Algunos resultados del tipo de Farkas

Miguel A. Goberna

Dep. de Estadística e Investigación Operativa Universidad de Alicante

VII Encuentro de Análisis Funcional y Aplicaciones Jaca, Abril 7-9, 2011.

 Ω

メロト メ都 トメ ミトメ ミト

目

- **The classical Farkas' lemma**
- Semi-infinite Farkas-type results

4日)

∢ 重

 \rightarrow

-b

∍

Þ

目

- **The classical Farkas' lemma**
- Semi-infinite Farkas-type results
- Infinite Farkas-type results

 \leftarrow

 299

∍

- **The classical Farkas' lemma**
- Semi-infinite Farkas-type results
- Infinite Farkas-type results
- Approximate infinite Farkas-type results

×.

 Ω

×.

 QQ

Miguel A. Goberna

• Consider the optimization problem

(P) min $f(x)$ s.t. $x \in A$,

 200

where A is the feasible set, with $\emptyset \neq A \subset X$ (the decision space), and $f : X \to \overline{\mathbb{R}}$ is the objective function.

• Consider the optimization problem

(P) min $f(x)$ s.t. $x \in A$,

where A is the feasible set, with $\emptyset \neq A \subset X$ (the decision space), and $f: X \to \overline{\mathbb{R}}$ is the objective function.

• $a \in A$ is a global minimum (or minimizer) of (P) when

$$
x\in A\Rightarrow f\left(x\right)\geq f\left(a\right)
$$

つくい

• Consider the optimization problem

(P) min $f(x)$ s.t. $x \in A$,

where A is the feasible set, with $\emptyset \neq A \subset X$ (the decision space), and $f: X \to \overline{\mathbb{R}}$ is the objective function.

• $a \in A$ is a global minimum (or minimizer) of (P) when

$$
x\in A\Rightarrow f\left(x\right)\geq f\left(a\right)
$$

つくい

A Farkas-type result is a characterization of the inclusion $A \subset [g \le 0] := \{x \in X : g(x) \le 0\}$

• Consider the optimization problem

(P) min $f(x)$ s.t. $x \in A$,

where A is the feasible set, with $\emptyset \neq A \subset X$ (the decision space), and $f: X \to \overline{\mathbb{R}}$ is the objective function.

• $a \in A$ is a global minimum (or minimizer) of (P) when

$$
x\in A\Rightarrow f\left(x\right)\geq f\left(a\right)
$$

- A Farkas-type result is a characterization of the inclusion $A \subset [g \le 0] := \{x \in X : g(x) \le 0\}$
- By extension: each characterization of the containment of two sets, $A \subset B$, can be seen as an extended Farkas' lemma.

• Consider the optimization problem

(P) min $f(x)$ s.t. $x \in A$,

where A is the feasible set, with $\emptyset \neq A \subset X$ (the decision space), and $f: X \to \overline{\mathbb{R}}$ is the objective function.

• $a \in A$ is a global minimum (or minimizer) of (P) when

$$
x\in A\Rightarrow f\left(x\right)\geq f\left(a\right)
$$

- A Farkas-type result is a characterization of the inclusion $A \subset [g \le 0] := \{x \in X : g(x) \le 0\}$
- By extension: each characterization of the containment of two sets, $A \subset B$, can be seen as an extended Farkas' lemma.
- **•** The expression "Farkas' lemma" appears in the title (abstract) of more than 50 (180) papers reviewed [in](#page-9-0) [M](#page-11-0)[a](#page-5-0)[t](#page-6-0)[h](#page-10-0)[S](#page-11-0)[cin](#page-0-0)[et](#page-91-0)[.](#page-0-0)

 QQ

Consider a particle moving within a body $F = \{x \in \mathbb{R}^3 : f_t(x) \le 0 \,\,\forall t \in \mathcal{T}\}\$ (*T* finite, $f_t \in \mathcal{C}^1$ $\forall t \in \mathcal{T}$) owing to the action of a conservative field with potential function $f \in \mathcal{C}^1$.

- Consider a particle moving within a body $F = \{x \in \mathbb{R}^3 : f_t(x) \le 0 \,\,\forall t \in \mathcal{T}\}\$ (*T* finite, $f_t \in \mathcal{C}^1$ $\forall t \in \mathcal{T}$) owing to the action of a conservative field with potential function $f \in \mathcal{C}^1$.
- \bullet The set of active constraints of $a \in F$ is

$$
T(a) := \{ t \in T : f_t(a) = 0 \}.
$$

つくい

- Consider a particle moving within a body $F = \{x \in \mathbb{R}^3 : f_t(x) \le 0 \,\,\forall t \in \mathcal{T}\}\$ (*T* finite, $f_t \in \mathcal{C}^1$ $\forall t \in \mathcal{T}$) owing to the action of a conservative field with potential function $f \in \mathcal{C}^1$.
- \bullet The set of active constraints of $a \in F$ is

$$
T(a) := \{ t \in T : f_t(a) = 0 \}.
$$

• Ostrogradski asserted in 1838 that, if $a \in F$ is an equilibrium point (i.e., a local minimum of f on F), then

$$
\left\{x \in \mathbb{R}^3 : \langle \nabla f_t(a), x \rangle \leq 0 \,\forall t \in \mathcal{T}(a) \right\} \qquad (1)
$$

$$
\subset \left\{x \in \mathbb{R}^3 : \langle \nabla f(a), x \rangle \geq 0 \right\}
$$

 Ω

(true whenever $\{\nabla f_t(a), t \in \mathcal{T}(a)\}\$ is linearly independent).

