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Notation and terminology
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Definitions
Every topological space in this presentation is assumed to be
Tychonoff. The set of real numbers with the natural topology is
denoted by R and the interval [0,1] ⊂ R is represented by I. For
a space X the family of all subsets of X is denoted by exp(X ),
the family of all open subsets of X is denoted by τ(X ) and the
family of all compact subspaces of X is denoted by K (X ).
The space of all continuous functions from a space X into a
space Y , endowed with the topology inherited from the product
space Y X , is denoted by Cp(X ,Y ). On the other hand, Cu(X ) is
the space of all continuous real-valued functions on a space X ,
with the topology of uniform convergence.
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Definitions
A continuous bijection is called a condensation. A compact
valued map ϕ : Y → exp(X ) is called upper semicontinuous,
abbreviated by usco, if for every U ∈ τ(X ) the set
{y ∈ Y : ϕ(y) ⊂ U} is open in Y . An usco map ϕ : Y → exp(X )
is onto if the family {ϕ(y) : y ∈ Y} covers the space X . A space
Y dominates a space X if there is a cover
C = {FK : K ∈ K(Y )} ⊂ K(X ) of X such that K ⊂ L implies
FK ⊂ FL. A cover F of a space X is closed if every F ∈ F is
closed in X ; we call F closure-preserving if⋃
{F : F ∈ F ′} =

⋃
{F : F ∈ F ′} for any F ′ ⊂ F .
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On progress

Lines of research

(a) Metric and Domination indexes of function spaces.
(b) Embeddings in spaces of the form Cp(K ) for some compact

space K .
(c) Cardinal invariants under closure-preserving covers of

function spaces.
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Indexes

Definitions
For a space X the following topological cardinals are defined:

(a) (Muñoz) The Lindelöf Σ index of X is denoted by lΣ(X ) and
defined by lΣ(X ) = min{w(M) : M is a metric space and
there is a usco onto map ϕ : M → exp(X )}.

(b) (Tkachuk)The metric index of X is denoted by mi(X ) and
defined by mi(X ) = min{w(M) : M is a metric space and
there is a condensation ϕ : M → X}.

(c) (Guerrero)The domination index of X is denoted by dm(X )
and defined by dm(X ) = min{w(M) : M dominates X}.
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Indexes

First results
For a compact space K the following hold:

(a) The space lΣ(Cp(K )) = dm(Cp(K ))

(b) If K is fragmentable then mi(K ) ≤ w(K )
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A discrete version of wJNR vs σ-fagmentability

A problem of Arkhangelskii-Haydon

Is every Eberlein-Grothendieck scattered space σ-discrete?

Partial answer
Every Eberlein-Grothendieck locally countable scattered space
is σ-discrete.
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Closure-preserving covers by closed subspaces
General closure-preserving covers of Cp(X)

Another question of Arkhangelskii

When is Cp(X ) σ-compact?

For a space X the following conditions are equivalent:

(a) (Velichko) The space Cp(X ) =
⋃
F where F is a countable

family of its compact subspaces.
(b) (Shakmatov, Tkachuk) The space Cp(X ) =

⋃
F where F

is a countable family of its countably compact subspaces.
(c) (Guerrero)The space Cp(X ) =

⋃
F where F is a closed

σ-countably compact closure-preserving family.
(d) The space X is finite.
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Generalizing

General approach

Given a topological property P assume that Cp(X ) is the union
of a closure-preserving family F of closed subspaces and each
element of F has P. Does this imply that Cp(X ) has P or some
related topological property?
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1 Suppose that Cp(X ) is the union of a closure-preserving
family of its pseudocompact subspaces. Must Cp(X ) be
σ-pseudocompact?

2 Suppose that Cp(X , I) is the union of a closure-preserving
family of its pseudocompact subspaces. Must Cp(X , I) be
pseudocompact?

3 Suppose that Cp(X , I) is the union of a closure-preserving
family of its closed σ-compact subspaces. Does this imply
that X is discrete?

4 Let X be a space, not necessarily compact, such that
Cp(X ) is the union a closure-preserving family of its
separable subspaces. Must Cp(X ) be separable?

5 Suppose that Cp(X ) is the union of a closure-preserving
family of closed subspaces of cardinality c. Must Cp(X )
have cardinality c?
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6 Suppose that Cp(X ) is the union of a closure-preserving
family F of its second countable subspaces. Must X be
countable? What happens if all the elements of F are
closed in Cp(X )?

