Cardinal Invariants, Embeddings and Domination in Function Spaces

David Guerrero Sánchez

Advisors: A. Avilés, B. Cascales, V. Tkachuk

UAMI UMU

2011

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination

Contents

Introduction

- Notation and terminology
- Ph.D Dissertation

2 Cardinal Invariants

- Closure-preserving covers by closed subspaces
- General closure-preserving covers of $C_p(X)$

Open problems

References

Notation and terminology Ph.D Dissertation

Definitions

Every topological space in this presentation is assumed to be Tychonoff. The set of real numbers with the natural topology is denoted by \mathbb{R} and the interval $[0, 1] \subset \mathbb{R}$ is represented by \mathbb{I} . For a space X the family of all subsets of X is denoted by exp(X), the family of all open subsets of X is denoted by $\tau(X)$ and the family of all compact subspaces of X is denoted by K(X). The space of all continuous functions from a space X into a space Y, endowed with the topology inherited from the product space Y^X , is denoted by $C_p(X, Y)$. On the other hand, $C_u(X)$ is the space of all continuous real-valued functions on a space X, with the topology of uniform convergence.

Notation and terminology Ph.D Dissertation

Definitions

A continuous bijection is called a condensation. A compact valued map $\varphi: Y \to exp(X)$ is called upper semicontinuous, abbreviated by usco, if for every $U \in \tau(X)$ the set $\{y \in Y : \varphi(y) \subset U\}$ is open in Y. An usco map $\varphi : Y \to exp(X)$ is onto if the family $\{\varphi(y) : y \in Y\}$ covers the space X. A space Y dominates a space X if there is a cover $C = \{F_K : K \in \mathcal{K}(Y)\} \subset \mathcal{K}(X)$ of X such that $K \subset L$ implies $F_K \subset F_L$. A cover \mathcal{F} of a space X is closed if every $F \in \mathcal{F}$ is closed in X; we call \mathcal{F} closure-preserving if $\overline{[] \{F : F \in \mathcal{F}'\}} = [] \{\overline{F} : F \in \mathcal{F}'\}$ for any $\mathcal{F}' \subset \mathcal{F}$.

Notation and terminology Ph.D Dissertation

On progress

Lines of research

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination

(日)

E

Notation and terminology Ph.D Dissertation

On progress

Lines of research

(a) Metric and Domination indexes of function spaces.

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination

(日)

Notation and terminology Ph.D Dissertation

On progress

Lines of research

- (a) Metric and Domination indexes of function spaces.
- (b) Embeddings in spaces of the form C_p(K) for some compact space K.

(日)

Notation and terminology Ph.D Dissertation

On progress

Lines of research

- (a) Metric and Domination indexes of function spaces.
- (b) Embeddings in spaces of the form C_p(K) for some compact space K.
- (c) Cardinal invariants under closure-preserving covers of function spaces.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Notation and terminology Ph.D Dissertation

Indexes

Definitions

For a space X the following topological cardinals are defined:

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination

(日)

E

Notation and terminology Ph.D Dissertation

Indexes

Definitions For a space X the following topological cardinals are defined: (a) (**Muñoz**) The Lindelöf Σ index of X is denoted by $I\Sigma(X)$ and defined by $I\Sigma(X) = min\{w(M) : M \text{ is a metric space and } M \in \mathbb{N}\}$ there is a usco onto map $\varphi : M \to \exp(X)$.

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination

Notation and terminology Ph.D Dissertation

Indexes

Definitions

For a space X the following topological cardinals are defined:

- (a) (*Muñoz*) The Lindelöf Σ index of X is denoted by $I\Sigma(X)$ and defined by $I\Sigma(X) = min\{w(M) : M \text{ is a metric space and there is a usco onto map <math>\varphi : M \to \exp(X)\}.$
- (b) (*Tkachuk*)The metric index of X is denoted by mi(X) and defined by mi(X) = min{w(M) : M is a metric space and there is a condensation φ : M → X}.

Notation and terminology Ph.D Dissertation

Indexes

Definitions

For a space X the following topological cardinals are defined:

- (a) (*Muñoz*) The Lindelöf Σ index of X is denoted by $I\Sigma(X)$ and defined by $I\Sigma(X) = min\{w(M) : M \text{ is a metric space and there is a usco onto map <math>\varphi : M \to \exp(X)\}.$
- (b) (*Tkachuk*)The metric index of X is denoted by mi(X) and defined by mi(X) = min{w(M) : M is a metric space and there is a condensation φ : M → X}.
- (c) (*Guerrero*)The domination index of X is denoted by dm(X)and defined by $dm(X) = min\{w(M) : M \text{ dominates } X\}$.

Notation and terminology Ph.D Dissertation

Indexes

First results

For a compact space K the following hold:

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination

() < </p>

Notation and terminology Ph.D Dissertation

Indexes

First results

For a compact space K the following hold:

(a) The space $I\Sigma(C_p(K)) = dm(C_p(K))$

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination

(日)

Notation and terminology Ph.D Dissertation

Indexes

First results

For a compact space K the following hold:

(a) The space $I\Sigma(C_p(K)) = dm(C_p(K))$

(b) If K is fragmentable then $mi(K) \le w(K)$

(日)

Notation and terminology Ph.D Dissertation

A discrete version of wJNR vs σ -fagmentability

A problem of Arkhangelskii-Haydon

Is every Eberlein-Grothendieck scattered space σ -discrete?