- Consider a particle moving within a body $F = \{x \in \mathbb{R}^3 : f_t(x) \le 0 \,\,\forall t \in \mathcal{T}\}\$ (*T* finite, $f_t \in \mathcal{C}^1$ $\forall t \in \mathcal{T}$) owing to the action of a conservative field with potential function $f \in \mathcal{C}^1$.
- \bullet The set of active constraints of $a \in F$ is

$$
T(a) := \{ t \in T : f_t(a) = 0 \}.
$$

• Ostrogradski asserted in 1838 that, if $a \in F$ is an equilibrium point (i.e., a local minimum of f on F), then

$$
\left\{x \in \mathbb{R}^3 : \langle \nabla f_t(a), x \rangle \leq 0 \,\forall t \in \mathcal{T}(a) \right\} \qquad (1)
$$

$$
\subset \left\{x \in \mathbb{R}^3 : \langle \nabla f(a), x \rangle \geq 0 \right\}
$$

モミメ モミメー

 Ω

(true whenever $\{\nabla f_t(a), t \in \mathcal{T}(a)\}\$ is linearly independent).

• He also asserted that

 $(1) \Leftrightarrow -\nabla f(a) \in \text{cone} \{ \nabla f_t(a), t \in \mathcal{T} (a) \}.$ $(1) \Leftrightarrow -\nabla f(a) \in \text{cone} \{ \nabla f_t(a), t \in \mathcal{T} (a) \}.$ $(1) \Leftrightarrow -\nabla f(a) \in \text{cone} \{ \nabla f_t(a), t \in \mathcal{T} (a) \}.$ $(1) \Leftrightarrow -\nabla f(a) \in \text{cone} \{ \nabla f_t(a), t \in \mathcal{T} (a) \}.$

• 1894: the physicist Farkas observes that it is necessary to characterize the inclusion $A \subset [g \ge 0]$ when A is described by means of linear functions and g is linear too.

つくへ

- 1894: the physicist Farkas observes that it is necessary to characterize the inclusion $A \subset [g \ge 0]$ when A is described by means of linear functions and g is linear too.
- **•** 1902: he gives the 1st correct proof of the linear/linear Farkas' lemma: given $A = \{x \in \mathbb{R}^n : \langle a_t, x \rangle \leq 0 \,\,\forall t \in \mathcal{T}\} \neq \emptyset$, T finite,

 $A \subset \{x \in \mathbb{R}^n : \langle a, x \rangle \leq 0\}$ \Leftrightarrow a \in cone $\{a_t, t \in T\}$

つくい

- 1894: the physicist Farkas observes that it is necessary to characterize the inclusion $A \subset [g > 0]$ when A is described by means of linear functions and g is linear too.
- **•** 1902: he gives the 1st correct proof of the linear/linear Farkas' lemma: given $A = \{x \in \mathbb{R}^n : \langle a_t, x \rangle \leq 0 \,\,\forall t \in \mathcal{T}\} \neq \emptyset$, T finite, $A \subset \{x \in \mathbb{R}^n : \langle a, x \rangle \leq 0\}$ \Leftrightarrow a \in cone $\{a_t, t \in T\}$
- \bullet 1911: Minkowski proves the affine/affine Farkas' lemma: given $A = \{x \in \mathbb{R}^n : \langle a_t, x \rangle \leq b_t \,\,\forall t \in \mathcal{T}\} \neq \emptyset$, T finite,

$$
A \subset \{x \in \mathbb{R}^n : \langle a, x \rangle \le b\}
$$

$$
\Leftrightarrow \left(\begin{array}{c} a \\ b \end{array}\right) \in \text{cone}\left\{\left(\begin{array}{c} a_t \\ b_t \end{array}\right), t \in \mathcal{T}; \left(\begin{array}{c} 0_n \\ 1 \end{array}\right)\right\}
$$

つくい

 \sim \sim

 299

э

1 Optimality in Nonlinear Programming (Kuhn-Tucker, 1951).

 QQ

- **1** Optimality in Nonlinear Programming (Kuhn-Tucker, 1951).
- ² Duality theory in Linear Programming (Gale-Kuhn-Tucker, 1951).

 Ω

- **1** Optimality in Nonlinear Programming (Kuhn-Tucker, 1951).
- ² Duality theory in Linear Programming (Gale-Kuhn-Tucker, 1951).

 200

³ Data mining (Mangasarian, 2002).

- **1** Optimality in Nonlinear Programming (Kuhn-Tucker, 1951).
- ² Duality theory in Linear Programming (Gale-Kuhn-Tucker, 1951).

つくい

- **3** Data mining (Mangasarian, 2002).
- **4** Economics (reviewed by Franklin, 1983).

- **1** Optimality in Nonlinear Programming (Kuhn-Tucker, 1951).
- ² Duality theory in Linear Programming (Gale-Kuhn-Tucker, 1951).

- **3** Data mining (Mangasarian, 2002).
- **4** Economics (reviewed by Franklin, 1983).
- **5** Moment problems (idem).

- **1** Optimality in Nonlinear Programming (Kuhn-Tucker, 1951).
- ² Duality theory in Linear Programming (Gale-Kuhn-Tucker, 1951).
- **3** Data mining (Mangasarian, 2002).
- **4** Economics (reviewed by Franklin, 1983).
- **5** Moment problems (idem).
	- A state-of-the-art survey at the end of the 20th Century: Jeyakumar (2000).

References

Gale-Kuhn-Tucker, Linear programming and the theory of games. In: Activity Analysis of Production and Allocation, pp. 317-329, J. Wiley, 1951.

Kuhn-Tucker, Nonlinear programming. In: Proc. 2nd Berkeley Symp. on Mathematical Statistics and Probability, pp. 481-492, UCL, 1951.

Franklin, Mathematical methods of economics, Amer. Math. Monthly 90 (1983) 229-244.

Jeyakumar, Farkas' lemma: Generalizations. In Encyclopedia of Optimization II, pp. 87- 91, Kluwer, 2001.

Mangasarian, Set containment characterization, J. Global Optim. 24 (2002) 473-480.

