Projections on uniformly convex spaces

Jesús Suárez

University of Extremadura

Jaca, 2011

Theorem (Kadec and Snobar)

Every finite dimensional Banach space E is complemented in any superspace F with a projection $P : F \rightarrow E$ with

 $\|P\| \leq \sqrt{\dim E}$

Theorem (Kadec-Snobar, König and Tomczak-Jaegermann)

Every finite dimensional Banach space E is complemented in any superspace F with a projection $P : F \rightarrow E$ with

 $\|P\| \le \sqrt{dimE}$

$$\|P\| \le \sqrt{\dim E} - \frac{c}{\sqrt{\dim E}}$$

Let $1 \leq p \neq 2 < \infty$. There exist a constant M depending only on p and a sequence of into isomorphisms

$$T_n: \ell_p^{k(n)} \to \ell_p^n$$

Let $1 \leq p \neq 2 < \infty$. There exist a constant M depending only on p and a sequence of into isomorphisms

$$T_n: \ell_p^{k(n)} \to \ell_p^n$$

with $||T_n|| ||T_n^{-1}|| \le M$ such that there is no uniformly bounded sequence of projections $P_n : \ell_p^n \to \ell_p^{k(n)}$.

• Rosenthal: 2

Let $1 \leq p \neq 2 < \infty$. There exist a constant M depending only on p and a sequence of into isomorphisms

$$T_n: \ell_p^{k(n)} \to \ell_p^n$$

- Rosenthal: 2
- Rosenthal: 1

Let $1 \leq p \neq 2 < \infty$. There exist a constant M depending only on p and a sequence of into isomorphisms

$$T_n: \ell_p^{k(n)} \to \ell_p^n$$

- Rosenthal: 2
- Rosenthal: 1
- Bennet, Dor, Goodman, Johnson and Newman: 1

Let $1 \leq p \neq 2 < \infty$. There exist a constant M depending only on p and a sequence of into isomorphisms

$$T_n: \ell_p^{k(n)} \to \ell_p^n$$

- Rosenthal: 2
- Rosenthal: 1
- Bennet, Dor, Goodman, Johnson and Newman: 1
- Bourgain: p = 1.

Given *E* a finite dimensional subspace of *F*, it does not need to be "well" complemented. So, given a projection $P : F \to E$, what about the set

Given *E* a finite dimensional subspace of *F*, it does not need to be "well" complemented. So, given a projection $P : F \to E$, what about the set

${f \in B(F) : ||Pf|| \le 1}?$

Given *E* a finite dimensional subspace of *F*, it does not need to be "well" complemented. So, given a projection $P : F \to E$, what about the set

${f \in B(F) : ||Pf|| \le 1}?$

Through the rest our setting will be finite dimensional uniformly convex Banach spaces.

Uniformly convex spaces

We recall that F is said to be uniformly convex if $\delta(\varepsilon) > 0$ for every $\varepsilon > 0$ where as usual δ denotes the modulus of convexity of F, namely,

$$\delta(\varepsilon) = \inf \left\{ 1 - \frac{\parallel x + y \parallel}{2}; x, y \in F, \parallel x \parallel = \parallel y \parallel = 1, \parallel x - y \parallel = \varepsilon \right\}.$$

Uniformly convex spaces

We recall that F is said to be uniformly convex if $\delta(\varepsilon) > 0$ for every $\varepsilon > 0$ where as usual δ denotes the modulus of convexity of F, namely,

$$\delta(\varepsilon) = \inf\left\{1 - \frac{\parallel x + y \parallel}{2}; x, y \in F, \parallel x \parallel = \parallel y \parallel = 1, \parallel x - y \parallel = \varepsilon\right\}.$$

F is said to be uniformly convex of power type *p* if $\delta(\varepsilon) \ge K\varepsilon^p$ for all $\varepsilon > 0$.

F is said to be uniformly convex of power type *p* if $\delta(\varepsilon) \ge K\varepsilon^p$ for all $\varepsilon > 0$.

Examples

The modulus of convexity for ℓ_p^n :

F is said to be uniformly convex of power type p if $\delta(\varepsilon) \ge K\varepsilon^p$ for all $\varepsilon > 0$.

