type results

References
Burachik-Jeyakumar, Dual condition for the convex subdi¤erential
sum formula with applications, J. Convex Analysis 12 (2005)
279-290.
Chu, Generalization of some fundamental theorems on linear
inequalities. Acta Mathematica Sinica 16 (1966) 25-40.
Dinh-Goberna-López, From linear to convex systems: consistency,
Farkas�lemma and applications, J. Convex Analysis 13 (2006)
279-290.
Dinh-Goberna-López-Son, New Farkas-type constraint
quali�cations in convex in�nite programming, ESAIM: COCV 13
(2007) 580-597.

Miguel A. Goberna



In�nite Farkas-type results

Some sequels
Dinh-Vallet-Nghia, Farkas-type results and duality for DC programs
with convex constraints, J. Convex Anal. 15 (2008) 235-262.
Li-Ng-Pong, Constraint quali�cations for convex inequality systems
with applications in constrained optimization, SIAM J. Optim. 19
(2008) 163-187.
Fang-Li-Ng, Constraint Quali�cations for Extended Farkas�s lemma
and Lagrangian Dualities in Convex In�nite Programming, SIAM J.
Optim. 20 (2009) 1311-1332.
Jeyakumar-Li, Farkas�lemma for separable sublinear inequalities
without quali�cations, Opt. Letters 3 (2009) 537-545.

Miguel A. Goberna



In�nite Farkas-type results

Dinh-Mordukhovich-Nghia, Subdi¤erentials of value functions and
optimality conditions for DC and bilevel in�nite and semi-in�nite
programs, Math. Programming 123 (2010) 101-138.
Fang-Li-Ng, Constraint quali�cations for optimality conditions and
total Lagrange dualities in convex in�nite programming, Nonlinear
Anal. 73 (2010) 1143-1159.
Volle, Theorems of the Alternative for Multivalued Mappings and
Applications to Mixed ConvexnConcave Systems of Inequalities,
Set-Valued Var. Anal. 18 (2010) 601-616.

Miguel A. Goberna



Approximate in�nite
Farkas-type results

Miguel A. Goberna



Approximate in�nite Farkas-type results

The objective of this section is to provide very general
optimality conditions (without CQ nor CC conditions).

Let X and Z be lcHtvs with corresponding topological duals
X � and Z � endowed with the w ��topology.
Let f 2 Γ(X ), C be a closed convex set in X , and S be a
preordering closed convex cone in Z , with positive dual cone

S+ := fz� 2 Z � : hz�, si � 0, 8s 2 Sg.

Assume that H : X ! Z satis�es z� � H 2 Γ(X ) 8z� 2 S+
and A\ dom f 6= ∅, where A := C \H�1(�S).
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Approximate in�nite Farkas-type results

We need the next concepts:

Given ε � 0, the ε�subdi¤erential of h : X ! R at a 2 X is

∂εh (a) = fu 2 X � j h (x) � h (a) + hu, x � ai � ε 8x 2 Xg .

The subdi¤erential of h at a 2 X is ∂h (a) := ∂0h (a) .

The indicator function of C � X is iC (x) = 0 if x 2 C and
iC (x) = +∞ otherwise.

The ε�normal set to C at a point a 2 C is de�ned by

Nε (C , a) = ∂εiC (a) .
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Approximate in�nite Farkas-type results

2010: DGLV provide the following approximate
convex/reverse-convex Farkas�lemma :

A � [f � 0] i¤ there exists a net

(x�1i , x
�
2i , x

�
3i , z

�
i , εi )i2I � (X �)3 � S+ �R

such that

f �(x�1i ) + i
�
C (x

�
2i ) + (z

�
i � H)�(x�3i ) � εi , 8i ,

(x�1i + x
�
2i + x

�
3i , εi )! (0, 0+).