伊 ▶ イヨ ▶ イヨ ▶

 Ω

Miguel A. Goberna

• A Farkas-type result involving

$$
A = \{x \in X : f_t(x) \leq 0 \,\,\forall t \in \mathcal{T}\}
$$

is semi-infinite when either card T or dim X is finite (but not both).

 QQ

• A Farkas-type result involving

$$
A = \{x \in X : f_t(x) \leq 0 \,\,\forall t \in \mathcal{T}\}
$$

is semi-infinite when either card \overline{T} or dim X is finite (but not both).

• 1924: Haar considers $X = C(I)$, where $I \subset \mathbb{R}$ is a compact interval, equipped with the scalar product $\langle f, g \rangle =$ $\int f(s) g(s) ds$, $a \in X$, and $A = \{x \in X : \langle a_t, x \rangle \leq 0 \,\, \forall t \in \mathcal{T}\}$ such that $\{a_t, t \in \mathcal{T}\}$ is linearly independent (\Rightarrow T finite).

つくへ

• A Farkas-type result involving

$$
A = \{x \in X : f_t(x) \leq 0 \,\,\forall t \in \mathcal{T}\}
$$

is semi-infinite when either card \overline{T} or dim X is finite (but not both).

- \bullet 1924: Haar considers $X = C(I)$, where $I \subset \mathbb{R}$ is a compact interval, equipped with the scalar product $\langle f, g \rangle =$ $\int f(s) g(s) ds$, $a \in X$, and $A = \{x \in X : \langle a_t, x \rangle \leq 0 \,\, \forall t \in \mathcal{T}\}$ such that $\{a_t, t \in \mathcal{T}\}$ is linearly independent (\Rightarrow T finite).
- He proves the following linear/linear Farkas lemma:

 $A \subset \{x \in X : \langle a, x \rangle \leq 0\}$ \Leftrightarrow a \in cone $\{a_t, t \in T\}$

つくい

• Consider the problem

(LSIP) min $\langle c, x \rangle$ s.t. $x \in A =: \{ \langle a_t, x \rangle \leq b_t, t \in \mathcal{T} \},$ where $X = \mathbb{R}^n$ and T is infinite.

• Consider the problem

(LSIP) min $\langle c, x \rangle$ s.t. $x \in A =: \{ \langle a_t, x \rangle \leq b_t, t \in \mathcal{T} \},$

where $X = \mathbb{R}^n$ and T is infinite.

• 1969: Charnes-Cooper-Kortanek prove a strong duality theorem for (LSIP) under the following CQ:

> (FM) cone $\left\{ \begin{pmatrix} a_t \\ b_t \end{pmatrix} \right\}$ $\overline{ }$, $t \in \mathcal{T}$; $\begin{pmatrix} 0_n \end{pmatrix}$ $\begin{pmatrix} 0_n \\ 1 \end{pmatrix}$ is closed.

• Consider the problem

(LSIP) min $\langle c, x \rangle$ s.t. $x \in A =: \{ \langle a_t, x \rangle \leq b_t, t \in \mathcal{T} \},$

where $X = \mathbb{R}^n$ and T is infinite.

• 1969: Charnes-Cooper-Kortanek prove a strong duality theorem for (LSIP) under the following CQ:

(FM) cone
$$
\left\{ \begin{pmatrix} a_t \\ b_t \end{pmatrix}, t \in \mathcal{T}; \begin{pmatrix} 0_n \\ 1 \end{pmatrix} \right\}
$$
 is closed.

 \bullet In many LSIP applications T is compact, $t \mapsto a_t$ and $t \mapsto b_t$ are continuous, and $\exists \overline{x}$ such that $\langle a_t, \overline{x} \rangle < b \,\, \forall t \in \mathcal{T}$. Then (FM) holds.

1981: GLP take $X = \mathbb{R}^n$, T arbitrary, and $A = \{x \in \mathbb{R}^n : \langle a_t, x \rangle \leq b_t \,\, \forall t \in \mathcal{T} \} \neq \varnothing$, "showing" the following affine/affine Farkas' lemma:

$$
A \subset \{x \in \mathbb{R}^n : \langle a, x \rangle \le b\}
$$

\n
$$
\Leftrightarrow \begin{pmatrix} a \\ b \end{pmatrix} \in \text{clone}\left\{ \begin{pmatrix} a_t \\ b_t \end{pmatrix}, t \in \mathcal{T}; \begin{pmatrix} 0_n \\ 1 \end{pmatrix} \right\}
$$
 (2)

 Ω

1981: GLP take $X = \mathbb{R}^n$, T arbitrary, and $A = \{x \in \mathbb{R}^n : \langle a_t, x \rangle \leq b_t \,\, \forall t \in \mathcal{T} \} \neq \varnothing$, "showing" the following affine/affine Farkas' lemma:

$$
A \subset \{x \in \mathbb{R}^n : \langle a, x \rangle \le b\}
$$

\n
$$
\Leftrightarrow \begin{pmatrix} a \\ b \end{pmatrix} \in \text{clone} \left\{ \begin{pmatrix} a_t \\ b_t \end{pmatrix}, t \in \mathcal{T}; \begin{pmatrix} 0_n \\ 1 \end{pmatrix} \right\}
$$
 (2)

• As in LP, from [\(2\)](#page-33-0), $a \in A$ is a minimizer of (LSIP) iff

 $-c \in \text{cl cone}\{a_t, t \in \mathcal{T}(a)\}\,.$ (3)

1981: GLP take $X = \mathbb{R}^n$, T arbitrary, and $A = \{x \in \mathbb{R}^n : \langle a_t, x \rangle \leq b_t \,\, \forall t \in \mathcal{T} \} \neq \varnothing$, "showing" the following affine/affine Farkas' lemma:

$$
A \subset \{x \in \mathbb{R}^n : \langle a, x \rangle \le b\}
$$

\n
$$
\Leftrightarrow \begin{pmatrix} a \\ b \end{pmatrix} \in \text{clone} \left\{ \begin{pmatrix} a_t \\ b_t \end{pmatrix}, t \in \mathcal{T}; \begin{pmatrix} 0_n \\ 1 \end{pmatrix} \right\}
$$
 (2)