・ロ・ ・ 四・ ・ 回・ ・ 日・

Notation and terminology Ph.D Dissertation

A discrete version of wJNR vs σ -fagmentability

A problem of Arkhangelskii-Haydon

Is every Eberlein-Grothendieck scattered space σ -discrete?

Partial answer

Every Eberlein-Grothendieck locally countable scattered space is σ -discrete.

Closure-preserving covers by closed subspaces General closure-preserving covers of $\mathcal{C}_{\rho}(X)$

Another question of Arkhangelskii

When is $C_{\rho}(X) \sigma$ -compact?

For a space X the following conditions are equivalent:

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination

(日)

Closure-preserving covers by closed subspaces General closure-preserving covers of $\mathcal{C}_{\rho}(X)$

Another question of Arkhangelskii

When is $C_{\rho}(X) \sigma$ -compact?

For a space X the following conditions are equivalent:

(a) (**Velichko**) The space $C_p(X) = \bigcup \mathcal{F}$ where \mathcal{F} is a countable family of its compact subspaces.

(日)

Closure-preserving covers by closed subspaces General closure-preserving covers of $\mathcal{C}_{\rho}(X)$

Another question of Arkhangelskii

When is $C_{\rho}(X) \sigma$ -compact?

For a space X the following conditions are equivalent:

- (a) (**Velichko**) The space $C_p(X) = \bigcup \mathcal{F}$ where \mathcal{F} is a countable family of its compact subspaces.
- (b) (**Shakmatov, Tkachuk**) The space $C_p(X) = \bigcup \mathcal{F}$ where \mathcal{F} is a countable family of its countably compact subspaces.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Closure-preserving covers by closed subspaces General closure-preserving covers of $\mathcal{C}_{\rho}(X)$

Another question of Arkhangelskii

When is $C_{\rho}(X) \sigma$ -compact?

For a space X the following conditions are equivalent:

- (a) (**Velichko**) The space $C_p(X) = \bigcup \mathcal{F}$ where \mathcal{F} is a countable family of its compact subspaces.
- (b) (**Shakmatov, Tkachuk**) The space $C_p(X) = \bigcup \mathcal{F}$ where \mathcal{F} is a countable family of its countably compact subspaces.
- (c) (*Guerrero*)The space $C_p(X) = \bigcup \mathcal{F}$ where \mathcal{F} is a closed σ -countably compact closure-preserving family.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Closure-preserving covers by closed subspaces General closure-preserving covers of $\mathcal{C}_{\rho}(X)$

Another question of Arkhangelskii

When is $C_{\rho}(X) \sigma$ -compact?

For a space X the following conditions are equivalent:

- (a) (**Velichko**) The space $C_p(X) = \bigcup \mathcal{F}$ where \mathcal{F} is a countable family of its compact subspaces.
- (b) (**Shakmatov, Tkachuk**) The space $C_p(X) = \bigcup \mathcal{F}$ where \mathcal{F} is a countable family of its countably compact subspaces.
- (c) (**Guerrero**)The space $C_p(X) = \bigcup \mathcal{F}$ where \mathcal{F} is a closed σ -countably compact closure-preserving family.
- (d) The space X is finite.

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Generalizing

General approach

Given a topological property \mathcal{P} assume that $C_p(X)$ is the union of a closure-preserving family \mathcal{F} of closed subspaces and each element of \mathcal{F} has \mathcal{P} . Does this imply that $C_p(X)$ has \mathcal{P} or some related topological property?

Closure-preserving covers by closed subspaces General closure-preserving covers of $\mathcal{C}_{\mathcal{D}}(X)$

- Suppose that C_p(X) is the union of a closure-preserving family of its pseudocompact subspaces. Must C_p(X) be *σ*-pseudocompact?
- Suppose that $C_p(X, \mathbb{I})$ is the union of a closure-preserving family of its pseudocompact subspaces. Must $C_p(X, \mathbb{I})$ be pseudocompact?
- Suppose that $C_p(X, \mathbb{I})$ is the union of a closure-preserving family of its closed σ -compact subspaces. Does this imply that X is discrete?
- Let X be a space, not necessarily compact, such that $C_p(X)$ is the union a closure-preserving family of its separable subspaces. Must $C_p(X)$ be separable?
- Suppose that C_p(X) is the union of a closure-preserving family of closed subspaces of cardinality c. Must C_p(X) have cardinality c?

Closure-preserving covers by closed subspaces General closure-preserving covers of $\mathcal{C}_{\mathcal{D}}(X)$

- Suppose that $C_p(X)$ is the union of a closure-preserving family \mathcal{F} of its second countable subspaces. Must X be countable? What happens if all the elements of \mathcal{F} are closed in $C_p(X)$?
- Suppose that $C_p(X)$ is the union of a closure-preserving family \mathcal{F} of closed subspaces of countable tightness. Is it true that $t(C_p(X)) = \omega$?
- Suppose that $C_p(X)$ is the union of a closure-preserving family of its closed metrizable subspaces. Must *X* be countable?
- Suppose that X is compact and C_p(X) is the union of a closure-preserving family of its metrizable subspaces. Must X be countable?

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

A fundamental result

Theorem of Terada-Yayima.

