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Projection norms

Theorem (Kadec and Snobar)

Every finite dimensional Banach space E is complemented in any
superspace F with a projection P : F — E with

|P|| < VdimE
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Bad complementation

Let 1 < p=#2 < oo . There exist a constant M depending only on p and a
sequence of into isomorphisms

k

iE Zp(n) — £,

with || To||| T, 2| < M such that there is no uniformly bounded sequence
g o . on k(n
of projections Py : £p — £p"".
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Let 1 < p=#2 < oo . There exist a constant M depending only on p and a
sequence of into isomorphisms
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iE Zp(n) — £,

with | T, ||| T, Y| < M such that there is no uniformly bounded sequence
g o . on k(n
of projections Py : £p — £p"".

@ Rosenthal: 2 < p < 0
@ Rosenthal: 1 < p<4/3

@ Bennet, Dor, Goodman, Johnson and Newman: 1 < p <2
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Bad complementation

Theorem

Let 1 < p=#2 < oo . There exist a constant M depending only on p and a
sequence of into isomorphisms

iE Zl,;(n) — £,

with | T, ||| T, Y| < M such that there is no uniformly bounded sequence
g o . on k(n
of projections Py : £p — £p"".

Rosenthal: 2 < p < >
Rosenthal: 1 < p < 4/3

Bennet, Dor, Goodman, Johnson and Newman: 1 < p < 2

e © ¢ ¢

Bourgain: p=1.
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Given E a finite dimensional subspace of F, it does not need to be “well”
complemented. So, given a projection P : F — E, what about the set
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Given E a finite dimensional subspace of F, it does not need to be “well”
complemented. So, given a projection P : F — E, what about the set

{f € B(F):||Pf|| <1}7?

Through the rest our setting will be finite dimensional uniformly convex Banach
spaces.
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Uniformly convex spaces

We recall that F is said to be uniformly convex if 6(¢) > 0 for every € > 0
where as usual § denotes the modulus of convexity of F, namely,

. X+Yy
o) = int {1 - P Ly e P =y =20 v 1=
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Uniformly convex spaces

F is said to be uniformly convex of power type p if () > KeP for all
e>0.
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Uniformly convex spaces

F is said to be uniformly convex of power type p if () > KeP for all

e>0.
Examples
The modulus of convexity for /] :

Ke? forl<p<?2
KeP for2 < p< oo
(p—1)e2 forl<p<?2
(p-27P)eP for2<p< oo
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Back with the question

Given E a finite dimensional subspace of F, it does not need to be “well” complemented.
So, given a projection P : F — E, what about the set {f € B(F) : ||Pf|| < 1}?
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Back with the question

Given E a finite dimensional subspace of F, it does not need to be “well” complemented.
So, given a projection P : F — E, what about the set {f € B(F) : ||Pf|| < 1}?

Let F be a uniformly convex space of modulus of convexity § of power type p, i.e.
0(g) > KeP, and dimension n+ 1 for n+ 1 large enough. Assume E is a subspace of F

with dim E < w2, Then every projection P : F — E such that ||P|| < dim E satisfies:

1

Z —KnPtHL

Pr {f € B(F): ||Pf|| < n” <p+1><p+2>} >1-(n+1)e
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Back with the question

Given E a finite dimensional subspace of F, it does not need to be “well” complemented.
So, given a projection P : F — E, what about the set {f € B(F) : ||Pf|| < 1}?

Theorem (S.)

Let F be a uniformly convex space of modulus of convexity § of power type p, i.e.
d(e) > KeP, and dimension n+ 1 for n+ 1 large enough. Assume E is a subspace of F

with dim E < w2, Then every projection P : F — E such that ||P|| < dim E satisfies:

Pr{f € B(F): |Pf| <1} >1—e,,

where €, — 0.
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Back with the question

Given E a finite dimensional subspace of F, it does not need to be “well” complemented.
So, given a projection P : F — E, what about the set {f € B(F) : ||Pf|| < 1}?

Theorem (S.)

Let F be a uniformly convex space of modulus of convexity § of power type p, i.e.
d(e) > KeP, and dimension n+ 1 for n+ 1 large enough. Assume E is a subspace of F

with dim E < w2, Then every projection P : F — E such that ||P|| < dim E satisfies:

Pr{f € B(F): |Pf| <1} >1—e,,

where e, — 0.