• As in LP, from [\(2\)](#page-33-0), $a \in A$ is a minimizer of (LSIP) iff

 $-c \in \text{cl cone}\{a_t, t \in \mathcal{T}(a)\}\,.$ (3)

つくい

• Moreover, under the (FM) CQ, we can eliminate "cl" from [\(3\)](#page-33-1) (non-asymptotic optimality theorem).
• The containment of closed convex sets can be easily characterized from the affine/affine Farkas' lemma:

 Ω

- The containment of closed convex sets can be easily characterized from the affine/affine Farkas' lemma:
- \bullet Define the weak dual (closed) cone of a closed convex set F as

$$
\mathcal{K}_F^{\leq} := \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^{n+1} : a'x \leq b, \ \forall x \in F \right\}
$$

 Ω

- The containment of closed convex sets can be easily characterized from the affine/affine Farkas' lemma:
- Define the weak dual (closed) cone of a closed convex set F as

$$
\mathcal{K}_F^{\leq} := \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^{n+1} : a'x \leq b, \ \forall x \in F \right\}
$$

 \bullet Then, given two closed convex sets F and G,

 $F\subset G \Leftrightarrow K_G^{\geq}\subset K_F^{\geq}$

- The containment of closed convex sets can be easily characterized from the affine/affine Farkas' lemma:
- \bullet Define the weak dual (closed) cone of a closed convex set F as

$$
\mathcal{K}_F^{\leq} := \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^{n+1} : a'x \leq b, \ \forall x \in F \right\}
$$

 \bullet Then, given two closed convex sets F and G,

 $F\subset G \Leftrightarrow K_G^{\geq}\subset K_F^{\geq}$

 200

• The stability of the inclusion $F\subset G$ is related with the condition $F \subset \text{int } G$.

- The containment of closed convex sets can be easily characterized from the affine/affine Farkas' lemma:
- \bullet Define the weak dual (closed) cone of a closed convex set F as

$$
\mathcal{K}_F^{\leq} := \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^{n+1} : a'x \leq b, \ \forall x \in F \right\}
$$

 \bullet Then, given two closed convex sets F and G,

 $F\subset G \Leftrightarrow K_G^{\geq}\subset K_F^{\geq}$

- \bullet The stability of the inclusion $F\subset G$ is related with the condition $F \subset \text{int }G$.
- \bullet F and int G are e-convex sets (i.e., intersections of open halfspaces). 御き メミメ メミメー

 \bullet Define the strict dual (e-convex) cone of an e-convex set F as

$$
\mathcal{K}_F^{\leq} := \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^{n+1} : a'x < b, \ \forall x \in F \right\}
$$

つくへ

 \bullet Define the strict dual (e-convex) cone of an e-convex set F as

$$
\mathcal{K}_F^{\leq} := \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^{n+1} : a'x < b, \ \forall x \in F \right\}
$$

• 2006: GJD show that, given two e-convex sets F and G ,

 $F\subset G \Leftrightarrow K_G^{\leq}\subset K_F^{\leq}$

 Ω

 \bullet Define the strict dual (e-convex) cone of an e-convex set F as

$$
\mathcal{K}_F^{\leq} := \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^{n+1} : a'x < b, \ \forall x \in F \right\}
$$

 \bullet 2006: GJD show that, given two e-convex sets F and G,

 $F\subset G \Leftrightarrow K_G^{\leq}\subset K_F^{\leq}$

 200

• Some properties of the dual cones:

 \bullet Define the strict dual (e-convex) cone of an e-convex set F as

$$
\mathcal{K}_F^{\leq} := \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^{n+1} : a'x < b, \ \forall x \in F \right\}
$$

 \bullet 2006: GJD show that, given two e-convex sets F and G,

 $F\subset G \Leftrightarrow K_G^{\leq}\subset K_F^{\leq}$

- Some properties of the dual cones:
- $\mathsf{cl}\, \mathsf{K}_{\mathsf{F}}^{\leq} = \mathsf{K}_{\mathsf{cl}\, \mathsf{F}}^{\leq}.$

 \bullet Define the strict dual (e-convex) cone of an e-convex set F as

$$
\mathcal{K}_F^{\leq} := \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^{n+1} : a'x < b, \ \forall x \in F \right\}
$$

• 2006: GJD show that, given two e-convex sets F and G ,

 $F\subset G \Leftrightarrow K_G^{\leq}\subset K_F^{\leq}$

- Some properties of the dual cones:
- $\mathsf{cl}\, \mathsf{K}_{\mathsf{F}}^{\leq} = \mathsf{K}_{\mathsf{cl}\, \mathsf{F}}^{\leq}.$
- F is open iff $K_F^{\leq} \cup \{0_{n+1}\}$ is closed. Then, $K_F^{\leq} = K_{\text{cl }F}^{\leq} \setminus \{0_{n+1}\}.$

 \bullet Define the strict dual (e-convex) cone of an e-convex set F as

$$
\mathcal{K}_F^{\leq} := \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^{n+1} : a'x < b, \ \forall x \in F \right\}
$$

• 2006: GJD show that, given two e-convex sets F and G ,

 $F\subset G \Leftrightarrow K_G^{\leq}\subset K_F^{\leq}$

- Some properties of the dual cones:
- $\mathsf{cl}\, \mathsf{K}_{\mathsf{F}}^{\leq} = \mathsf{K}_{\mathsf{cl}\, \mathsf{F}}^{\leq}.$
- F is open iff $K_F^{\leq} \cup \{0_{n+1}\}$ is closed. Then, $K_F^{\leq} = K_{\text{cl }F}^{\leq} \setminus \{0_{n+1}\}.$
- If K_F^{\leq} is relatively open, then F is closed.