Terada and Yajima established that if *Z* is a Čech-complete space and \mathcal{F} is a closure-preserving closed cover of *Z* then some element $F \in \mathcal{F}$ must have non-empty interior. Since $C_u(X)$ is always Čech-complete, we have the following result which is crucial for understanding what happens when $C_p(X)$ has a closure-preserving cover by nice subspaces.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

Proposition

For an arbitrary X, if C is a closure-preserving closed cover of $C_p(X)$ or $C_p(X, \mathbb{I})$ then there exists $C \in C$ such that $U \subset C$ for some non-empty open subset U of the space $C_u(X)$.

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Proposition

For an arbitrary X, if C is a closure-preserving closed cover of $C_p(X)$ or $C_p(X, \mathbb{I})$ then there exists $C \in C$ such that $U \subset C$ for some non-empty open subset U of the space $C_u(X)$.

Corollary

If X is a space and C is a closure-preserving closed cover of $C_p(X)$ or $C_p(X, \mathbb{I})$ then some $C \in C$ contains a homeomorphic copy of $C_p(X)$.

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Proposition

For an arbitrary X, if C is a closure-preserving closed cover of $C_p(X)$ or $C_p(X, \mathbb{I})$ then there exists $C \in C$ such that $U \subset C$ for some non-empty open subset U of the space $C_u(X)$.

Corollary

If X is a space and C is a closure-preserving closed cover of $C_p(X)$ or $C_p(X, \mathbb{I})$ then some $C \in C$ contains a homeomorphic copy of $C_p(X)$.

Corollary Answer to problem 5

Suppose that \mathcal{P} is a hereditary topological property and either $C_p(X, \mathbb{I})$ or $C_p(X)$ has a closure-preserving closed cover \mathcal{C} such that every $C \in \mathcal{C}$ has \mathcal{P} . Then $C_p(X)$ also has \mathcal{P} .

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Answer to problem 7

Corollary

For any infinite cardinal κ consider the following list \mathbb{L}_0 of topological properties:

$$\begin{split} \mathbb{L}_0 &= \{ \textit{weight} \leq \kappa, \textit{ network weight} \leq \kappa, \textit{ i-weight} \leq \kappa, \textit{ diagonal number} \leq \kappa, \textit{ character} \leq \kappa, \textit{ pseudocharacter} \leq \kappa, \textit{ tightness} \\ &\leq \kappa, \textit{ spread} \leq \kappa, \textit{ hereditary Lindelöf number} \leq \kappa, \textit{ hereditary density} \leq \kappa, \kappa-\textit{monolithicity} \}. \end{split}$$

If a property \mathcal{P} belongs to the list \mathbb{L}_0 and either $C_p(X, \mathbb{I})$ or $C_p(X)$ has a closure-preserving closed cover \mathcal{C} such that every $C \in \mathcal{C}$ has \mathcal{P} then $C_p(X)$ also has \mathcal{P} .

・ロ・ ・ 四・ ・ 回・ ・ 日・

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\mathcal{D}}(X)$

Answer to problem 8

Corollary

Consider the following list \mathbb{L}_1 of topological properties: $\mathbb{L}_1 = \{ metrizability, Fréchet-Urysohn property, small diagonal, hereditary realcompactness, Whyburn property, being perfect, being functionally perfect <math>\}$.

If a property \mathcal{P} belongs to the list \mathbb{L}_1 and either $C_p(X, \mathbb{I})$ or $C_p(X)$ has a closure-preserving closed cover \mathcal{C} such that every $C \in \mathcal{C}$ has \mathcal{P} then $C_p(X)$ also has \mathcal{P} .

Closure-preserving covers by closed subspaces General closure-preserving covers of $\mathcal{C}_{\mathcal{P}}(X)$

Example

If a property \mathcal{P} is not hereditary and $C_p(X)$ has a closure-preserving closed cover by subspaces that have \mathcal{P} then $C_p(X)$ does not necessarily have \mathcal{P} . Indeed, Tkachuk proved that if K is the Cantor set then $C_p(K)$ has a countable family $\{F_n : n \in \omega\}$ of closed sets such that $\bigcup_{n \in \omega} F_n = C_p(K)$ and every F_n has a countable π -base but $C_p(K)$ does not have a countable π -base. It is easy to see that the family $\{F_n : n \in \omega\}$ is closure-preserving, so countable π -weight is not preserved by closed closure-preserving unions. However, for the properties

which are closed-hereditary we have the following result.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\mathcal{D}}(X)$

Closed-hereditary Properties

Theorem

Given a space X and a closed-hereditary property \mathcal{P} , if $C_p(X, \mathbb{I})$ has a closed closure-preserving cover \mathcal{C} such that every $C \in \mathcal{C}$ has \mathcal{P} then $C_p(X, \mathbb{I})$ also has the property \mathcal{P} .

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Closed-hereditary Properties

Theorem

Given a space X and a closed-hereditary property \mathcal{P} , if $C_p(X, \mathbb{I})$ has a closed closure-preserving cover \mathcal{C} such that every $C \in \mathcal{C}$ has \mathcal{P} then $C_p(X, \mathbb{I})$ also has the property \mathcal{P} .