This result provides an optimality theorem for convex
optimization problems of the form

(PC) minimize f (x) s.t. x 2 C and H(x) 2 �S .
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Approximate in�nite Farkas-type results

A point a 2 A\ (dom f ) is a minimizer of (PC) i¤
there exist (ηi )i2I ! 0+ and 8i 2 I there also exist

x�1i 2 ∂ηi
f (a), x�2i 2 Nηi

(C , a), x�3i 2 ∂ηi
(z�i �H)(a), z�i 2 S+

such that
0 � hz�i ,�H(a)i � ηi , 8i ,

lim
i
(x�1i + x

�
2i + x

�
3i ) = 0.

Miguel A. Goberna



Approximate in�nite Farkas-type results

Let X , Z , C , S , A and f be as below, and let h 2 Γ(X ).

2010: DGLV provide the following approximate convex/DC
Farkas�lemma without CQ nor CC condition:

A � [f � h � 0] i¤
8x� 2 dom h�, there exists a net

(x�1i , x
�
2i , x

�
3i , z

�
i , εi )i2I � (X �)3 � S+ �R

such that

f �(x�1i ) + i
�
C (x

�
2i ) + (z

�
i � H)�(x�3i ) � h�(x�) + εi , 8i ,

(x�1i + x
�
2i + x

�
3i , εi )! (x�, 0+).
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A � [f � h � 0] i¤
8x� 2 dom h�, there exists a net

(x�1i , x
�
2i , x

�
3i , z

�
i , εi )i2I � (X �)3 � S+ �R

such that

f �(x�1i ) + i
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�
2i ) + (z

�
i � H)�(x�3i ) � h�(x�) + εi , 8i ,
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�
2i + x

�
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Approximate in�nite Farkas-type results

The corresponding optimality theorem for DC problems of the
form

(DC)
�

minimize f (x)� h(x)
s.t. x 2 C , H(x) 2 �S ,

is as follows:

A point a 2 A\ (dom f ) is a minimizer of (DC) i¤
8x� 2 dom h� there exists a net

(x�1i , x
�
2i , x

�
3i , z

�
i , εi )i2I � (X �)3 � S+ �R

satisfying

f �(x�1i )+ i
�
C (x

�
2i )+ (z

�
i �H)�(x�3i ) � h�(x�)+h (a)� f (a)+ εi , 8i ,

(x�1i + x
�
2i + x

�
3i , εi )! (x�, 0+).

Miguel A. Goberna



Approximate in�nite Farkas-type results

The corresponding optimality theorem for DC problems of the
form

(DC)
�

minimize f (x)� h(x)
s.t. x 2 C , H(x) 2 �S ,

is as follows:
A point a 2 A\ (dom f ) is a minimizer of (DC) i¤
8x� 2 dom h� there exists a net

(x�1i , x
�
2i , x

�
3i , z

�
i , εi )i2I � (X �)3 � S+ �R

satisfying

f �(x�1i )+ i
�
C (x

�
2i )+ (z

�
i �H)�(x�3i ) � h�(x�)+h (a)� f (a)+ εi , 8i ,

(x�1i + x
�
2i + x

�
3i , εi )! (x�, 0+).

Miguel A. Goberna



Approximate in�nite Farkas-type results

If a 2 A\ dom f \ dom h is a local minimum of (DC), then

∂h(a) � lim sup
η!0+

[
z �2∂η i�S (H(a))

�
∂ηf (a) + ∂η(z� � H)(a) +Nη(C , a)

	

or, equivalently, 8x� 2 ∂h(a), there exists a net

(x�1i , x
�
2i , x

�
3i , z

�
i , ηi )i2I � (X �)3 � S+ �R

such that

x�1i 2 ∂ηi
f (a), x�2i 2 Nηi

(C , a), x�3i 2 ∂ηi
(z�i � H)(a), 8i ,

0 � hz�i ,�H(a)i � ηi , 8i ,
(x�1i + x

�
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�
3i , ηi ) �! (x�, 0+).
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