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Introduction and preliminaries

Definition

Let X be a Banach space and K a w∗-compact subset of the dual
X ∗. A subset B ⊂ K is said to be a (James) boundary of K if
every x ∈ X attains on B its maximum on K .

• For instance, K and the set of extreme points Ext(K ) are
boundaries of K .
• If B is a boundary of K , then cow∗

(B) = cow∗
(K ) but, in

general, co(B) 6= cow∗
(K ). Even co(K ) 6= cow∗

(K ).
• We are interested in studying the conditions under which
co(B) = cow∗

(K ) and the consequences of the inequality
co(B) 6= cow∗

(K ).
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• Let us say that a subset A of a dual Banach space X ∗ has the
property (P) ( also, A is a Pettis set) if co(K ) = cow∗

(K ) for
every w∗-compact subset K of A.

• X ∗ is super-(P) if co(B) = cow∗
(K ) for every w∗-compact

subset K ⊂ X ∗ and every boundary B ⊂ K .
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Theorem

[Haydon, 1976] For a Banach space X the following are equivalent:

(1) X fails to have an isomorphic copy of `1.

(2) X ∗ has property (P).

(3) For every w∗-compact subset K of X ∗, the set of extreme points
Ext(K ) of K satisfies co(Ext(K )) = cow∗

(K ).

(4) Every z ∈ X ∗∗ is universally measurable on (B(X ∗),w∗).

Theorem

[Godefroy] For a separable Banach space TFAE:

(a) X fails to have a copy of `1.

(b) X ∗ is super-(P).
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Seq(X ∗∗) and 1-Baire functions

• For a subset A ⊂ X ∗ , let Seq(X ∗∗; A) be the subspace of
functionals ψ ∈ X ∗∗ such that there exists a sequence (xn)n≥1 ⊂ X
with 〈a, xn〉 →

n→∞
〈ψ, a〉 for every a ∈ A.

• We put Seq(X ∗∗) := Seq(X ∗∗; X ∗). Seq(X ∗∗) is a closed
subspace of X ∗∗ (McWilliams, 1962).

• Let (T , τ) be a Hausdorf topological space. A real function
f : T → R is said to be an 1-Baire function if there exists a
sequence {fn : n ≥ 1} in the space of continuous real functions
C (T ) such that fn → f pointwise on T . Let B1b(T ) denote the
family of real bounded 1-Baire functions.
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• The fact co(K ) 6= cow∗
(K ) implies the existence of a functional

ψ ∈ X ∗∗ not universally measurable and so not 1-Baire on
cow∗

(K ).

• When B is a boundary of K , the fact co(B) 6= cow∗
(K ) generally

does not imply the existence of a functional ψ ∈ X ∗∗ not
universally measurable on cow∗

(K ), but always implies the
existence of a functional ψ ∈ S(X ∗∗) such that ψ /∈ B1b(cow∗

(K ))
and ψ /∈ Seq(X ∗∗). We calculate in the sequel an estimation of
the distances dist(ψ,Seq(X ∗∗)), dist(ψ,Seq(X ∗∗; cow∗

(K ))) and
dist(ψ,B1b(cow∗

(K ))) with respect to the distance
dist(cow∗

(K ), co(B)).
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Distance to B1b(H)

Proposition

Let X be a Banach space, H a convex w∗-compact subset of X ∗,
B a boundary of H, w0 ∈ H, d > 0 and ψ ∈ S(X ∗∗) fulfilling
〈ψ,w0〉 > sup 〈ψ,B〉+ d. Then dist(ψ � H,B1b(H)) ≥ 1

6 d in
`∞(H).

[An idea of the proof]

Part A. Let T : X → C (H) be such that
Tx = x � H,∀x ∈ X . If ϕ ∈ B1b(H), let ϕ̃ ∈ Seq((C (H)∗∗) be
such that

〈ϕ̃, µ〉 =

∫
H
ϕ · dµ, ∀µ ∈ C (H)∗.

Then

‖T ∗∗ψ − ϕ̃‖ ≤ 3‖ψ � H − ϕ‖,
dist(T ∗∗ψ,Seq(C (H)∗∗)) ≤ 3dist(ψ � H,B1b(H)).
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Part B. If ψ ∈ S(X ∗∗) satisfies

〈ψ,w0〉 > sup〈ψ, co(B)〉+ d ,

then dist(T ∗∗ψ,Seq(C (H)∗∗)) ≥ 1
2 d .