Corollary

For any infinite cardinal κ consider the following list \mathbb{L}_2 of topological properties:

 $\mathbb{L}_2 = \{ \text{Lindelöf number} \le \kappa, \text{Lindelöf } \Sigma \text{ index} \le \kappa, \text{ extent} \le \kappa, \\ \text{Nagami number} \le \kappa \text{ domination index} \le \kappa \}. \\ \text{If a property } \mathcal{P} \text{ belongs to the list } \mathbb{L}_2 \text{ and either } C_p(X, \mathbb{I}) \text{ or } \\ C_p(X) \text{ has a closure-preserving closed cover } \mathcal{C} \text{ such that every } \\ \mathcal{C} \in \mathcal{C} \text{ has } \mathcal{P} \text{ then } C_p(X, \mathbb{I}) \text{ also has } \mathcal{P}. \end{cases}$

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Closed-hereditary Properties

Corollary

Consider the following list \mathbb{L}_3 of topological properties: $\mathbb{L}_3 = \{K\text{-analyticity, Lindelöf } \Sigma\text{-property, normality,}$ sequentiality}. If a property \mathcal{P} belongs to the list \mathbb{L}_3 and either $C_p(X, \mathbb{I})$ or $C_p(X)$ has a closure-preserving closed cover \mathcal{C} such that every $\mathcal{C} \in \mathcal{C}$ has \mathcal{P} then $C_p(X, \mathbb{I})$ also has \mathcal{P} .

・ロ・ ・ 四・ ・ 回・ ・ 回・

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Special cases

Corollary

If $C_p(X, \mathbb{I})$ has a closure-preserving closed cover C such that every $C \in C$ is realcompact then $C_p(X)$ is realcompact.

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination

・ロ・ ・ 四・ ・ 回・ ・ 日・

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Special cases

Corollary

If $C_p(X, \mathbb{I})$ has a closure-preserving closed cover C such that every $C \in C$ is realcompact then $C_p(X)$ is realcompact.

Corollary, Answer to problem 3

Given a space X, if $C_p(X)$ has a closure-preserving closed cover by Čech-complete subspaces, then X is discrete.

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Moreover

Theorem

Given a space X, if $C_p(X, \mathbb{I})$ has a closure-preserving closed cover by σ -countably compact subspaces, then $C_p(X, \mathbb{I})$ is countably compact.

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination

(日)

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Moreover

Theorem

Given a space X, if $C_p(X, \mathbb{I})$ has a closure-preserving closed cover by σ -countably compact subspaces, then $C_p(X, \mathbb{I})$ is countably compact.

Theorem

If $C_p(X, \mathbb{I})$ has a closure-preserving closed cover C such that every $C \in C$ is σ -compact then X is discrete.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Quotient-preserved Properties

Theorem

Given a space X and a property \mathcal{P} that is preserved by quotient images, if $C_p(X, \mathbb{I})$ has a closed closure-preserving cover \mathcal{C} such that every $C \in \mathcal{C}$ has \mathcal{P} then $C_p(X, \mathbb{I})$ also has \mathcal{P} .

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Quotient-preserved Properties

Theorem

Given a space X and a property \mathcal{P} that is preserved by quotient images, if $C_p(X, \mathbb{I})$ has a closed closure-preserving cover \mathcal{C} such that every $C \in \mathcal{C}$ has \mathcal{P} then $C_p(X, \mathbb{I})$ also has \mathcal{P} .

Corollary

For any infinite cardinal κ consider the following list \mathbb{L}_4 of topological properties:

 $\mathbb{L}_4 = \{\kappa \text{-stability, weak functional tightness} \leq \kappa, \text{ functional tightness} \leq \kappa\}.$

If a property \mathcal{P} belongs to the list \mathbb{L}_4 and $C_p(X, \mathbb{I})$ has a closure-preserving closed cover \mathcal{C} such that every $C \in \mathcal{C}$ has \mathcal{P} then $C_p(X, \mathbb{I})$ also has \mathcal{P} . If \mathcal{P} is κ -stability then $C_p(X)$ has \mathcal{P} .

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

Lindelöf and Lindelöf Σ .

When we consider closure-preserving closed covers of $C_{\rho}(X)$ whose elements are either Lindelöf or Lindelöf Σ , it follows that $C_{\rho}(X, \mathbb{I})$ must have the respective property. However, we strongly suspect that in this case the whole space $C_{\rho}(X)$ must be Lindelöf or Lindelöf Σ respectively. It does not seem that easy to verify, even for the spaces with a unique non-isolated point. Still, we present some positive results in this direction; they are often generalizations of some well-known theorems about the properties of a space X for which $C_{\rho}(X)$ is either Lindelöf or Lindelöf Σ .

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Lindelöf degree

Proposition

Given a space X and an infinite cardinal κ , suppose that $C_p(X)$ has a closure-preserving closed cover C such that $I(C) \leq \kappa$ for every $C \in C$. Then any discrete family of non-empty open subsets of X has cardinality at most κ .

・ロ・・ 日・ ・ 日・ ・ 日・

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Lindelöf degree

Proposition

Given a space X and an infinite cardinal κ , suppose that $C_p(X)$ has a closure-preserving closed cover C such that $I(C) \leq \kappa$ for every $C \in C$. Then any discrete family of non-empty open subsets of X has cardinality at most κ .

Corollary

Suppose that κ is an infinite cardinal and X is a paracompat space such that $C_p(X)$ has a closure-preserving closed cover C with $I(C) \leq \kappa$ for every $C \in C$. Then $I(X) \leq \kappa$; in particular, if X is metrizable then $w(X) \leq \kappa$.