 \bullet Define the strict dual (e-convex) cone of an e-convex set F as

$$
\mathcal{K}_F^{\leq} := \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^{n+1} : a'x < b, \ \forall x \in F \right\}
$$

• 2006: GJD show that, given two e-convex sets F and G ,

 $F\subset G \Leftrightarrow K_G^{\leq}\subset K_F^{\leq}$

- Some properties of the dual cones:
- $\mathsf{cl}\, \mathsf{K}_{\mathsf{F}}^{\leq} = \mathsf{K}_{\mathsf{cl}\, \mathsf{F}}^{\leq}.$
- F is open iff $K_F^{\leq} \cup \{0_{n+1}\}$ is closed. Then, $K_F^{\leq} = K_{\text{cl }F}^{\leq} \setminus \{0_{n+1}\}.$
- If K_F^{\leq} is relatively open, then F is closed.
- If F is compact, then $K_F^{\leq} = \text{int } K_{\text{cl }F}^{\leq}$ ([ope](#page-46-0)[n\)](#page-48-0)[.](#page-40-0)

References

Charnes-Cooper-Kortanek, On the theory of semi-infinite programming and a generalization of the Kuhn-Tucker saddle point theorem for arbitrary convex functions, Naval Res. Logist. Quart. 16 (1969) 41-51. Goberna-LÛpez-Pastor, J. Farkas-Minkowski systems in semi-infinite programming, Appl. Math. Optim. 7 (1981) 295–308. Goberna-Jeyakumar-Dinh (2006), Dual characterizations of set containments with strict convex inequalities. J. Global Optim. 34, 33-54.

つくい

Some sequels

Tapia-Trosset, An extension of the Karush-Kuhn-Tucker necessity conditions to infinite programming, SIAM Review 36 (1994) 1-17. Li-Nahak-Singer, Constraint qualifications for semi-infinite systems of convex inequalities, SIAM J. Optim. 11 (2000) 31-52. Jeyakumar, Characterizing set containments involving infinite convex constraints and reverse-convex constraints. SIAM J. Optim. 13 (2003) 947-959.

Doagooei-Mohebi, Dual characterizations of the set containments with strict cone-convex inequalities in Banach spaces, J. Global Optim. 43 (2009) 577-591.

Suzuki-Kuroiwa, Set containment characterization for quasiconvex programming, J. Global Optim. 45 (2009) 551-563.

Suzuki, Set containment characterization with strict and weak quasiconvex inequalities, J. Global Optim. 47 (2010) 273-285.

 200

Miguel A. Goberna

1966: Chu considers a IcHtvs X , whose topological dual X^\ast is equipped with the w^* topology, \overline{T} is arbitrary, $a, a_t \in X^*$, $b_t, b \in \mathbb{R}$, and $A = \{x \in X : \langle a_t, x \rangle \leq b_t \,\,\forall t \in \mathcal{T}\}\neq \emptyset$.

 Ω

- 1966: Chu considers a IcHtvs X , whose topological dual X^\ast is equipped with the w^* topology, \overline{T} is arbitrary, $a, a_t \in X^*$, $b_t, b \in \mathbb{R}$, and $A = \{x \in X : \langle a_t, x \rangle \leq b_t \,\,\forall t \in \mathcal{T}\}\neq \emptyset$.
- His afine/affine Farkas' lemma establishes that

 $A \subset \{x \in X : \langle a, x \rangle \leq b\}$ \Leftrightarrow $(a, b) \in$ cl cone $\{(a_t, b_t), t \in \mathcal{T}; (0, 1)\}$

- 1966: Chu considers a IcHtvs X , whose topological dual X^\ast is equipped with the w^* topology, \overline{T} is arbitrary, $a, a_t \in X^*$, $b_t, b \in \mathbb{R}$, and $A = \{x \in X : \langle a_t, x \rangle \leq b_t \,\,\forall t \in \mathcal{T}\}\neq \emptyset$.
- His afine/affine Farkas' lemma establishes that

$$
A \subset \{x \in X : \langle a, x \rangle \le b\}
$$

\n
$$
\Leftrightarrow (a, b) \in \text{clone } \{(a_t, b_t), t \in T; (0, 1)\}
$$

• Denote by $\Gamma(X)$ the set of proper lsc convex functions from X.

- 1966: Chu considers a IcHtvs X , whose topological dual X^\ast is equipped with the w^* topology, \overline{T} is arbitrary, $a, a_t \in X^*$, $b_t, b \in \mathbb{R}$, and $A = \{x \in X : \langle a_t, x \rangle \leq b_t \,\,\forall t \in \mathcal{T}\}\neq \emptyset$.
- His afine/affine Farkas' lemma establishes that

$$
A \subset \{x \in X : \langle a, x \rangle \le b\}
$$

\n
$$
\Leftrightarrow (a, b) \in \text{clone } \{(a_t, b_t), t \in T; (0, 1)\}
$$

- Denote by $\Gamma(X)$ the set of proper lsc convex functions from X.
- \bullet 2006: DGL replace the continuous affine functionals by elements of $\Gamma(X)$, exploiting the fact that these functions are the supremum of continuous affine functionals.

• More precisely, defining the Fenchel conjugate of $h \in \Gamma(X)$ as

$$
h^*(u) = \sup\{\langle u, x \rangle - h(x) : x \in \text{dom } h\},\
$$

one gets $h^{**} = h$.

• More precisely, defining the Fenchel conjugate of $h \in \Gamma(X)$ as

$$
h^*(u) = \sup\{\langle u, x\rangle - h(x) : x \in \text{dom } h\},\
$$

one gets $h^{**} = h$.

Let X, X^* and T be as above, $f, f_t \in \Gamma(X)$, $\forall t \in T$, and $A = \{x \in X : f_t(x) \leq 0 \,\forall t \in \mathcal{T}\}\neq \emptyset.$

• More precisely, defining the Fenchel conjugate of $h \in \Gamma(X)$ as

$$
h^*(u) = \sup\{\langle u, x \rangle - h(x) : x \in \text{dom } h\},\
$$

one gets $h^{**} = h$.

