Projections on uniformly convex spaces

Jesús Suárez
University of Extremadura

Jaca, 2011

Projection norms

Theorem (Kadec and Snobar)

Every finite dimensional Banach space E is complemented in any superspace F with a projection $P: F \rightarrow E$ with

$$
\|P\| \leq \sqrt{\operatorname{dim} E}
$$

Projection norms

Theorem (Kadec-Snobar,König and Tomczak-Jaegermann)

Every finite dimensional Banach space E is complemented in any superspace F with a projection $P: F \rightarrow E$ with

$$
\begin{gathered}
\|P\| \leq \sqrt{\operatorname{dim} E} \\
\|P\| \leq \sqrt{\operatorname{dim} E}-\frac{c}{\sqrt{\operatorname{dimE}}}
\end{gathered}
$$

Bad complementation

Theorem

Let $1 \leq p \neq 2<\infty$. There exist a constant M depending only on p and a sequence of into isomorphisms

$$
T_{n}: \ell_{p}^{k(n)} \rightarrow \ell_{p}^{n}
$$

with $\left\|T_{n}\right\|\left\|T_{n}^{-1}\right\| \leq M$ such that there is no uniformly bounded sequence of projections $P_{n}: \ell_{p}^{n} \rightarrow \ell_{p}^{k(n)}$.

Bad complementation

Theorem

Let $1 \leq p \neq 2<\infty$. There exist a constant M depending only on p and a sequence of into isomorphisms

$$
T_{n}: \ell_{p}^{k(n)} \rightarrow \ell_{p}^{n}
$$

with $\left\|T_{n}\right\|\left\|T_{n}^{-1}\right\| \leq M$ such that there is no uniformly bounded sequence of projections $P_{n}: \ell_{p}^{n} \rightarrow \ell_{p}^{k(n)}$.

- Rosenthal: $2<p<\infty$

Bad complementation

Theorem

Let $1 \leq p \neq 2<\infty$. There exist a constant M depending only on p and a sequence of into isomorphisms

$$
T_{n}: \ell_{p}^{k(n)} \rightarrow \ell_{p}^{n}
$$

with $\left\|T_{n}\right\|\left\|T_{n}^{-1}\right\| \leq M$ such that there is no uniformly bounded sequence of projections $P_{n}: \ell_{p}^{n} \rightarrow \ell_{p}^{k(n)}$.

- Rosenthal: $2<p<\infty$
- Rosenthal: $1<p<4 / 3$

Bad complementation

Theorem

Let $1 \leq p \neq 2<\infty$. There exist a constant M depending only on p and a sequence of into isomorphisms

$$
T_{n}: \ell_{p}^{k(n)} \rightarrow \ell_{p}^{n}
$$

with $\left\|T_{n}\right\|\left\|T_{n}^{-1}\right\| \leq M$ such that there is no uniformly bounded sequence of projections $P_{n}: \ell_{p}^{n} \rightarrow \ell_{p}^{k(n)}$.

- Rosenthal: $2<p<\infty$
- Rosenthal: $1<p<4 / 3$
- Bennet, Dor, Goodman, Johnson and Newman: $1<p<2$

Bad complementation

Theorem

Let $1 \leq p \neq 2<\infty$. There exist a constant M depending only on p and a sequence of into isomorphisms

$$
T_{n}: \ell_{p}^{k(n)} \rightarrow \ell_{p}^{n}
$$

with $\left\|T_{n}\right\|\left\|T_{n}^{-1}\right\| \leq M$ such that there is no uniformly bounded sequence of projections $P_{n}: \ell_{p}^{n} \rightarrow \ell_{p}^{k(n)}$.

- Rosenthal: $2<p<\infty$
- Rosenthal: $1<p<4 / 3$
- Bennet, Dor, Goodman, Johnson and Newman: $1<p<2$
- Bourgain: $p=1$.