・ロ・・ (日・・ (日・・ 日・)

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

Generalizing Asanov's Theorem

Lemma

For an arbitrary space X and an infinite cardinal κ , if $l(C_p(X, \mathbb{I})) \leq \kappa$, then $t(X^n) \leq \kappa$ for every $n \in \omega$.

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination

(日)

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Generalizing Asanov's Theorem

Lemma

For an arbitrary space X and an infinite cardinal κ , if $l(C_p(X, \mathbb{I})) \leq \kappa$, then $t(X^n) \leq \kappa$ for every $n \in \omega$.

Corollary

Given a space X, if $C_p(X)$ admits a closure-preserving closed cover C such that $I(C) \leq \kappa$ for every $C \in C$, then $t(X^n) \leq \kappa$ for $n \in \mathbb{N}$.

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

Spaces *X* with a unique non-isolated point

Corollary

For a space X with a unique non-isolated point the following conditions are equivalent:

- (a) $C_p(X)$ is Lindelöf;
- (b) C_p(X) has a closure-preserving cover by Lindelöf subspaces;
- (c) the space X is Lindelöf and $t(X^n) \le \omega$ for any $n \in \mathbb{N}$.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Closure-preserving covers by closed subspaces General closure-preserving covers of $\mathcal{C}_{\mathcal{P}}(X)$

Lindelöf Σ

Proposition

If X is a Lindelöf Σ -space and $C_p(X)$ has a closure-preserving closed cover by Lindelöf Σ -subspaces then $C_p(X)$ is a Lindelöf Σ -space.

Closure-preserving covers by closed subspaces General closure-preserving covers of $\mathcal{C}_{\mathcal{P}}(X)$

Lindelöf Σ

Proposition

If X is a Lindelöf Σ -space and $C_p(X)$ has a closure-preserving closed cover by Lindelöf Σ -subspaces then $C_p(X)$ is a Lindelöf Σ -space.

Example (Okunev)

There exists a σ -compact space X such that $C_p(X)$ is not Lindelöf but some σ -compact set Q is dense in $C_p(X)$.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Closure-preserving covers by closed subspaces General closure-preserving covers of $\mathcal{C}_{\mathcal{P}}(X)$

Lindelöf Σ

Proposition

If X is a Lindelöf Σ -space and $C_p(X)$ has a closure-preserving closed cover by Lindelöf Σ -subspaces then $C_p(X)$ is a Lindelöf Σ -space.

Example (Okunev)

There exists a σ -compact space X such that $C_p(X)$ is not Lindelöf but some σ -compact set Q is dense in $C_p(X)$.

Corollary

There exists a σ -compact space X such that $C_p(X)$ is not Lindelöf but there exists a closure-preserving cover of $C_p(X)$ by its σ -compact subspaces.

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{p}(X)$

Generalizing results of Arhangel'skii and Tkachuk

Theorem

Assume that X is a space and $C_p(X)$ has a closure-preserving closed cover by its Lindelöf Σ -subspaces. Then $C_p(X)$ is ω -monolithic.

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\mathcal{D}}(X)$

Generalizing results of Arhangel'skii and Tkachuk

Theorem

Assume that X is a space and $C_p(X)$ has a closure-preserving closed cover by its Lindelöf Σ -subspaces. Then $C_p(X)$ is ω -monolithic.

Corollary

Assume that X is a space for which either ω_1 is a caliber of it or the spread of $C_p(X)$ is countable. If $C_p(X)$ has a closed closure-preserving cover of $C_p(X)$ by Lindelöf Σ -subspaces, then X is cosmic.

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

General closure-preserving covers of $C_{\rho}(X)$

Theorem

Given a space X and a topological property \mathcal{P} that is invariant under continuous images, if either $C_p(X)$ or $C_p(X, \mathbb{I})$ admits a closure-preserving (not necessarily closed) cover \mathcal{C} such that each $C \in \mathcal{C}$ has \mathcal{P} then $C_p(X, \mathbb{I})$ contains a dense subspace that has \mathcal{P} .

・ロ・ ・ 四・ ・ 回・ ・ 日・

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

For σ -additive properties

Theorem

Suppose that X is a space and \mathcal{P} is a σ -additive topological property such that all singletons have \mathcal{P} and \mathcal{P} is invariant under continuous images. Then the following conditions are equivalent.

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

For σ -additive properties

Theorem

Suppose that X is a space and \mathcal{P} is a σ -additive topological property such that all singletons have \mathcal{P} and \mathcal{P} is invariant under continuous images. Then the following conditions are equivalent.

(a) $C_p(X)$ admits a closure-preserving cover C such that each $C \in C$ has \mathcal{P} .

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

For σ -additive properties

Theorem

Suppose that X is a space and \mathcal{P} is a σ -additive topological property such that all singletons have \mathcal{P} and \mathcal{P} is invariant under continuous images. Then the following conditions are equivalent.

- (a) $C_p(X)$ admits a closure-preserving cover C such that each $C \in C$ has \mathcal{P} .
- (b) C_p(X, I) admits a closure-preserving cover C such that each C ∈ C has P.

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

For σ -additive properties

Theorem

Suppose that X is a space and \mathcal{P} is a σ -additive topological property such that all singletons have \mathcal{P} and \mathcal{P} is invariant under continuous images. Then the following conditions are equivalent.

- (a) $C_p(X)$ admits a closure-preserving cover C such that each $C \in C$ has \mathcal{P} .
- (b) C_p(X, I) admits a closure-preserving cover C such that each C ∈ C has P.
- (c) $C_p(X)$ has a dense subspace with the property \mathcal{P} .