Proposition (Simons equality, 1995)

Let E be a Banach space and B ⊂ G ⊂ E ∗ subsets such that every
element of E attains on B its maximum on G . Then if (xn)n≥1 ⊂ E
is a bounded sequence, we have

sup
b∈B

lim sup
n→∞

〈b, xn〉 = sup
g∈G

lim sup
n→∞

〈g , xn〉.
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Distances Seq(X ∗∗) and Seq(X ∗∗; H)

Corollary

Let X be a Banach space, H a convex w∗-compact subset of
B(X ∗), B a boundary of H and d > 0 such that
dist(H, co(B)) > d. Then there exist w0 ∈ H and a functional
ψ ∈ S(X ∗∗) fulfilling

〈ψ,w0〉 > sup 〈ψ,B〉+ d

such that dist(ψ,Seq(X ∗∗)) ≥ dist(ψ,Seq(X ∗∗; H)) ≥ d
2 .

• Proof. Let T : X → C (H) be the restriction operator such that
Tx = x � H, ∀x ∈ X . Since ‖T‖ ≤ 1 (because H ⊂ B(X ∗)) and
T ∗∗(Seq(X ∗∗,H)) ⊂ Seq(C (H)∗∗) by Part A, then

dist(ψ,Seq(X ∗∗,H)) ≥ dist(T ∗∗ψ,Seq(C (H)∗∗)).
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• Now an application of Part B gives that

dist(ψ,Seq(X ∗∗,H)) ≥ dist(T ∗∗ψ,Seq(C (H)∗∗)) ≥ d

2
.

Finally, the inequality dist(ψ,Seq(X ∗∗)) ≥ dist(ψ,Seq(X ∗∗,H)) is
obvious because Seq(X ∗∗) is a subspace of Seq(X ∗∗,H).

Corollary

For a Banach space X always (1)⇒ (2)⇒ (2′), where
(1) X ∗∗ = Seq(X ∗∗).
(2) X ∗ is ultra-(P), i.e., Y ∗ is super-(P), for every subspace
Y ⊂ X .
(2’) X ∗ is super-(P), i.e., co(B) = cow∗

(K ), for every w∗-compact
subset K ⊂ X ∗ and every boundary B of K .
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On the equality X ∗∗ = Seq(X ∗∗)

Proposition

Let X be a Banach space. Consider the following statements:
(0) (B(X ∗∗),w∗) is angelic; (1) X ∗ ∈ (C ).
(2) X ∗ fails to have an uncountable basic sequence of type `+

1 .
(3) X ∗∗ = Seq(X ∗∗).
(4) X ∗ is ultra-(P) ;(4’) X ∗ is super-(P).
(5) X ∈ (C ) and X fails to have a copy of `1.
Then always (0)⇒ (1)⇒ (2)⇒ (3)⇒ (4)⇒ (4′)⇒ (5).

Corollary

If X is a Banach space and X ∗ has the property (C ), then X has
the property (C ).
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Positive results

Proposition

If X is a separable Banach space all the above statements are
equivalent.

Proposition

Let K be a Hausdorf compact space. TFAE:
(1) K is scattered countable; (2) C (K )∗ ∈ (C ).
(3) Seq(C (K )∗∗) = C (K )∗∗.
(4) C (K )∗ is ultra-(P);(4’) C (K )∗ is super-(P).

Proposition

Let X be either a σ-complete Banach lattice or a dual Banach
lattice. TFAE:
(1) X ∗ ∈ (C ); (2) X ∗∗ = Seq(X ∗∗); (3) X ∗ is ultra-(P); (3’) X ∗ is
super-(P).
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Proposition

Let V be a Banach space with a projective generator. TFAE:

(1) V ∗ is super-(P) ; (2) V ∗∗ = Seq(V ∗∗).

(3) V ∗ is ultra-(P); (4) V ∗ is ℵ1-super-(P).

V ∗ is ℵ1-super-(P)) if Y ∗ is super-(P) for every Y ⊂ X subspace
with Dens(Y ) = ℵ1.

Proposition

Let X be a Banach space Asplund with a projective generator.
TFAE

(1) X ∗ has the property (C ); (2) X ∗∗ = Seq(X ∗∗).
(3) X ∗ is ultra-(P).(3’) X ∗ is super-(P).
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Martin’s Axiom and X ∗∗ = Seq(X ∗∗)

Proposition (MM)

Let X be a Banach space. TFAE:

(1) X ∗∗ = Seq(X ∗∗); (2) X ∗ is ultra-(P); (3) X ∗ is ℵ1-super-(P).