Question

Given E a finite dimensional subspace of F, it does not need to be "well" complemented. So, given a projection $P: F \rightarrow E$, what about the set

Question

Given E a finite dimensional subspace of F, it does not need to be "well" complemented. So, given a projection $P: F \rightarrow E$, what about the set

$$
\{f \in B(F):\|P f\| \leq 1\} ?
$$

Question

Given E a finite dimensional subspace of F, it does not need to be "well" complemented. So, given a projection $P: F \rightarrow E$, what about the set

$$
\{f \in B(F):\|P f\| \leq 1\} ?
$$

Through the rest our setting will be finite dimensional uniformly convex Banach spaces.

Uniformly convex spaces

We recall that F is said to be uniformly convex if $\delta(\varepsilon)>0$ for every $\varepsilon>0$ where as usual δ denotes the modulus of convexity of F, namely,

$$
\delta(\varepsilon)=\inf \left\{1-\frac{\|x+y\|}{2} ; x, y \in F,\|x\|=\|y\|=1,\|x-y\|=\varepsilon\right\} .
$$

Uniformly convex spaces

We recall that F is said to be uniformly convex if $\delta(\varepsilon)>0$ for every $\varepsilon>0$ where as usual δ denotes the modulus of convexity of F, namely,

$$
\delta(\varepsilon)=\inf \left\{1-\frac{\|x+y\|}{2} ; x, y \in F,\|x\|=\|y\|=1,\|x-y\|=\varepsilon\right\} .
$$

Uniformly convex spaces

F is said to be uniformly convex of power type p if $\delta(\varepsilon) \geq K \varepsilon^{p}$ for all $\varepsilon>0$.

Uniformly convex spaces

F is said to be uniformly convex of power type p if $\delta(\varepsilon) \geq K \varepsilon^{p}$ for all $\varepsilon>0$.
Examples
The modulus of convexity for ℓ_{p}^{n} :

Uniformly convex spaces

F is said to be uniformly convex of power type p if $\delta(\varepsilon) \geq K \varepsilon^{p}$ for all $\varepsilon>0$.
Examples
The modulus of convexity for ℓ_{p}^{n} :

$$
\left\{\begin{array}{lr}
K \varepsilon^{2} & \text { for } 1<p \leq 2 \\
K \varepsilon^{p} & \text { for } 2 \leq p<\infty
\end{array}\right.
$$

Uniformly convex spaces

F is said to be uniformly convex of power type p if $\delta(\varepsilon) \geq K \varepsilon^{p}$ for all $\varepsilon>0$.
Examples
The modulus of convexity for ℓ_{p}^{n} :

$$
\begin{gathered}
\left\{\begin{array}{c}
K \varepsilon^{2} \quad \text { for } 1<p \leq 2 \\
K \varepsilon^{p} \quad \text { for } 2 \leq p<\infty
\end{array}\right. \\
\left\{\begin{array}{r}
(p-1) \varepsilon^{2} \quad \text { for } 1<p \leq 2 \\
\left(p \cdot 2^{-p}\right) \varepsilon^{p} \quad \text { for } 2 \leq p<\infty
\end{array}\right.
\end{gathered}
$$

Back with the question

Given E a finite dimensional subspace of F, it does not need to be "well" complemented. So, given a projection $P: F \rightarrow E$, what about the set $\{f \in B(F):\|P f\| \leq 1\}$?

Back with the question

Given E a finite dimensional subspace of F, it does not need to be "well" complemented. So, given a projection $P: F \rightarrow E$, what about the set $\{f \in B(F):\|P f\| \leq 1\}$?

Theorem (S.)

Let F be a uniformly convex space of modulus of convexity δ of power type p, i.e. $\delta(\varepsilon) \geq K \varepsilon^{p}$, and dimension $n+1$ for $n+1$ large enough. Assume E is a subspace of F with $\operatorname{dim} E \leq n^{\frac{1}{p+2}}$. Then every projection $P: F \rightarrow E$ such that $\|P\| \leq \operatorname{dim} E$ satisfies:

$$
\mathbb{P}_{F}\left\{f \in B(F):\|P f\| \leq n^{-\frac{1}{(p+1)(p+2)}}\right\} \geq 1-(n+1) e^{-K n^{\frac{1}{p+1}}}
$$

Back with the question

Given E a finite dimensional subspace of F, it does not need to be "well" complemented. So, given a projection $P: F \rightarrow E$, what about the set $\{f \in B(F):\|P f\| \leq 1\}$?