- Let X, X^* and T be as above, $f, f_t \in \Gamma(X)$, $\forall t \in T$, and $A = \{x \in X : f_t(x) \leq 0 \,\forall t \in \mathcal{T}\}\neq \emptyset.$
- \bullet The convex/convex Farkas' lemma establishes that

$$
A \subset [f \leq 0] \Leftrightarrow \text{epi} f^* \subset \text{cl cone}\left\{\bigcup_{t \in \mathcal{T}} \text{epi} f_t^*\right\}
$$

つくい

• More precisely, defining the Fenchel conjugate of $h \in \Gamma(X)$ as

$$
h^*(u) = \sup\{\langle u, x\rangle - h(x) : x \in \text{dom } h\},\
$$

one gets $h^{**} = h$.

- Let X, X^* and T be as above, $f, f_t \in \Gamma(X)$, $\forall t \in T$, and $A = \{x \in X : f_t(x) \leq 0 \,\forall t \in \mathcal{T}\}\neq \emptyset.$
- \bullet The convex/convex Farkas' lemma establishes that

$$
A \subset [f \leq 0] \Leftrightarrow \text{epi} f^* \subset \text{cl cone}\left\{\bigcup_{t \in \mathcal{T}} \text{epi} f_t^*\right\}
$$

つくい

This version does not provide a characterization of global optimality.

• We say that the Farkas-Minkowski CQ holds whenever (FM) cone $\left\{\bigcup\right\}$ $t\in T$ $epif_t^*$) is weak -closed.

つくへ

• We say that the Farkas-Minkowski CQ holds whenever (FM) cone $\left\{\bigcup\right\}$ $t\in T$ $epif_t^*$) is weak -closed.

• 2007: DGLS provide the following asymptotic $convex/reverse-convex Farkas' lemma:$ if (FM) holds, then

$$
A \subset [f \geq 0] \Leftrightarrow 0 \in \text{cl}\left(\text{epi}f^* + \text{cone}\left\{\bigcup_{t \in \mathcal{T}} \text{epi}f_t^*\right\}\right)
$$

つくい

• We say that the Farkas-Minkowski CQ holds whenever (FM) cone $\left\{\bigcup\right\}$ $t\in T$ $epif_t^*$) is weak -closed.

• 2007: DGLS provide the following asymptotic $convex/reverse-convex Farkas' lemma:$ if (FM) holds, then

$$
A \subset [f \geq 0] \Leftrightarrow 0 \in \text{cl}\left(\text{epi}f^* + \text{cone}\left\{\bigcup_{t \in \mathcal{T}} \text{epi}f_t^*\right\}\right)
$$

 \bullet Recall the closedness condition of Burachik-Jeyakumar (2005):

(CC)
$$
\operatorname{epi} t^* + \operatorname{cl} \operatorname{cone} \left\{ \bigcup_{t \in \mathcal{T}} \operatorname{epi} f_t^* \right\}
$$
 is weak*-closed

つくい

• Each of the following conditions implies (CC):

 299

∍

 \sim \sim

- Each of the following conditions implies (CC):
- **D** epi f^* + cone $\{\bigcup_{t \in \mathcal{T}} \text{epi} f_t^*\}$ is weak*-closed.

- Each of the following conditions implies (CC):
- **D** epi f^* + cone $\{\bigcup_{t \in \mathcal{T}} \text{epi} f_t^*\}$ is weak*-closed.
- **2** (FM) holds and f is linear.

 Ω

- \bullet Each of the following conditions implies (CC) :
- **D** epi f^* + cone $\{\bigcup_{t \in \mathcal{T}} \text{epi} f_t^*\}$ is weak*-closed.
- \bullet (FM) holds and f is linear.
- \bullet (FM) holds and f is continuous at some point of F.

- \bullet Each of the following conditions implies (CC) :
- **D** epi f^* + cone $\{\bigcup_{t \in \mathcal{T}} \text{epi} f_t^*\}$ is weak*-closed.
- **2** (FM) holds and f is linear.
- \bullet (FM) holds and f is continuous at some point of F.
	- 2007: DGLS provide the following non-asymptotic convex/reverse-convex Farkas' lemma: if (CC) holds, then

$$
A \subset [f \geq 0] \Leftrightarrow 0 \in \text{epi}f^* + \text{cone}\left\{\bigcup_{t \in \mathcal{T}} \text{epi}f_t^*\right\}
$$

つくい

References

Burachik-Jeyakumar, Dual condition for the convex subdifferential sum formula with applications, J. Convex Analysis 12 (2005) 279-290.

Chu, Generalization of some fundamental theorems on linear inequalities. Acta Mathematica Sinica 16 (1966) 25-40. Dinh-Goberna-López, From linear to convex systems: consistency, Farkas' lemma and applications, J. Convex Analysis 13 (2006) 279-290.

Dinh-Goberna-López-Son, New Farkas-type constraint qualifications in convex infinite programming, *ESAIM: COCV* 13 (2007) 580-597.

Some sequels

Dinh-Vallet-Nghia, Farkas-type results and duality for DC programs with convex constraints, J. Convex Anal. 15 (2008) 235-262.

Li-Ng-Pong, Constraint qualifications for convex inequality systems with applications in constrained optimization, SIAM J. Optim. 19 (2008) 163-187.

Fang-Li-Ng, Constraint Qualifications for Extended Farkas's lemma and Lagrangian Dualities in Convex Infinite Programming, SIAM J. Optim. 20 (2009) 1311-1332.

伊 ▶ イヨ ▶ イヨ ▶

 200

Jeyakumar-Li, Farkas' lemma for separable sublinear inequalities without qualifications, $Opt.$ Letters 3 (2009) 537-545.