Examples

The modulus of convexity for ℓ_p^n :

$$\left\{ \begin{array}{ll} K\varepsilon^2 & \text{for } 1$$

F is said to be uniformly convex of power type p if $\delta(\varepsilon) \ge K \varepsilon^p$ for all $\varepsilon > 0$.

Examples

The modulus of convexity for ℓ_p^n :

$$\begin{cases} \kappa \varepsilon^2 & \text{for } 1
$$\begin{cases} (p-1)\varepsilon^2 & \text{for } 1$$$$

Theorem (S.)

Let F be a uniformly convex space of modulus of convexity δ of power type p, i.e. $\delta(\varepsilon) \ge K\varepsilon^p$, and dimension n + 1 for n + 1 large enough. Assume E is a subspace of F with dim $E \le n^{\frac{1}{p+2}}$. Then every projection $P: F \to E$ such that $\|P\| \le \dim E$ satisfies:

$$\mathbb{P}_{F}\left\{f\in B(F): \|Pf\|\leq n^{-rac{1}{(p+1)(p+2)}}
ight\}\geq 1-(n+1)e^{-\kappa_{n}rac{1}{p+1}}$$

Theorem (S.)

Let F be a uniformly convex space of modulus of convexity δ of power type p, i.e. $\delta(\varepsilon) \ge K\varepsilon^p$, and dimension n + 1 for n + 1 large enough. Assume E is a subspace of F with dim $E \le n^{\frac{1}{p+2}}$. Then every projection $P : F \to E$ such that $||P|| \le \dim E$ satisfies: $\mathbb{P}_F \{f \in B(F) : ||Pf|| \le 1\} \ge 1 - \varepsilon_n$,

where $\varepsilon_n \rightarrow 0$.

Theorem (S.)

Let F be a uniformly convex space of modulus of convexity δ of power type p, i.e. $\delta(\varepsilon) \ge K\varepsilon^p$, and dimension n + 1 for n + 1 large enough. Assume E is a subspace of F with dim $E \le n^{\frac{1}{p+2}}$. Then every projection $P : F \to E$ such that $||P|| \le \dim E$ satisfies:

$$\mathbb{P}_{F}\left\{f\in B(F):\|Pf\|\leq 1\right\}\geq 1-\varepsilon_{n},$$

where $\varepsilon_n \rightarrow 0$.

Why is it happening this phenomena?

$$\mathbb{P}_{F}\left\{f\in B(F): |\phi(f)|\leq \varepsilon\right\}\geq 1-(n+1)e^{rac{-n}{2}\delta(2\varepsilon)}.$$

$$\mathbb{P}_{F}\left\{f\in B(F): |\phi(f)|\leq arepsilon
ight\}\geq 1-(n+1)e^{rac{-n}{2}\delta(2arepsilon)}.$$

$$\mathbb{P}_{F}\left\{f\in B(F): |\phi(f)|\leq arepsilon
ight\}\geq 1-(n+1)e^{rac{-n}{2}\delta(2arepsilon)}.$$

$$\mathbb{P}_{F}\left\{f\in B(F): |\phi(f)|\leq arepsilon
ight\}\geq 1-(n+1)e^{rac{-n}{2}\delta(2arepsilon)}.$$

Theorem (S.)

Let *F* be a uniformly convex space of modulus of convexity δ of power type *p*. Assume *E* is a subspace of *F* with dim $E \leq n^{\frac{1}{p+2}}$. Then every projection $P: F \to E$ such that $||P|| \leq \dim E$ satisfies:

$$\mathbb{P}_{F}\left\{f\in B(F): \|Pf\|\leq n^{-rac{1}{(p+1)(p+2)}}
ight\}\geq 1-(n+1)e^{-Kn^{rac{1}{p+1}}}$$

Proof.

① Operator version of Gromov-Milman's result: $T: F \to \ell_{\infty}^{N}$

(日) (同) (日) (日)

Theorem (S.)

Let *F* be a uniformly convex space of modulus of convexity δ of power type *p*. Assume *E* is a subspace of *F* with dim $E \leq n^{\frac{1}{p+2}}$. Then every projection $P: F \to E$ such that $||P|| \leq \dim E$ satisfies:

$$\mathbb{P}_{F}\left\{f\in B(F): \|Pf\|\leq n^{-rac{1}{(p+1)(p+2)}}
ight\}\geq 1-(n+1)e^{-Kn^{rac{1}{p+1}}}$$

Theorem (S.)