7 Suppose that Cp(X ) is the union of a closure-preserving
family F of closed subspaces of countable tightness. Is it
true that t(Cp(X )) = ω?

8 Suppose that Cp(X ) is the union of a closure-preserving
family of its closed metrizable subspaces. Must X be
countable?

9 Suppose that X is compact and Cp(X ) is the union of a
closure-preserving family of its metrizable subspaces.
Must X be countable?
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A fundamental result

Theorem of Terada-Yayima.

Terada and Yajima established that if Z is a Čech-complete
space and F is a closure-preserving closed cover of Z then
some element F ∈ F must have non-empty interior. Since
Cu(X ) is always Čech-complete, we have the following result
which is crucial for understanding what happens when Cp(X )
has a closure-preserving cover by nice subspaces.
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Proposition
For an arbitrary X , if C is a closure-preserving closed cover of
Cp(X ) or Cp(X , I) then there exists C ∈ C such that U ⊂ C for
some non-empty open subset U of the space Cu(X ).

Corollary
If X is a space and C is a closure-preserving closed cover of
Cp(X ) or Cp(X , I) then some C ∈ C contains a homeomorphic
copy of Cp(X ).

Corollary Answer to problem 5
Suppose that P is a hereditary topological property and either
Cp(X , I) or Cp(X ) has a closure-preserving closed cover C such
that every C ∈ C has P. Then Cp(X ) also has P.
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Answer to problem 7

Corollary
For any infinite cardinal κ consider the following list L0 of
topological properties:
L0 = {weight ≤ κ, network weight ≤ κ, i -weight ≤ κ, diagonal
number ≤ κ, character ≤ κ, pseudocharacter ≤ κ, tightness
≤ κ, spread ≤ κ, hereditary Lindelöf number ≤ κ, hereditary
density ≤ κ, κ-monolithicity}.
If a property P belongs to the list L0 and either Cp(X , I) or
Cp(X ) has a closure-preserving closed cover C such that every
C ∈ C has P then Cp(X ) also has P.
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Answer to problem 8

Corollary
Consider the following list L1 of topological properties:
L1 = {metrizability, Fréchet-Urysohn property, small diagonal,
hereditary realcompactness, Whyburn property, being perfect,
being functionally perfect}.
If a property P belongs to the list L1 and either Cp(X , I) or
Cp(X ) has a closure-preserving closed cover C such that every
C ∈ C has P then Cp(X ) also has P.
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Example

If a property P is not hereditary and Cp(X ) has a
closure-preserving closed cover by subspaces that have P then
Cp(X ) does not necessarily have P. Indeed, Tkachuk proved
that if K is the Cantor set then Cp(K ) has a countable family
{Fn : n ∈ ω} of closed sets such that

⋃
n∈ω

Fn = Cp(K ) and every

Fn has a countable π-base but Cp(K ) does not have a
countable π-base. It is easy to see that the family {Fn : n ∈ ω} is
closure-preserving, so countable π-weight is not preserved by
closed closure-preserving unions. However, for the properties
which are closed-hereditary we have the following result.
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Closed-hereditary Properties

Theorem
Given a space X and a closed-hereditary property P, if Cp(X , I)
has a closed closure-preserving cover C such that every C ∈ C
has P then Cp(X , I) also has the property P.

Corollary
For any infinite cardinal κ consider the following list L2 of
topological properties:
L2 = {Lindelöf number ≤ κ, Lindelöf Σ index ≤ κ, extent ≤ κ,
Nagami number ≤ κ domination index ≤ κ}.
If a property P belongs to the list L2 and either Cp(X , I) or
Cp(X ) has a closure-preserving closed cover C such that every
C ∈ C has P then Cp(X , I) also has P.
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Closed-hereditary Properties

Corollary
Consider the following list L3 of topological properties:
L3 = {K-analyticity, Lindelöf Σ-property, normality,
sequentiality}.
If a property P belongs to the list L3 and either Cp(X , I) or
Cp(X ) has a closure-preserving closed cover C such that every
C ∈ C has P then Cp(X , I) also has P.
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Special cases

Corollary

If Cp(X , I) has a closure-preserving closed cover C such that
every C ∈ C is realcompact then Cp(X ) is realcompact.

Corollary, Answer to problem 3

Given a space X, if Cp(X ) has a closure-preserving closed
cover by Čech-complete subspaces, then X is discrete.
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Moreover

Theorem
Given a space X, if Cp(X , I) has a closure-preserving closed
cover by σ-countably compact subspaces, then Cp(X , I) is
countably compact.