Dinh-Mordukhovich-Nghia, Subdifferentials of value functions and optimality conditions for DC and bilevel infinite and semi-infinite programs, Math. Programming 123 (2010) 101-138.

Fang-Li-Ng, Constraint qualifications for optimality conditions and total Lagrange dualities in convex infinite programming, Nonlinear Anal. 73 (2010) 1143-1159.

Volle, Theorems of the Alternative for Multivalued Mappings and Applications to Mixed Convex \setminus Concave Systems of Inequalities, Set-Valued Var. Anal. 18 (2010) 601-616.

つくい

Approximate infinite Farkas-type results

Approximate infinite Farkas-type results

• The objective of this section is to provide very general optimality conditions (without CQ nor CC conditions).

 Ω
- The objective of this section is to provide very general optimality conditions (without CQ nor CC conditions).
- Let X and Z be IcHtvs with corresponding topological duals X^* and Z^* endowed with the w^* —topology.

- The objective of this section is to provide very general optimality conditions (without CQ nor CC conditions).
- Let X and Z be IcHtvs with corresponding topological duals X^* and Z^* endowed with the w^* —topology.
- Let $f \in \Gamma(X)$, C be a closed convex set in X, and S be a preordering closed convex cone in Z , with *positive dual cone*

$$
S^+:=\{z^*\in Z^*\;:\;\langle z^*,s\rangle\geq 0,\;\forall s\in S\}.
$$

- The objective of this section is to provide very general optimality conditions (without CQ nor CC conditions).
- Let X and Z be IcHtvs with corresponding topological duals X^* and Z^* endowed with the w^* —topology.
- Let $f \in \Gamma(X)$, C be a closed convex set in X, and S be a preordering closed convex cone in Z , with *positive dual cone*

$$
S^+:=\{z^*\in Z^*\;:\;\langle z^*,s\rangle\geq 0,\;\forall s\in S\}.
$$

つくい

Assume that $\mathcal{H} : X \to Z$ satisfies $z^* \circ \mathcal{H} \in \Gamma(X) \,\,\forall z^* \in S^+$ and $A \cap \text{dom } f \neq \emptyset$, where $A := C \cap \mathcal{H}^{-1}(-S)$.

We need the next concepts:

 299

э

B

 \sim \sim

- We need the next concepts:
- **•** Given $\varepsilon \geq 0$, the ε -subdifferential of $h : X \to \overline{\mathbb{R}}$ at $a \in X$ is

$$
\partial_{\varepsilon}h(a)=\left\{u\in X^*\mid h(x)\geq h(a)+\langle u,x-a\rangle-\varepsilon\,\,\forall x\in X\right\}.
$$

 Ω

- We need the next concepts:
- **•** Given $\varepsilon \geq 0$, the ε -subdifferential of $h : X \to \overline{\mathbb{R}}$ at $a \in X$ is

$$
\partial_{\varepsilon}h(a)=\left\{u\in X^*\mid h(x)\geq h(a)+\langle u,x-a\rangle-\varepsilon\,\,\forall x\in X\right\}.
$$

つくい

• The subdifferential of h at $a \in X$ is $\partial h(a) := \partial_0 h(a)$.

- We need the next concepts:
- **•** Given $\epsilon \geq 0$, the ϵ -subdifferential of $h: X \to \overline{\mathbb{R}}$ at $a \in X$ is

$$
\partial_{\varepsilon}h(a)=\left\{u\in X^*\mid h(x)\geq h(a)+\langle u,x-a\rangle-\varepsilon\,\,\forall x\in X\right\}.
$$

- **•** The subdifferential of h at $a \in X$ is $\partial h(a) := \partial_0 h(a)$.
- The *indicator function* of $C \subset X$ is $i_C(x) = 0$ if $x \in C$ and $i_C(x) = +\infty$ otherwise.

- We need the next concepts:
- **•** Given $\varepsilon \geq 0$, the ε -subdifferential of $h: X \to \overline{\mathbb{R}}$ at $a \in X$ is

$$
\partial_{\varepsilon}h(a)=\left\{u\in X^*\mid h(x)\geq h(a)+\langle u,x-a\rangle-\varepsilon\,\,\forall x\in X\right\}.
$$

- **•** The subdifferential of h at $a \in X$ is $\partial h(a) := \partial_0 h(a)$.
- The *indicator function* of $C \subset X$ is $i_C(x) = 0$ if $x \in C$ and $i_C(x) = +\infty$ otherwise.
- The ε -normal set to C at a point $a \in C$ is defined by

$$
N_{\varepsilon}\left(\mathbf{\mathit{C}},a\right)=\partial_{\varepsilon}i_{\mathbf{\mathit{C}}}\left(a\right).
$$

• 2010: DGLV provide the following approximate convex/reverse-convex Farkas' lemma :

 Ω

- 2010: DGLV provide the following approximate convex/reverse-convex Farkas' lemma :
- \bullet A \subset $\lceil f \geq 0 \rceil$ iff there exists a net

 $(x_{1i}^*, x_{2i}^*, x_{3i}^*, z_i^*, \varepsilon_i)_{i \in I} \subset (X^*)^3 \times S^+ \times \mathbb{R}$

such that

 $f^{*}(x_{1i}^{*})+i_{\mathcal{C}}^{*}(x_{2i}^{*})+(z_{i}^{*}\circ \mathcal{H})^{*}(x_{3i}^{*})\leq \varepsilon_{i}, \forall i,$ $(x_{1i}^* + x_{2i}^* + x_{3i}^*, \varepsilon_i) \rightarrow (0, 0_+).$

- 2010: DGLV provide the following approximate convex/reverse-convex Farkas' lemma :
- \bullet A \subset $\lceil f \geq 0 \rceil$ iff there exists a net

 $(x_{1i}^*, x_{2i}^*, x_{3i}^*, z_i^*, \varepsilon_i)_{i \in I} \subset (X^*)^3 \times S^+ \times \mathbb{R}$

such that

 $f^{*}(x_{1i}^{*})+i_{\mathcal{C}}^{*}(x_{2i}^{*})+(z_{i}^{*}\circ \mathcal{H})^{*}(x_{3i}^{*})\leq \varepsilon_{i}, \forall i,$ $(x_{1i}^* + x_{2i}^* + x_{3i}^*, \varepsilon_i) \rightarrow (0, 0_+).$

• This result provides an optimality theorem for convex optimization problems of the form

(PC) minimize $f(x)$ s.t. $x \in C$ and $\mathcal{H}(x) \in -S$.