Theorem (S.)

Let F be a uniformly convex space of modulus of convexity δ of power type p, i.e. $\delta(\varepsilon) \geq K \varepsilon^{p}$, and dimension $n+1$ for $n+1$ large enough. Assume E is a subspace of F with $\operatorname{dim} E \leq n^{\frac{1}{p+2}}$. Then every projection $P: F \rightarrow E$ such that $\|P\| \leq \operatorname{dim} E$ satisfies:

$$
\mathbb{P}_{F}\{f \in B(F):\|P f\| \leq 1\} \geq 1-\varepsilon_{n}
$$

where $\varepsilon_{n} \rightarrow 0$.

Back with the question

Given E a finite dimensional subspace of F, it does not need to be "well" complemented. So, given a projection $P: F \rightarrow E$, what about the set $\{f \in B(F):\|P f\| \leq 1\}$?

Theorem (S.)

Let F be a uniformly convex space of modulus of convexity δ of power type p, i.e. $\delta(\varepsilon) \geq K \varepsilon^{p}$, and dimension $n+1$ for $n+1$ large enough. Assume E is a subspace of F with $\operatorname{dim} E \leq n^{\frac{1}{p+2}}$. Then every projection $P: F \rightarrow E$ such that $\|P\| \leq \operatorname{dim} E$ satisfies:

$$
\mathbb{P}_{F}\{f \in B(F):\|P f\| \leq 1\} \geq 1-\varepsilon_{n}
$$

where $\varepsilon_{n} \rightarrow 0$.

Why is it happening this phenomena?

Key idea

Theorem (Gromov and Milman)

If F is a uniformly convex $n+1$-dimensional Banach space, with modulus of convexity δ and $\phi \in F^{*}$ with $\|\phi\|=1$, then

$$
\mathbb{P}_{F}\{f \in B(F):|\phi(f)| \leq \varepsilon\} \geq 1-(n+1) e^{\frac{-n}{2} \delta(2 \varepsilon)} .
$$

Key idea

Theorem (Gromov and Milman)

If F is a uniformly convex $n+1$-dimensional Banach space, with modulus of convexity δ and $\phi \in F^{*}$ with $\|\phi\|=1$, then

$$
\mathbb{P}_{F}\{f \in B(F):|\phi(f)| \leq \varepsilon\} \geq 1-(n+1) e^{\frac{-n}{2} \delta(2 \varepsilon)} .
$$

Key idea

Theorem (Gromov and Milman)

If F is a uniformly convex $n+1$-dimensional Banach space, with modulus of convexity δ and $\phi \in F^{*}$ with $\|\phi\|=1$, then

$$
\mathbb{P}_{F}\{f \in B(F):|\phi(f)| \leq \varepsilon\} \geq 1-(n+1) e^{\frac{-n}{2} \delta(2 \varepsilon)} .
$$

Key idea

Theorem (Gromov and Milman)

If F is a uniformly convex $n+1$-dimensional Banach space, with modulus of convexity δ and $\phi \in F^{*}$ with $\|\phi\|=1$, then

$$
\mathbb{P}_{F}\{f \in B(F):|\phi(f)| \leq \varepsilon\} \geq 1-(n+1) e^{\frac{-n}{2} \delta(2 \varepsilon)} .
$$

Sketch of proof

Theorem (S.)

Let F be a uniformly convex space of modulus of convexity δ of power type p. Assume E is a subspace of F with $\operatorname{dim} E \leq n^{\frac{1}{p+2}}$. Then every projection $P: F \rightarrow E$ such that $\|P\| \leq \operatorname{dim} E$ satisfies:

$$
\mathbb{P}_{F}\left\{f \in B(F):\|P f\| \leq n^{-\frac{1}{(p+1)(p+2)}}\right\} \geq 1-(n+1) e^{-K_{n} \frac{1}{p+1}}
$$

Proof.

(1) Operator version of Gromov-Milman's result: $T: F \rightarrow \ell_{\infty}^{N}$

Sketch of proof

Theorem (S.)