Theorem
If Cp(X , I) has a closure-preserving closed cover C such that
every C ∈ C is σ-compact then X is discrete.
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Quotient-preserved Properties

Theorem
Given a space X and a property P that is preserved by quotient
images, if Cp(X , I) has a closed closure-preserving cover C
such that every C ∈ C has P then Cp(X , I) also has P.

Corollary
For any infinite cardinal κ consider the following list L4 of
topological properties:
L4 = {κ-stability, weak functional tightness ≤ κ, functional
tightness ≤ κ}.
If a property P belongs to the list L4 and Cp(X , I) has a
closure-preserving closed cover C such that every C ∈ C has P
then Cp(X , I) also has P. If P is κ-stability then Cp(X ) has P.
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Lindelöf and Lindelöf Σ.

When we consider closure-preserving closed covers of Cp(X )
whose elements are either Lindelöf or Lindelöf Σ, it follows that
Cp(X , I) must have the respective property. However, we
strongly suspect that in this case the whole space Cp(X ) must
be Lindelöf or Lindelöf Σ respectively. It does not seem that
easy to verify, even for the spaces with a unique non-isolated
point. Still, we present some positive results in this direction;
they are often generalizations of some well-known theorems
about the properties of a space X for which Cp(X ) is either
Lindelöf or Lindelöf Σ.
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Lindelöf degree

Proposition

Given a space X and an infinite cardinal κ, suppose that Cp(X )
has a closure-preserving closed cover C such that l(C) ≤ κ for
every C ∈ C. Then any discrete family of non-empty open
subsets of X has cardinality at most κ.

Corollary
Suppose that κ is an infinite cardinal and X is a paracompat
space such that Cp(X ) has a closure-preserving closed cover C
with l(C) ≤ κ for every C ∈ C. Then l(X ) ≤ κ; in particular, if X
is metrizable then w(X ) ≤ κ.
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Lindelöf degree

Proposition
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Generalizing Asanov’s Theorem

Lemma
For an arbitrary space X and an infinite cardinal κ, if
l(Cp(X , I)) ≤ κ, then t(X n) ≤ κ for every n ∈ ω.

Corollary

Given a space X, if Cp(X ) admits a closure-preserving closed
cover C such that l(C) ≤ κ for every C ∈ C, then t(X n) ≤ κ for
n ∈ N.
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Spaces X with a unique non-isolated point

Corollary
For a space X with a unique non-isolated point the following
conditions are equivalent:
(a) Cp(X ) is Lindelöf;
(b) Cp(X ) has a closure-preserving cover by Lindelöf

subspaces;
(c) the space X is Lindelöf and t(X n) ≤ ω for any n ∈ N.
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Lindelöf Σ

Proposition

If X is a Lindelöf Σ-space and Cp(X ) has a closure-preserving
closed cover by Lindelöf Σ-subspaces then Cp(X ) is a Lindelöf
Σ-space.

Example (Okunev)

There exists a σ-compact space X such that Cp(X ) is not
Lindelöf but some σ-compact set Q is dense in Cp(X ).

Corollary

There exists a σ-compact space X such that Cp(X ) is not
Lindelöf but there exists a closure-preserving cover of Cp(X ) by
its σ-compact subspaces.
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Generalizing results of Arhangel’skii and Tkachuk

Theorem
Assume that X is a space and Cp(X ) has a closure-preserving
closed cover by its Lindelöf Σ-subspaces. Then Cp(X ) is
ω-monolithic.

Corollary
Assume that X is a space for which either ω1 is a caliber of it or
the spread of Cp(X ) is countable. If Cp(X ) has a closed
closure-preserving cover of Cp(X ) by Lindelöf Σ-subspaces,
then X is cosmic.
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General closure-preserving covers of Cp(X )

Theorem
Given a space X and a topological property P that is invariant
under continuous images, if either Cp(X ) or Cp(X , I) admits a
closure-preserving (not necessarily closed) cover C such that
each C ∈ C has P then Cp(X , I) contains a dense subspace
that has P.
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For σ-additive properties

Theorem
Suppose that X is a space and P is a σ-additive topological
property such that all singletons have P and P is invariant
under continuous images. Then the following conditions are
equivalent.

(a) Cp(X ) admits a closure-preserving cover C such that each
C ∈ C has P.

(b) Cp(X , I) admits a closure-preserving cover C such that
each C ∈ C has P.