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

For σ -additive properties

Theorem

Suppose that X is a space and \mathcal{P} is a σ -additive topological property such that all singletons have \mathcal{P} and \mathcal{P} is invariant under continuous images. Then the following conditions are equivalent.

- (a) $C_p(X)$ admits a closure-preserving cover C such that each $C \in C$ has \mathcal{P} .
- (b) C_p(X, I) admits a closure-preserving cover C such that each C ∈ C has P.
- (c) $C_p(X)$ has a dense subspace with the property \mathcal{P} .
- (d) $C_{\rho}(X, \mathbb{I})$ has a dense subspace with the property \mathcal{P} .

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Corollary

For any infinite cardinal κ consider the following list \mathbb{M}_0 of topological properties: $\mathbb{M}_0 = \{ \text{network weight} \le \kappa, \text{spread} \le \kappa, \text{Lindelöf number} \le \kappa, \text{Lindelöf } \Sigma \text{ index} \le \kappa, \text{hereditary density} \le \kappa \}.$ If a property \mathcal{P} belongs to the list \mathbb{M}_0 then the following conditions are equivalent:

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Corollary

For any infinite cardinal κ consider the following list \mathbb{M}_0 of topological properties:

 $\mathbb{M}_0 = \{ network \ weight \le \kappa, \ spread \le \kappa, \ Lindelöf \ number \le \kappa, \ Lindelöf \ number \le \kappa, \ hereditary \ density \le \kappa \}.$

If a property \mathcal{P} belongs to the list \mathbb{M}_0 then the following conditions are equivalent:

(a) $C_p(X)$ admits a closure-preserving cover C such that each $C \in C$ has \mathcal{P} .

э

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Corollary

For any infinite cardinal κ consider the following list \mathbb{M}_0 of topological properties:

 $\mathbb{M}_0 = \{ network \ weight \le \kappa, \ spread \le \kappa, \ Lindelöf \ number \le \kappa, \ Lindelöf \ number \le \kappa, \ hereditary \ density \le \kappa \}.$

If a property \mathcal{P} belongs to the list \mathbb{M}_0 then the following conditions are equivalent:

- (a) $C_p(X)$ admits a closure-preserving cover C such that each $C \in C$ has \mathcal{P} .
- (b) C_p(X, I) admits a closure-preserving cover C such that each C ∈ C has P.

э

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Corollary

For any infinite cardinal κ consider the following list \mathbb{M}_0 of topological properties:

$$\begin{split} \mathbb{M}_0 &= \{ \textit{network weight} \leq \kappa, \textit{spread} \leq \kappa, \textit{Lindelöf number} \leq \kappa, \\ \textit{Lindelöf } \Sigma \textit{ index} \leq \kappa, \textit{hereditary density} \leq \kappa \}. \\ \textit{If a property } \mathcal{P} \textit{ belongs to the list } \mathbb{M}_0 \textit{ then the following} \end{split}$$

conditions are equivalent:

- (a) $C_p(X)$ admits a closure-preserving cover C such that each $C \in C$ has \mathcal{P} .
- (b) C_p(X, I) admits a closure-preserving cover C such that each C ∈ C has P.
- (c) $C_p(X)$ has a dense subspace with the property \mathcal{P} .

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Corollary

For any infinite cardinal κ consider the following list \mathbb{M}_0 of topological properties:

 $\mathbb{M}_0 = \{ network \ weight \le \kappa, \ spread \le \kappa, \ Lindelöf \ number \le \kappa, \ Lindelöf \ \Sigma \ index \le \kappa, \ hereditary \ density \le \kappa \}.$ If a property \mathcal{P} belongs to the list \mathbb{M}_0 then the following

conditions are equivalent:

- (a) $C_p(X)$ admits a closure-preserving cover C such that each $C \in C$ has \mathcal{P} .
- (b) C_p(X, I) admits a closure-preserving cover C such that each C ∈ C has P.
- (c) $C_{\rho}(X)$ has a dense subspace with the property \mathcal{P} .
- (d) $C_{\rho}(X, \mathbb{I})$ has a dense subspace with the property \mathcal{P} .

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Answer to problem 4

Corollary

For any infinite cardinal κ consider the following list \mathbb{M}_1 of topological properties:

 $\mathbb{M}_1 = \{k \text{-separability, caliber } \kappa, \text{ point-finite cellularity} \leq \kappa, \text{ density} \leq \kappa\}.$

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Answer to problem 4

Corollary

For any infinite cardinal κ consider the following list \mathbb{M}_1 of topological properties:

 $\mathbb{M}_1 = \{k \text{-separability, caliber } \kappa, \text{ point-finite cellularity} \leq \kappa, \text{ density} \leq \kappa\}.$

If a property \mathcal{P} belongs to the list \mathbb{M}_1 then the following conditions are equivalent:

(a) $C_p(X)$ admits a closure-preserving cover C such that each $C \in C$ has \mathcal{P} .

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Answer to problem 4

Corollary

For any infinite cardinal κ consider the following list \mathbb{M}_1 of topological properties:

 $\mathbb{M}_1 = \{k \text{-separability, caliber } \kappa, \text{ point-finite cellularity} \leq \kappa, \text{ density} \leq \kappa\}.$

- (a) $C_p(X)$ admits a closure-preserving cover C such that each $C \in C$ has \mathcal{P} .
- (b) C_p(X, I) admits a closure-preserving cover C such that each C ∈ C has P.