Proposition (MM)
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The Martin’s Maximum Axiom MM

If X is a topological space

• DO(X ) =the family of dense and open subsets of X .

• m(X ) := min{|U| : U ⊂ DO(X ),∩U = ∅}.

• M =the family of Čech-complete spaces K with the que CCC
property fulfilling that, given a sequence of regular open subsets
{Oα : α < ω1} of K , there exists a “club” Γ ⊂ ω1 such that O[αβ)

is constant for every pair α, β ∈ Γ, α < β, where

O[αβ) := int(∪α≤ξ<βOξ).

• mm := m(M) := min{m(K ) : K ∈M}.
mm satisfies ω1 ≤ mm ≤ ω2.

• The Martin’s Maximum Axiom MM is the claim ω1 < mm.
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• M =the family of Čech-complete spaces K with the que CCC
property fulfilling that, given a sequence of regular open subsets
{Oα : α < ω1} of K , there exists a “club” Γ ⊂ ω1 such that O[αβ)

is constant for every pair α, β ∈ Γ, α < β, where

O[αβ) := int(∪α≤ξ<βOξ).

• mm := m(M) := min{m(K ) : K ∈M}.
mm satisfies ω1 ≤ mm ≤ ω2.

• The Martin’s Maximum Axiom MM is the claim ω1 < mm.



The Martin’s Maximum Axiom MM

If X is a topological space

• DO(X ) =the family of dense and open subsets of X .

• m(X ) := min{|U| : U ⊂ DO(X ),∩U = ∅}.
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El Teorema de Talagrand

Theorem

(Talagrand) Let τ be a cardinal with cofinality cf(τ) > ℵ0, X a
Banach space and A a subset of X . The following are equivalent
(1) A has a copy of the basis of `1(τ).
(2) co(A) has a copy of the basis of `1(τ).
(3) [A] has a copy of `1(τ).



Characterization of the fact K ∈ (P)

Proposition

[G. and S.] For a w∗-compact subset K of a dual Banach space X ∗

TFAE:
(1) K /∈ (P).
(2) There exists in K a w∗-N-family and a copy of the basis of
`1(c).
(3) There exists z ∈ X ∗∗ which is not universally measurable on K .

• A. S. Granero and M. Sánchez, Distances to convex sets,
Studia Math.,182 (2007), 165-181.

• Convex w∗-closures versus convex norm-closures, J. Math. Anal.
Appl., 350 (2009), 485-497.



w ∗-N-families

(1) A subset F of X ∗ is said to be a w∗-N-family of width d > 0
if F is bounded and has the form

F = {ηM,N : M,N disjoint subsets of N},

and there exist a number r0 ∈ R and a sequence {xm : m ≥ 1} ⊂
B(X ) such that for every pair of disjoint subsets M,N of N we have

ηM,N(xm) ≥ r0 + d , ∀m ∈ M, and ηM,N(xn) ≤ r0, ∀n ∈ N.

We say that Width(F) ≥ d .

(2) We define the Width(Y ) of a subset Y of X ∗ as follows:

Width(Y ) := sup{d ≥ 0 : ∃K ⊂ Y w∗-compact

and a w∗-N-family A ⊂ K of width ≥ d}.
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• J. Diestel, Sequences and Series in Banach Spaces,
Springer-Verlag, New-York, 1984, pag. 206.

• If F ⊂ X ∗ is a w∗-N-family, a standard argument proves that a
subset of F is equivalent to the basis of `1(c). Moreover, the same
argument yields that the sequence {xn : n ≥ 1} ⊂ B(X ) associated
to F is equivalent to the basis of `1.

• So, if A ⊂ K ⊂ X ∗ is a w∗-N-family, K has a copy of the basis
of `1(c) and X has an isomorphic copy of `1. And vice versa, if X
has a copy of `1, then X ∗ contains a w∗-N-family.
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Question. Let K ⊂ X ∗ be a w∗-compact subset and B ⊂ K a
boundary:

(Q1) If co(B) 6= cow∗
(K ), does K contain a w∗-N-family (and a

copy of the basis of `1(c))? And B?

(Q2) Does B contain a w∗-N-family if K does?

(Q3) Does B contain a copy of the basis of `1(c) if cow∗
(K ) does?