Why is it happening this phenomena?
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Theorem (Gromov and Milman)

If F is a uniformly convex n + 1-dimensional Banach space, with modulus of
convexity 6 and ¢ € F* with ||¢|| = 1, then

Pr{f € B(F): |p(f)| <&} >1—(n+1)e7°?),
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Sketch of proof

Let F be a uniformly convex space of modulus of convexity § of power type p. Assume E is a

1
subspace of F with dim E < np+2. Then every projection P : F — E such that ||P| < dim E

satisfies: s

1
Pr {f € B(F) : ||Pf]| < n~ etD(+2) } >1—(n+ 1)e_K"p+1

€ Operator version of Gromov-Milman's result: T : F — ¢
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Let F be a uniformly convex space of modulus of convexity § of power type p. Assume E is a

1
subspace of F with dim E < np+2. Then every projection P : F — E such that ||P| < dim E

satisfies: s

1
Pr {f € B(F) : ||Pf]| < n~ etD(+2) } >1—(n+ 1)e_K"p+1

@ Operator version of Gromov-Milman's result: T : F — £

e i
E ——F
k|

EN

oo
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Sketch of proof

Let F be a uniformly convex space of modulus of convexity § of power type p. Assume E is a
1
subspace of F with dim E < np+2. Then every projection P : F — E such that ||P| < dim E

satisfies: s

1
Pr {f € B(F) : ||Pf]| < n~ etD(+2) } >1—(n+ 1)e_K"p+1

@ Operator version of Gromov-Milman's result: T : F — £

Q

E —" > F
x|
2

© Take P: F — E and consider j.P : F — ¢/, If ||j- Pf|| is close to O then so does
|| P£]. |
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The volumetric point of view

For F = (R™1,|| - ||f) uniformly convex of power type p and a projection
P:F — E, the set

G={feB(F):|Pf|| <1}
is "large” compared with B(F).
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For F = (R™1 || - ||) uniformly convex of power type p and a projection
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G gives rise to a norm, precisely for x € R"1;
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(R™1 || - |g) has two properties:

o E is 1-complemented in (R™1 || - ||6).

Jesiis Sudrez (University of Extremadura)

Projections on uniformly convex spaces

Jaca, 2011



The volumetric point of view

For F = (R™1 || - ||) uniformly convex of power type p and a projection
P:F — E, the set

G={feB(F):|Pf|| <1}
is "large” compared with B(F).

G gives rise to a norm, precisely for x € R"1;

IXll6 = max(llx|[F, | Px]])-

(R™1 || - |g) has two properties:
o E is 1-complemented in (R™1 || - ||6).
°
V0|n+1(B(F)) < _K p__h)—l
1< —————F==<(1-(n+1)e " )
Volp:1(G) (n+1)
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Metric-measure point of view

Stability of concentration

Uniformly convex spaces are a Levy family

Consider F, = (R™1 || -|| ,) uniformly convex of power type p with P,
the normalized uniform volume element on Bf,. For fixed € > 0 and
A C B(Fy):
Pr,(A) >1/2 = Pg(A) > 1—2e 2Kn"
where A. = {x : d(x,A) <¢&}
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Metric-measure point of view

Stability of concentration

Uniformly convex spaces are a Levy family

Consider F, = (R™,|| - ||r,) uniformly convex of power type p with Pr,, the normalized
uniform volume element on Br,. For fixed € > 0 and A C B(F,):

Pr(A) > 1/2 = Pf(A) >1—2e 2"
where A. = {x : d(x,A) < ¢}

The renormings are also a Levy family

Consider G, = (R™, || - ||g,) with Pg,, the normalized uniform volume element on Bg, .
For fixed e > 0 and A C B(G,):

2
Pe,(A) >1/2 = Pg,(A) > 1—4e 277"
where A. = {x : d(x,A) < ¢}
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Coming back to the linear structure

Euclidean sections for the renorming

Uniformly convex n-dimensonal Banach spaces of power type 2 contains a
2-isomorphic copy of {3 for m > cn.
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Coming back to the linear structure

Euclidean sections for the renorming

Theorem

Uniformly convex n-dimensonal Banach spaces of power type 2 contains a
2-isomorphic copy of {3 for m > cn.

A\

Theorem (Rudelson and Vershynin)

Let X be an n-dimensional Banach space and (T, d, ) a metric
probability space satisfying

WA >1/2 = p(A) >1— e @™

If (T, d) can be K-lipschitz embedded into X then X contains a
2-isomorphic copy of {3 for m > cn.

A\
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Coming back to the linear structure

Euclidean sections for the renorming

Proposition (S.)

If F is uniformly convex of power type 2 and (R"*1,|| - ||g) denotes the
renorming given for a specific projection P then (R™1 || - ||c) contains a
2-isomorphic copy of {3 for

m>c n
P

In particular m > c+/n.

Jestis Sudrez (University of Extremadura)  Projections on uniformly convex spaces Jaca, 2011 18 / 20



Metric-measure point of view

Gromov's box distance

Consider F = (R™1 || - ||¢) uniformly convex of power type p and a
projection P : F — E. We have the space G = (R"*1,|| - ||g) where
Ixllg == max(||x|[F, || Px]])-
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Metric-measure point of view

Gromov's box distance

Consider F = (R™1 || - ||¢) uniformly convex of power type p and a
projection P : F — E. We have the space G = (R"*1,|| - ||g) where
Ixllg == max(||x|[F, || Px]])-

dg(B(F), B(G)) = [|P]| — o0
(B(F),|l ‘Il £, PE) and (B(G),] - |lg,Pg) are metric probability spaces.

Ui (B(F), B(G)) — 0.
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THANK YOU!
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