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Answer to problem 4

Corollary

For any infinite cardinal κ consider the following list \mathbb{M}_1 of topological properties:

 $\mathbb{M}_1 = \{k \text{-separability, caliber } \kappa, \text{ point-finite cellularity} \leq \kappa, \text{ density} \leq \kappa\}.$

- (a) $C_p(X)$ admits a closure-preserving cover C such that each $C \in C$ has \mathcal{P} .
- (b) C_p(X, I) admits a closure-preserving cover C such that each C ∈ C has P.
- (c) $C_{\rho}(X)$ has the property \mathcal{P} .

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Answer to problem 4

Corollary

For any infinite cardinal κ consider the following list \mathbb{M}_1 of topological properties:

 $\mathbb{M}_1 = \{k \text{-separability, caliber } \kappa, \text{ point-finite cellularity} \leq \kappa, \text{ density} \leq \kappa\}.$

- (a) $C_p(X)$ admits a closure-preserving cover C such that each $C \in C$ has \mathcal{P} .
- (b) C_p(X, I) admits a closure-preserving cover C such that each C ∈ C has P.
- (c) $C_{\rho}(X)$ has the property \mathcal{P} .
- (d) $C_{p}(X, \mathbb{I})$ has the property \mathcal{P} .

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

Answer to Problem 1

Corollary

For any space X, the following conditions are equivalent:

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination

(日)

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

Answer to Problem 1

Corollary

For any space X, the following conditions are equivalent:

(a) $C_p(X)$ has a closure-preserving cover by pseudocompact subspaces.

(日)

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

Answer to Problem 1

Corollary

For any space X, the following conditions are equivalent:

- (a) $C_p(X)$ has a closure-preserving cover by pseudocompact subspaces.
- (b) $C_p(X)$ has a closure-preserving cover by closed pseudocompact subspaces.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

Answer to Problem 1

Corollary

For any space X, the following conditions are equivalent:

- (a) $C_p(X)$ has a closure-preserving cover by pseudocompact subspaces.
- (b) *C_p(X)* has a closure-preserving cover by closed pseudocompact subspaces.
- (c) $C_{\rho}(X)$ is σ -pseudocompact.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

Answer to Problem 2

Corollary

For any space X, the following conditions are equivalent:

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

Answer to Problem 2

Corollary

For any space X, the following conditions are equivalent:

(a) $C_p(X, \mathbb{I})$ has a closure-preserving cover by pseudocompact subspaces.

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

Answer to Problem 2

Corollary

For any space X, the following conditions are equivalent:

- (a) $C_p(X, \mathbb{I})$ has a closure-preserving cover by pseudocompact subspaces.
- (b) C_p(X, I) has a closure-preserving cover by closed pseudocompact subspaces.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

Answer to Problem 2

Corollary

For any space X, the following conditions are equivalent:

- (a) $C_p(X, \mathbb{I})$ has a closure-preserving cover by pseudocompact subspaces.
- (b) C_p(X, I) has a closure-preserving cover by closed pseudocompact subspaces.
- (c) $C_{\rho}(X, \mathbb{I})$ is pseudocompact.

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

For compact spaces

Corollary

If *K* is a compact space then the following conditions are equivalent:

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

For compact spaces

Corollary

If *K* is a compact space then the following conditions are equivalent:

(a) $C_p(K)$ has a closure-preserving cover by its σ -compact subspaces.

・ロ・・ (日・・ (日・・ 日・)

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

For compact spaces

Corollary

If *K* is a compact space then the following conditions are equivalent:

- (a) $C_p(K)$ has a closure-preserving cover by its σ -compact subspaces.
- (b) C_p(K, I) has a closure-preserving cover by its *σ*-compact subspaces.

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

For compact spaces

Corollary

If *K* is a compact space then the following conditions are equivalent:

- (a) $C_p(K)$ has a closure-preserving cover by its σ -compact subspaces.
- (b) C_p(K, I) has a closure-preserving cover by its *σ*-compact subspaces.
- (c) K is Eberlein compact.

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

For ω -perfect classes

Corollary

If \mathcal{P} is a ω -perfect class and X is a compact space then the following conditions are equivalent:

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

For ω -perfect classes

Corollary

If \mathcal{P} is a ω -perfect class and X is a compact space then the following conditions are equivalent:

 (a) C_p(X) has a closure-preserving cover by subspaces that belong to P.

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

For ω -perfect classes

Corollary

If \mathcal{P} is a ω -perfect class and X is a compact space then the following conditions are equivalent:

- (a) C_p(X) has a closure-preserving cover by subspaces that belong to P.
- (b) C_p(X, I) has a closure-preserving cover by subspaces that belong to P.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_{\rho}(X)$

For ω -perfect classes

Corollary

If \mathcal{P} is a ω -perfect class and X is a compact space then the following conditions are equivalent:

- (a) C_p(X) has a closure-preserving cover by subspaces that belong to P.
- (b) C_p(X, I) has a closure-preserving cover by subspaces that belong to P.
- (c) $C_p(X)$ belongs to \mathcal{P} .