 \bullet A point $a \in A \cap (\text{dom } f)$ is a minimizer of (PC) iff there exist $(\eta_i)_{i \in I} \to 0_+$ and $\forall i \in I$ there also exist

 $x_{1i}^* \in \partial_{\eta_i} f(a), x_{2i}^* \in N_{\eta_i}(C, a), x_{3i}^* \in \partial_{\eta_i} (z_i^* \circ \mathcal{H})(a), z_i^* \in S^+$

such that

$$
0\leq \langle z_i^*, -\mathcal{H}(a)\rangle \leq \eta_i, \forall i,
$$

 $\lim_{i} (x_{1i}^{*} + x_{2i}^{*} + x_{3i}^{*}) = 0.$

• Let X, Z, C, S, A and f be as below, and let $h \in \Gamma(X)$.

 299

- 4 三 ト 3

- Let X, Z, C, S, A and f be as below, and let $h \in \Gamma(X)$.
- 2010: DGLV provide the following approximate convex/DC Farkas' lemma without CQ nor CC condition:

つくへ

- Let X, Z, C, S, A and f be as below, and let $h \in \Gamma(X)$.
- 2010: DGLV provide the following approximate convex/DC Farkas' lemma without CQ nor CC condition:
- \bullet A \subset $\lceil f h \rangle$ 0] iff $\forall x^* \in \text{dom } h^*$, there exists a net

 $(x_{1i}^*, x_{2i}^*, x_{3i}^*, z_i^*, \varepsilon_i)_{i \in I} \subset (X^*)^3 \times S^+ \times \mathbb{R}$

such that

 $f^{*}(x_{1i}^{*})+i_{\mathcal{C}}^{*}(x_{2i}^{*})+(z_{i}^{*}\circ\mathcal{H})^{*}(x_{3i}^{*})\leq h^{*}(x^{*})+\varepsilon_{i}, \forall i,$

$$
(x_{1i}^* + x_{2i}^* + x_{3i}^*, \varepsilon_i) \to (x^*, 0_+).
$$

• The corresponding optimality theorem for DC problems of the form

(DC)
$$
\begin{cases} \text{minimize} & f(x) - h(x) \\ \text{s.t.} & x \in \mathcal{C}, \ \mathcal{H}(x) \in -S, \end{cases}
$$

 2990

is as follows:

• The corresponding optimality theorem for DC problems of the form

(DC)
$$
\begin{cases} \text{minimize} & f(x) - h(x) \\ \text{s.t.} & x \in \mathcal{C}, \ \mathcal{H}(x) \in -S, \end{cases}
$$

is as follows:

 \bullet A point $a \in A \cap (\text{dom } f)$ is a minimizer of (DC) iff $\forall x^* \in \text{dom } h^*$ there exists a net

$$
(x_{1i}^*, x_{2i}^*, x_{3i}^*, z_i^*, \varepsilon_i)_{i \in I} \subset (X^*)^3 \times S^+ \times \mathbb{R}
$$

satisfying

 $f^*(x_{1i}^*) + i^*_{\mathcal{C}}(x_{2i}^*) + (z_i^* \circ \mathcal{H})^*(x_{3i}^*) \leq h^*(x^*) + h(a) - f(a) + \varepsilon_i, \forall i,$

$$
(x_{1i}^* + x_{2i}^* + x_{3i}^*, \varepsilon_i) \to (x^*, 0_+).
$$

• If $a \in A \cap \text{dom } f \cap \text{dom } h$ is a local minimum of (DC) , then

∂h(*a*) ⊂ lim sup
 η→0₊ \blacksquare $z^*\in\partial_\eta i_{-S}(\mathcal{H}(a))$ $\{\partial_{\eta} f(a) + \partial_{\eta}(z^* \circ \mathcal{H})(a) + N_{\eta}(C, a)\}$

- If $a \in A \cap \text{dom } f \cap \text{dom } h$ is a local minimum of (DC) , then *∂h*(*a*) ⊂ lim sup
 η→0₊ \blacksquare $z^*\in\partial_\eta i_{-S}(\mathcal{H}(a))$ $\{\partial_{\eta} f(a) + \partial_{\eta}(z^* \circ \mathcal{H})(a) + N_{\eta}(C, a)\}$
- or, equivalently, $\forall x^* \in \partial h(a)$, there exists a net

$$
(x_{1i}^*, x_{2i}^*, x_{3i}^*, z_i^*, \eta_i)_{i \in I} \subset (X^*)^3 \times S^+ \times \mathbb{R}
$$

such that

$$
x_{1i}^* \in \partial_{\eta_i} f(a), \ x_{2i}^* \in N_{\eta_i}(C, a), \ x_{3i}^* \in \partial_{\eta_i} (z_i^* \circ \mathcal{H})(a), \ \forall i,
$$

$$
0 \leq \langle z_i^*, -\mathcal{H}(a) \rangle \leq \eta_i, \ \forall i,
$$

$$
(x_{1i}^* + x_{2i}^* + x_{3i}^*, \eta_i) \longrightarrow (x^*, 0_+).
$$

 Ω

Dinh-Goberna-López-Volle, Convex inequalities without constraint qualification nor closedness condition, and their applications in optimization. Set-Valued and Var. Anal. 18 (2010) 423-445.