Let F be a uniformly convex space of modulus of convexity δ of power type p. Assume E is a subspace of F with dim $E < n^{\frac{1}{p+2}}$. Then every projection $P: F \to E$ such that $||P|| < \dim E$ satisfies.

$$\mathbb{P}_{F}\left\{f\in B(F): \|Pf\|\leq n^{-rac{1}{(p+1)(p+2)}}
ight\}\geq 1-(n+1)e^{-Kn^{rac{1}{p+1}}}$$

To sum up

For $F = (\mathbb{R}^{n+1}, \|\cdot\|_F)$ uniformly convex of power type p and a projection $P: F \to E$, the set

$$G = \{f \in B(F) : ||Pf|| \le 1\}$$

is "large" compared with B(F).

To sum up

For $F = (\mathbb{R}^{n+1}, \|\cdot\|_F)$ uniformly convex of power type p and a projection $P: F \to E$, the set

$$G = \{f \in B(F) : ||Pf|| \le 1\}$$

is "large" compared with B(F).

G gives rise to a norm, precisely for $x \in \mathbb{R}^{n+1}$:

To sum up

For $F = (\mathbb{R}^{n+1}, \|\cdot\|_F)$ uniformly convex of power type p and a projection $P: F \to E$, the set

$$G = \{f \in B(F) : \|Pf\| \le 1\}$$

is "large" compared with B(F).

G gives rise to a norm, precisely for $x \in \mathbb{R}^{n+1}$:

 $||x||_G := \max(||x||_F, ||Px||).$

To sum up

For $F = (\mathbb{R}^{n+1}, \|\cdot\|_F)$ uniformly convex of power type p and a projection $P: F \to E$, the set

$$G = \{f \in B(F) : \|Pf\| \le 1\}$$

is "large" compared with B(F).

G gives rise to a norm, precisely for $x \in \mathbb{R}^{n+1}$:

$$||x||_G := \max(||x||_F, ||Px||).$$

 $(\mathbb{R}^{n+1}, \|\cdot\|_{\mathcal{G}})$ has two properties:

To sum up

For $F = (\mathbb{R}^{n+1}, \|\cdot\|_F)$ uniformly convex of power type p and a projection $P: F \to E$, the set

$$G = \{f \in B(F) : \|Pf\| \le 1\}$$

is "large" compared with B(F).

G gives rise to a norm, precisely for $x \in \mathbb{R}^{n+1}$:

 $||x||_G := \max(||x||_F, ||Px||).$

 $(\mathbb{R}^{n+1}, \|\cdot\|_{\mathcal{G}})$ has two properties:

• *E* is 1-complemented in $(\mathbb{R}^{n+1}, \|\cdot\|_G)$.

To sum up

٥

For $F = (\mathbb{R}^{n+1}, \|\cdot\|_F)$ uniformly convex of power type p and a projection $P: F \to E$, the set

$$G = \{f \in B(F) : \|Pf\| \le 1\}$$

is "large" compared with B(F).

G gives rise to a norm, precisely for $x \in \mathbb{R}^{n+1}$:

$$||x||_G := \max(||x||_F, ||Px||).$$

 $(\mathbb{R}^{n+1}, \|\cdot\|_{\mathcal{G}})$ has two properties:

• *E* is 1-complemented in $(\mathbb{R}^{n+1}, \|\cdot\|_G)$.

$$1 \leq \frac{\operatorname{Vol}_{n+1}(B(F))}{\operatorname{Vol}_{n+1}(G)} \leq \left(1 - (n+1)e^{-\kappa_n \frac{1}{p+1}}\right)^{-1}.$$