Let F be a uniformly convex space of modulus of convexity δ of power type p. Assume E is a subspace of F with $\operatorname{dim} E \leq n^{\frac{1}{p+2}}$. Then every projection $P: F \rightarrow E$ such that $\|P\| \leq \operatorname{dim} E$ satisfies:

$$
\mathbb{P}_{F}\left\{f \in B(F):\|P f\| \leq n^{-\frac{1}{(p+1)(p+2)}}\right\} \geq 1-(n+1) e^{-K_{n} \frac{1}{p+1}}
$$

Proof.

(1) Operator version of Gromov-Milman's result: $T: F \rightarrow \ell_{\infty}^{N}$
(2)

$$
\begin{array}{r}
E \xrightarrow{i} F \\
j_{\varepsilon} \downarrow \\
\ell_{\infty}^{N}
\end{array}
$$

Sketch of proof

Theorem (S.)

Let F be a uniformly convex space of modulus of convexity δ of power type p. Assume E is a subspace of F with $\operatorname{dim} E \leq n^{\frac{1}{p+2}}$. Then every projection $P: F \rightarrow E$ such that $\|P\| \leq \operatorname{dim} E$ satisfies:

$$
\mathbb{P}_{F}\left\{f \in B(F):\|P f\| \leq n^{-\frac{1}{(p+1)(p+2)}}\right\} \geq 1-(n+1) e^{-K n^{\frac{1}{p+1}}}
$$

Proof.

(1) Operator version of Gromov-Milman's result: $T: F \rightarrow \ell_{\infty}^{N}$
(2)

(3) Take $P: F \rightarrow E$ and consider $j_{\varepsilon} P: F \rightarrow \ell_{\infty}^{N}$. If $\left\|j_{\varepsilon} P f\right\|$ is close to 0 then so does $\|P f\|$.

The volumetric point of view

To sum up
For $F=\left(\mathbb{R}^{n+1},\|\cdot\|_{F}\right)$ uniformly convex of power type p and a projection $P: F \rightarrow E$, the set

$$
G=\{f \in B(F):\|P f\| \leq 1\}
$$

is "large" compared with $B(F)$.

The volumetric point of view

To sum up

For $F=\left(\mathbb{R}^{n+1},\|\cdot\|_{F}\right)$ uniformly convex of power type p and a projection $P: F \rightarrow E$, the set

$$
G=\{f \in B(F):\|P f\| \leq 1\}
$$

is "large" compared with $B(F)$.
G gives rise to a norm, precisely for $x \in \mathbb{R}^{n+1}$:

The volumetric point of view

To sum up

For $F=\left(\mathbb{R}^{n+1},\|\cdot\|_{F}\right)$ uniformly convex of power type p and a projection $P: F \rightarrow E$, the set

$$
G=\{f \in B(F):\|P f\| \leq 1\}
$$

is "large" compared with $B(F)$.
G gives rise to a norm, precisely for $x \in \mathbb{R}^{n+1}$:

$$
\|x\|_{G}:=\max \left(\|x\|_{F},\|P x\|\right)
$$

The volumetric point of view

To sum up

For $F=\left(\mathbb{R}^{n+1},\|\cdot\|_{F}\right)$ uniformly convex of power type p and a projection $P: F \rightarrow E$, the set

$$
G=\{f \in B(F):\|P f\| \leq 1\}
$$

is "large" compared with $B(F)$.
G gives rise to a norm, precisely for $x \in \mathbb{R}^{n+1}$:

$$
\|x\|_{G}:=\max \left(\|x\|_{F},\|P x\|\right)
$$

$\left(\mathbb{R}^{n+1},\|\cdot\|_{G}\right)$ has two properties:

The volumetric point of view

To sum up

For $F=\left(\mathbb{R}^{n+1},\|\cdot\|_{F}\right)$ uniformly convex of power type p and a projection $P: F \rightarrow E$, the set

$$
G=\{f \in B(F):\|P f\| \leq 1\}
$$

is "large" compared with $B(F)$.
G gives rise to a norm, precisely for $x \in \mathbb{R}^{n+1}$:

$$
\|x\|_{G}:=\max \left(\|x\|_{F},\|P x\|\right)
$$

$\left(\mathbb{R}^{n+1},\|\cdot\|_{G}\right)$ has two properties:

- E is 1-complemented in $\left(\mathbb{R}^{n+1},\|\cdot\|_{G}\right)$.