(c) Cp(X ) has a dense subspace with the property P.
(d) Cp(X , I) has a dense subspace with the property P.
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Corollary
For any infinite cardinal κ consider the following list M0 of
topological properties:
M0 = {network weight ≤ κ, spread ≤ κ, Lindelöf number ≤ κ,
Lindelöf Σ index ≤ κ, hereditary density ≤ κ}.
If a property P belongs to the list M0 then the following
conditions are equivalent:

(a) Cp(X ) admits a closure-preserving cover C such that each
C ∈ C has P.

(b) Cp(X , I) admits a closure-preserving cover C such that
each C ∈ C has P.

(c) Cp(X ) has a dense subspace with the property P.
(d) Cp(X , I) has a dense subspace with the property P.

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination



Introduction
Cardinal Invariants

Open problems
References

Closure-preserving covers by closed subspaces
General closure-preserving covers of Cp(X)

Corollary
For any infinite cardinal κ consider the following list M0 of
topological properties:
M0 = {network weight ≤ κ, spread ≤ κ, Lindelöf number ≤ κ,
Lindelöf Σ index ≤ κ, hereditary density ≤ κ}.
If a property P belongs to the list M0 then the following
conditions are equivalent:
(a) Cp(X ) admits a closure-preserving cover C such that each

C ∈ C has P.

(b) Cp(X , I) admits a closure-preserving cover C such that
each C ∈ C has P.

(c) Cp(X ) has a dense subspace with the property P.
(d) Cp(X , I) has a dense subspace with the property P.

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination



Introduction
Cardinal Invariants

Open problems
References

Closure-preserving covers by closed subspaces
General closure-preserving covers of Cp(X)

Corollary
For any infinite cardinal κ consider the following list M0 of
topological properties:
M0 = {network weight ≤ κ, spread ≤ κ, Lindelöf number ≤ κ,
Lindelöf Σ index ≤ κ, hereditary density ≤ κ}.
If a property P belongs to the list M0 then the following
conditions are equivalent:
(a) Cp(X ) admits a closure-preserving cover C such that each

C ∈ C has P.
(b) Cp(X , I) admits a closure-preserving cover C such that

each C ∈ C has P.

(c) Cp(X ) has a dense subspace with the property P.
(d) Cp(X , I) has a dense subspace with the property P.

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination



Introduction
Cardinal Invariants

Open problems
References

Closure-preserving covers by closed subspaces
General closure-preserving covers of Cp(X)

Corollary
For any infinite cardinal κ consider the following list M0 of
topological properties:
M0 = {network weight ≤ κ, spread ≤ κ, Lindelöf number ≤ κ,
Lindelöf Σ index ≤ κ, hereditary density ≤ κ}.
If a property P belongs to the list M0 then the following
conditions are equivalent:
(a) Cp(X ) admits a closure-preserving cover C such that each

C ∈ C has P.
(b) Cp(X , I) admits a closure-preserving cover C such that

each C ∈ C has P.
(c) Cp(X ) has a dense subspace with the property P.

(d) Cp(X , I) has a dense subspace with the property P.

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination



Introduction
Cardinal Invariants

Open problems
References

Closure-preserving covers by closed subspaces
General closure-preserving covers of Cp(X)

Corollary
For any infinite cardinal κ consider the following list M0 of
topological properties:
M0 = {network weight ≤ κ, spread ≤ κ, Lindelöf number ≤ κ,
Lindelöf Σ index ≤ κ, hereditary density ≤ κ}.
If a property P belongs to the list M0 then the following
conditions are equivalent:
(a) Cp(X ) admits a closure-preserving cover C such that each

C ∈ C has P.
(b) Cp(X , I) admits a closure-preserving cover C such that

each C ∈ C has P.
(c) Cp(X ) has a dense subspace with the property P.
(d) Cp(X , I) has a dense subspace with the property P.

David Guerrero Sánchez Cardinal Invariants, Embeddings and Domination



Introduction
Cardinal Invariants

Open problems
References

Closure-preserving covers by closed subspaces
General closure-preserving covers of Cp(X)

Answer to problem 4

Corollary
For any infinite cardinal κ consider the following list M1 of
topological properties:
M1 = {k-separability, caliber κ, point-finite cellularity ≤ κ,
density ≤ κ}.
If a property P belongs to the list M1 then the following
conditions are equivalent:

(a) Cp(X ) admits a closure-preserving cover C such that each
C ∈ C has P.

(b) Cp(X , I) admits a closure-preserving cover C such that
each C ∈ C has P.