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

For Talagrand and Gul'ko compact spaces

Corollary

Suppose that X is a compact space and \mathcal{P} is either K-analitycity or Lindelöf Σ -property. Then the following conditions are equivalent:

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

For Talagrand and Gul'ko compact spaces

Corollary

Suppose that X is a compact space and \mathcal{P} is either K-analitycity or Lindelöf Σ -property. Then the following conditions are equivalent:

(a) $C_p(X)$ has a closure-preserving cover by subspaces that have \mathcal{P} .

・ロ・・ (日・・ (日・・ 日・)

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

For Talagrand and Gul'ko compact spaces

Corollary

Suppose that X is a compact space and \mathcal{P} is either K-analitycity or Lindelöf Σ -property. Then the following conditions are equivalent:

- (a) $C_p(X)$ has a closure-preserving cover by subspaces that have \mathcal{P} .
- (b) C_p(X, I) has a closure-preserving cover by subspaces that have P.

Closure-preserving covers by closed subspaces General closure-preserving covers of $C_p(X)$

For Talagrand and Gul'ko compact spaces

Corollary

Suppose that X is a compact space and \mathcal{P} is either K-analitycity or Lindelöf Σ -property. Then the following conditions are equivalent:

- (a) $C_p(X)$ has a closure-preserving cover by subspaces that have \mathcal{P} .
- (b) C_p(X, I) has a closure-preserving cover by subspaces that have P.

(c) $C_p(X)$ has \mathcal{P} .

・ロ・ ・ 四・ ・ 回・ ・ 回・

Open problems, Lindelöf and Lindelöf Σ properties

- Suppose that X is a space such that $C_{\rho}(X)$ is the union of a closure-preserving family of its closed Lindelöf subspaces. We know that in this case $C_{\rho}(X, \mathbb{I})$ is a Lindelöf space. But must the whole $C_{\rho}(X)$ be Lindelöf?
- Suppose that X is a space such that C_p(X) is the union of a closure-preserving family of its closed Lindelöf Σ-subspaces. We know that in this case C_p(X, I) is a Lindelöf Σ-space. But must the whole C_p(X) be Lindelöf Σ? The answer is not clear even if X has a unique non-isolated point.

Open problems, Lindelöf and Lindelöf Σ properties

- Suppose that C_p(C_p(X)) is the union of a closure-preserving family of its closed Lindelöf Σ-subspaces. Must the space C_p(C_p(X)) be Lindelöf Σ?
- Suppose that X is a space such that C_p(X) has the Baire property and can be represented as the union of a closure-preserving family of its closed Lindelöf Σ-subspaces. Must X be countable?
- Suppose X is a space such that s(X) ≤ ω and C_ρ(X) is the union of a closure-preserving family of its closed Lindelöf Σ-subspaces. Must X have a countable network?
- Suppose X is a space such that s(X) ≤ ω and C_p(X, I) is a Lindelöf Σ-space. Must X have a countable network?

Open problems, *K*-analyticity and and Fréchet-Urysohn property

- Suppose that X is a space such that C_p(X) is the union of a closure-preserving family of its closed K-analytic subspaces. We know that in this case C_p(X, I) is a K-analytic space. But must the whole C_p(X) be K-analytic?
- Suppose that X is a space such that $C_p(X)$ is the union of a closure-preserving family of its closed sequential subspaces. We know that in this case $C_p(X, \mathbb{I})$ must be sequential. But must the whole $C_p(X)$ be sequential?
- Suppose that X is a space such that C_p(X, I) is sequential. Must C_p(X, I) (or equivalently C_p(X)) be Fréchet-Urysohn?

Open problems, Weight

 Is the space C_p(I) representable as the union of a closure-preserving family of its second countable subspaces?

- A.V. Arhangel'skii, *Topological function spaces*, Mathematics and its Applications (Soviet Series), **78**, Kluwer Acad. Publ., Dordrecht, 1992.
- A.V. Arhangel'skii, On Lindelöf property and spread in $C_p(X)$ -theory, Topology Appl., **74:1**(1996), 83-90.
- D. Guerrero Sánchez, *Closure-preserving covers in function spaces*, Comment. Math. Univ. Carolinae, 51:4(2010), 693-703.
- M. Muñoz, Índice de K-determinación de Espacios Topológicos y σ-Fragmentabilidad de Aplicaciones, PhD Thesis, Department of Mathematics, Murcia University, Murcia, Spain.

- O.G. Okunev, On Lindelöf Σ-spaces of continuous functions in the pointwise convergence topology, Topology Appl., 49:2(1993), 149-166.
- T. Terada and Y. Yajima, *Closure-preserving covers by nowhere dense sets.* Bull. Polish Acad. Sci., **42:1**(1994), 21-27.
- IV.V. Tkachuk, The spaces C_p(X): decomposition into a countable union of bounded subspaces and completeness properties, Topology Appl., **22:3**(1986), 241-254.
- V.V. Tkachuk, Calibers of spaces of functions and the metrizaton problem for compact subsets of C_ρ(X), Vestnik Mosk. Univ., Mat., 43:3(1988), 25-29.

- ▶ V.V. Tkachuk, The decomposition of $C_p(X)$ into a countable union of subspaces with "good" properties implies "good" properties of $C_p(X)$, Trans. Moscow Math. Soc., **55**(1994), 239-248.
- V.V. Tkachuk, *Behavior of the Lindelöf property in iterated function spaces,* Topology Appl., **107**(2000), 297-305.
- V.V. Tkachuk, A space $C_p(X)$ is dominated by irrationals if and only if it is K-analytic, Acta Math. Hung., **107**(4)(2005), 253-265.