The volumetric point of view

To sum up

For $F=\left(\mathbb{R}^{n+1},\|\cdot\|_{F}\right)$ uniformly convex of power type p and a projection $P: F \rightarrow E$, the set

$$
G=\{f \in B(F):\|P f\| \leq 1\}
$$

is "large" compared with $B(F)$.
G gives rise to a norm, precisely for $x \in \mathbb{R}^{n+1}$:

$$
\|x\|_{G}:=\max \left(\|x\|_{F},\|P x\|\right)
$$

$\left(\mathbb{R}^{n+1},\|\cdot\|_{G}\right)$ has two properties:

- E is 1 -complemented in $\left(\mathbb{R}^{n+1},\|\cdot\|_{G}\right)$.

$$
1 \leq \frac{\operatorname{Vol}_{n+1}(B(F))}{\operatorname{Vol}_{n+1}(G)} \leq\left(1-(n+1) e^{-K n^{\frac{1}{p+1}}}\right)^{-1}
$$

Metric-measure point of view

Stability of concentration

Uniformly convex spaces are a Levy family

Consider $F_{n}=\left(\mathbb{R}^{n+1},\|\cdot\|_{F_{n}}\right)$ uniformly convex of power type p with $\mathbb{P}_{F_{n}}$, the normalized uniform volume element on $B_{F_{n}}$. For fixed $\varepsilon>0$ and $A \subseteq B\left(F_{n}\right):$

$$
\mathbb{P}_{F_{n}}(A) \geq 1 / 2 \quad \Longrightarrow \quad \mathbb{P}_{F_{n}}\left(A_{\varepsilon}\right) \geq 1-2 e^{-2 K n \varepsilon^{p}}
$$

where $A_{\varepsilon}=\{x: d(x, A) \leq \varepsilon\}$

Metric-measure point of view

Stability of concentration

Uniformly convex spaces are a Levy family

Consider $F_{n}=\left(\mathbb{R}^{n+1},\|\cdot\|_{F_{n}}\right)$ uniformly convex of power type p with $\mathbb{P}_{F_{n}}$, the normalized uniform volume element on $B_{F_{n}}$. For fixed $\varepsilon>0$ and $A \subseteq B\left(F_{n}\right)$:

$$
\mathbb{P}_{F_{n}}(A) \geq 1 / 2 \quad \Longrightarrow \quad \mathbb{P}_{F_{n}}\left(A_{\varepsilon}\right) \geq 1-2 e^{-2 K n \varepsilon^{p}}
$$

where $A_{\varepsilon}=\{x: d(x, A) \leq \varepsilon\}$

Metric-measure point of view

Stability of concentration

Uniformly convex spaces are a Levy family

Consider $F_{n}=\left(\mathbb{R}^{n+1},\|\cdot\|_{F_{n}}\right)$ uniformly convex of power type p with $\mathbb{P}_{F_{n}}$, the normalized uniform volume element on $B_{F_{n}}$. For fixed $\varepsilon>0$ and $A \subseteq B\left(F_{n}\right)$:

$$
\mathbb{P}_{F_{n}}(A) \geq 1 / 2 \quad \Longrightarrow \quad \mathbb{P}_{F_{n}}\left(A_{\varepsilon}\right) \geq 1-2 e^{-2 K n \varepsilon^{p}}
$$

where $A_{\varepsilon}=\{x: d(x, A) \leq \varepsilon\}$

The renormings are also a Levy family

Consider $G_{n}=\left(\mathbb{R}^{n+1},\|\cdot\|_{G_{n}}\right)$ with $\mathbb{P}_{G_{n}}$, the normalized uniform volume element on $B_{G_{n}}$. For fixed $\varepsilon>0$ and $A \subseteq B\left(G_{n}\right)$:

$$
\mathbb{P}_{G_{n}}(A) \geq 1 / 2 \quad \Longrightarrow \quad \mathbb{P}_{G_{n}}\left(A_{\varepsilon}\right) \geq 1-4 e^{-2 K n \frac{2}{p+2} \varepsilon^{p}}
$$

where $A_{\varepsilon}=\{x: d(x, A) \leq \varepsilon\}$

Coming back to the linear structure

Euclidean sections for the renorming
Theorem
Uniformly convex n-dimensonal Banach spaces of power type 2 contains a 2-isomorphic copy of ℓ_{2}^{m} for $m \geq c n$.