(c) Cp(X ) has the property P.
(d) Cp(X , I) has the property P.
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Answer to Problem 1

Corollary
For any space X , the following conditions are equivalent:

(a) Cp(X ) has a closure-preserving cover by pseudocompact
subspaces.

(b) Cp(X ) has a closure-preserving cover by closed
pseudocompact subspaces.

(c) Cp(X ) is σ-pseudocompact.
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Answer to Problem 2

Corollary
For any space X , the following conditions are equivalent:

(a) Cp(X , I) has a closure-preserving cover by pseudocompact
subspaces.

(b) Cp(X , I) has a closure-preserving cover by closed
pseudocompact subspaces.

(c) Cp(X , I) is pseudocompact.
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For compact spaces

Corollary
If K is a compact space then the following conditions are
equivalent:

(a) Cp(K ) has a closure-preserving cover by its σ-compact
subspaces.

(b) Cp(K , I) has a closure-preserving cover by its σ-compact
subspaces.

(c) K is Eberlein compact.
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For ω-perfect classes

Corollary
If P is a ω-perfect class and X is a compact space then the
following conditions are equivalent:

(a) Cp(X ) has a closure-preserving cover by subspaces that
belong to P.

(b) Cp(X , I) has a closure-preserving cover by subspaces that
belong to P.

(c) Cp(X ) belongs to P.
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For Talagrand and Gul’ko compact spaces

Corollary
Suppose that X is a compact space and P is either
K -analitycity or Lindelöf Σ-property. Then the following
conditions are equivalent:

(a) Cp(X ) has a closure-preserving cover by subspaces that
have P.

(b) Cp(X , I) has a closure-preserving cover by subspaces that
have P.

(c) Cp(X ) has P.
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For Talagrand and Gul’ko compact spaces

Corollary
Suppose that X is a compact space and P is either
K -analitycity or Lindelöf Σ-property. Then the following
conditions are equivalent:
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have P.
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have P.
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For Talagrand and Gul’ko compact spaces

Corollary
Suppose that X is a compact space and P is either
K -analitycity or Lindelöf Σ-property. Then the following
conditions are equivalent:
(a) Cp(X ) has a closure-preserving cover by subspaces that

have P.
(b) Cp(X , I) has a closure-preserving cover by subspaces that

have P.
(c) Cp(X ) has P.
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Open problems, Lindelöf and Lindelöf Σ properties

Suppose that X is a space such that Cp(X ) is the union of
a closure-preserving family of its closed Lindelöf
subspaces. We know that in this case Cp(X , I) is a Lindelöf
space. But must the whole Cp(X ) be Lindelöf?
Suppose that X is a space such that Cp(X ) is the union of
a closure-preserving family of its closed Lindelöf
Σ-subspaces. We know that in this case Cp(X , I) is a
Lindelöf Σ-space. But must the whole Cp(X ) be Lindelöf
Σ? The answer is not clear even if X has a unique
non-isolated point.
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Open problems, Lindelöf and Lindelöf Σ properties

Suppose that Cp(Cp(X )) is the union of a
closure-preserving family of its closed Lindelöf
Σ-subspaces. Must the space Cp(Cp(X )) be Lindelöf Σ?
Suppose that X is a space such that Cp(X ) has the Baire
property and can be represented as the union of a
closure-preserving family of its closed Lindelöf
Σ-subspaces. Must X be countable?
Suppose X is a space such that s(X ) ≤ ω and Cp(X ) is the
union of a closure-preserving family of its closed Lindelöf
Σ-subspaces. Must X have a countable network?
Suppose X is a space such that s(X ) ≤ ω and Cp(X , I) is a
Lindelöf Σ-space. Must X have a countable network?
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Open problems, K -analyticity and and
Fréchet-Urysohn property

Suppose that X is a space such that Cp(X ) is the union of
a closure-preserving family of its closed K -analytic
subspaces. We know that in this case Cp(X , I) is a
K -analytic space. But must the whole Cp(X ) be
K -analytic?
Suppose that X is a space such that Cp(X ) is the union of
a closure-preserving family of its closed sequential
subspaces. We know that in this case Cp(X , I) must be
sequential. But must the whole Cp(X ) be sequential?
Suppose that X is a space such that Cp(X , I) is sequential.
Must Cp(X , I) (or equivalently Cp(X )) be Fréchet-Urysohn?
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Open problems, Weight

Is the space Cp(I) representable as the union of a
closure-preserving family of its second countable
subspaces?
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