Uniformly convex spaces are a Levy family

Consider $F_n = (\mathbb{R}^{n+1}, \|\cdot\|_{F_n})$ uniformly convex of power type p with \mathbb{P}_{F_n} , the normalized uniform volume element on B_{F_n} . For fixed $\varepsilon > 0$ and $A \subseteq B(F_n)$:

$$\mathbb{P}_{F_n}(A) \ge 1/2 \implies \mathbb{P}_{F_n}(A_{\varepsilon}) \ge 1 - 2e^{-2Kn\varepsilon^p},$$

where $A_{\varepsilon} = \{x : d(x, A) \le \varepsilon\}$

Uniformly convex spaces are a Levy family

Consider $F_n = (\mathbb{R}^{n+1}, \|\cdot\|_{F_n})$ uniformly convex of power type p with \mathbb{P}_{F_n} , the normalized uniform volume element on B_{F_n} . For fixed $\varepsilon > 0$ and $A \subseteq B(F_n)$:

$$\mathbb{P}_{F_n}(A) \geq 1/2 \quad \Longrightarrow \quad \mathbb{P}_{F_n}(A_{arepsilon}) \geq 1 - 2e^{-2 \mathcal{K} n arepsilon^p},$$

where $A_{\varepsilon} = \{x : d(x, A) \leq \varepsilon\}$

Uniformly convex spaces are a Levy family

Consider $F_n = (\mathbb{R}^{n+1}, \|\cdot\|_{F_n})$ uniformly convex of power type p with \mathbb{P}_{F_n} , the normalized uniform volume element on B_{F_n} . For fixed $\varepsilon > 0$ and $A \subseteq B(F_n)$:

$$\mathbb{P}_{F_n}(A) \geq 1/2 \implies \mathbb{P}_{F_n}(A_{arepsilon}) \geq 1 - 2e^{-2\kappa_n arepsilon^p},$$

where $A_{\varepsilon} = \{x : d(x, A) \leq \varepsilon\}$

The renormings are also a Levy family

Consider $G_n = (\mathbb{R}^{n+1}, \|\cdot\|_{G_n})$ with \mathbb{P}_{G_n} , the normalized uniform volume element on B_{G_n} . For fixed $\varepsilon > 0$ and $A \subseteq B(G_n)$:

$$\mathbb{P}_{G_n}(A) \geq 1/2 \implies \mathbb{P}_{G_n}(A_{arepsilon}) \geq 1 - 4e^{-2K_n rac{2}{p+2} rac{2}{arepsilon} p}$$

where $A_{\varepsilon} = \{x : d(x, A) \leq \varepsilon\}$

Coming back to the linear structure

Euclidean sections for the renorming

Theorem

Uniformly convex n-dimensional Banach spaces of power type 2 contains a 2-isomorphic copy of ℓ_2^m for $m \ge cn$.

Euclidean sections for the renorming

Theorem

Uniformly convex n-dimensional Banach spaces of power type 2 contains a 2-isomorphic copy of ℓ_2^m for $m \ge cn$.

Theorem (Rudelson and Vershynin)

Let X be an n-dimensional Banach space and (T, d, μ) a metric probability space satisfying

$$\mu(A) \geq 1/2 \implies \mu(A_{\varepsilon}) \geq 1 - c_1 e^{-c_2 n \varepsilon^2}$$

If (T, d) can be K-lipschitz embedded into X then X contains a 2-isomorphic copy of ℓ_2^m for $m \ge cn$.

Euclidean sections for the renorming

Proposition (S.)

If F is uniformly convex of power type 2 and $(\mathbb{R}^{n+1}, \|\cdot\|_G)$ denotes the renorming given for a specific projection P then $(\mathbb{R}^{n+1}, \|\cdot\|_G)$ contains a 2-isomorphic copy of ℓ_2^m for

$$m \ge c \frac{n}{\|P\|^2}.$$

In particular $m \ge c\sqrt{n}$.

$$d_g(B(F), B(G)) = \|P\| \to \infty$$

$$d_g(B(F), B(G)) = \|P\| \to \infty$$

 $(B(F), \|\cdot\|_{F}, \mathbb{P}_{F})$ and $(B(G), \|\cdot\|_{G}, \mathbb{P}_{G})$ are metric probability spaces.

$$d_g(B(F), B(G)) = \|P\| \to \infty$$

 $(B(F), \|\cdot\|_{F}, \mathbb{P}_{F})$ and $(B(G), \|\cdot\|_{G}, \mathbb{P}_{G})$ are metric probability spaces.

 $\underline{\Box}_1(B(F),B(G))\to 0.$

THANK YOU!

< /⊒ ► < Ξ ►