Coming back to the linear structure

Euclidean sections for the renorming

Theorem

Uniformly convex n-dimensonal Banach spaces of power type 2 contains a 2-isomorphic copy of ℓ_{2}^{m} for $m \geq c n$.

Theorem (Rudelson and Vershynin)

Let X be an n-dimensional Banach space and (T, d, μ) a metric probability space satisfying

$$
\mu(A) \geq 1 / 2 \quad \Longrightarrow \quad \mu\left(A_{\varepsilon}\right) \geq 1-c_{1} e^{-c_{2} n \varepsilon^{2}} .
$$

If (T, d) can be K-lipschitz embedded into X then X contains a 2-isomorphic copy of ℓ_{2}^{m} for $m \geq c n$.

Coming back to the linear structure

Euclidean sections for the renorming

Proposition (S.)

If F is uniformly convex of power type 2 and $\left(\mathbb{R}^{n+1},\|\cdot\|_{G}\right)$ denotes the renorming given for a specific projection P then $\left(\mathbb{R}^{n+1},\|\cdot\|_{G}\right)$ contains a 2-isomorphic copy of ℓ_{2}^{m} for

$$
m \geq c \frac{n}{\|P\|^{2}}
$$

In particular $m \geq c \sqrt{n}$.

Metric-measure point of view

Gromov's box distance

Consider $F=\left(\mathbb{R}^{n+1},\|\cdot\|_{F}\right)$ uniformly convex of power type p and a projection $P: F \rightarrow E$. We have the space $G=\left(\mathbb{R}^{n+1},\|\cdot\|_{G}\right)$ where $\|x\|_{G}:=\max \left(\|x\|_{F},\|P x\|\right)$.

Metric-measure point of view

Gromov's box distance

Consider $F=\left(\mathbb{R}^{n+1},\|\cdot\|_{F}\right)$ uniformly convex of power type p and a projection $P: F \rightarrow E$. We have the space $G=\left(\mathbb{R}^{n+1},\|\cdot\|_{G}\right)$ where $\|x\|_{G}:=\max \left(\|x\|_{F},\|P x\|\right)$.

$$
d_{g}(B(F), B(G))=\|P\| \rightarrow \infty
$$

Metric-measure point of view

Gromov's box distance

Consider $F=\left(\mathbb{R}^{n+1},\|\cdot\|_{F}\right)$ uniformly convex of power type p and a projection $P: F \rightarrow E$. We have the space $G=\left(\mathbb{R}^{n+1},\|\cdot\|_{G}\right)$ where $\|x\|_{G}:=\max \left(\|x\|_{F},\|P x\|\right)$.

$$
d_{g}(B(F), B(G))=\|P\| \rightarrow \infty
$$

$\left(B(F),\|\cdot\|_{F}, \mathbb{P}_{F}\right)$ and $\left(B(G),\|\cdot\|_{G}, \mathbb{P}_{G}\right)$ are metric probability spaces.

Metric-measure point of view

Gromov's box distance

Consider $F=\left(\mathbb{R}^{n+1},\|\cdot\|_{F}\right)$ uniformly convex of power type p and a projection $P: F \rightarrow E$. We have the space $G=\left(\mathbb{R}^{n+1},\|\cdot\|_{G}\right)$ where $\|x\|_{G}:=\max \left(\|x\|_{F},\|P x\|\right)$.

$$
d_{g}(B(F), B(G))=\|P\| \rightarrow \infty
$$

$\left(B(F),\|\cdot\|_{F}, \mathbb{P}_{F}\right)$ and $\left(B(G),\|\cdot\|_{G}, \mathbb{P}_{G}\right)$ are metric probability spaces.

$$
\square_{1}(B(F), B(G)) \rightarrow 0
$$

THANK YOU!