• The answer to Q1 is, in general, negative (see the following
Counterexample).

• The answers to Q2 and Q3 are affirmative in many cases. We do
not know Counterexamples for these two questions.
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• Counterexample . Let Y be the isometric predual of the long
James space J(ω1) and X := Y ∗ = J(ω1). Then:

(i) Y and all its successive dual spaces are Asplund. So, X ∗ =
Y ∗∗ = J(ω1)∗ does not have a copy of `1(c).

(ii) Let K := B(X ∗) and B0 := Yc ∩ K , where

Yc :=
⋃
{[A]

w∗
: A ⊂ Y countable }.

It is easy to see that Yc is a norm-closed subspace of X ∗ and that
B0 is a boundary of K such that co(B0) ⊂ Yc .

(iii) There is a vector eω1 that satisfies eω1 ∈ B(X ∗) but eω1 /∈ Yc

and so eω1 /∈ co(B0). Thus co(B0) 6= cow∗
(K ). �

R. D. Bourgin, Geometric Aspects of Convex Sets with the
Radon-Nikodým Property, Lect. Notes in Math., Springer-Verlag,
Vol. 993(1983), p.346.



Our approach to the question Q1 consists of two step:

• Step 1. The metrizable case.

• Step 2. The general case.
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The metrizable case
• Let (H, τ) be a topological space. The index of fragmentation
Frag(f ,H) of a function f : H → R is the infimum of the family of
numbers ε ≥ 0 such that for every η > ε and every non-empty
subset F ⊂ H, there exists an open set V ⊂ H such that
V ∩ F 6= ∅ and diam(f (V ∩ F )) ≤ η.

Proposition

If H is a separable metric space and f ∈ `∞(H) then
dist(f ,B1b(H)) ≤ 1

2 Frag(f ,H).

Proposition

Let (H, τ) be a hereditarily Baire space, ε ≥ 0 and f ∈ `∞(H).
TFAE:
(1) Frag(f ,H) ≤ ε.
(2) For every non-empty closed subset F ⊂ H and every pair of
real numbers s < t such that t − s > ε we have either
F ∩ {f ≤ s} 6= F or F ∩ {f ≥ t} 6= F .
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Solution of the metrizable case.

Proposition

Let X be a Banach space, H ⊂ X ∗ a convex w∗-compact subset
and B a boundary of H such that dist(H, co(B)) > d > 0. If H is
w∗-metrizable, H has a w∗-N-family A of width(A) ≥ d

3 and a
copy of the basis of `1(c). So Width(H) ≥ 1

3 dist(H, co(B)).



Sketch of the proof.

• As dist(H, co(B)) > d , we can choose w0 ∈ H with
dist(w0, co(B)) > d > 0 and ψ ∈ S(X ∗∗) such that

〈ψ,w0〉 > sup〈ψ, co(B)〉+ d

Thus dist(ψ � H,B1b(H)) > 1
6 d in `∞(H).

• As H is w∗-compact and metrizable,
dist(ψ � H,B1b(H)) ≤ 1

2 Frag(ψ � H,H). Thus
Frag(ψ � H,H) > 1

3 d . Hence there exists a non-empty
w∗-compact subset F ⊂ H and two real numbers s < t with

t − s > 1
3 d such that F ∩ {ψ ≤ s}w

∗
= F = F ∩ {ψ ≥ t}w

∗
. From

this fact we deduce the existence in F of a w∗-N-family F such
that width(F) > 1

3 d .

A. S. Granero and M. Sánchez, Convex w∗-closures versus
convex norm-closures, J. Math. Anal. Appl., 350 (2009), 485-497.
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The general case

Definition

Let X be a Banach space and K a w∗-compact subset of X ∗.

(A) The Bindex(K ) is

Bindex(K ) = sup{dist(cow∗
(W ), co(B)) : W ⊂ K w∗-compact

and B a boundary of W }.

(B) The Bindexc(K ) is the supremum of the Bindex(i∗(K )),
where i : Y → X is the canonical inclusion mapping and Y ⊂ X is
a separable subspace.



Proposition

Let X be a Banach space and H a w∗-compact subset of X ∗. Then

(A) Width(H) ≤ Bindexc(H).

(B) If H is convex then Width(H) ≤ Bindexc(H) ≤ 3Width(H).

Corollary

Let X be a Banach space and K ⊂ X ∗ a w∗-compact subset of
X ∗. TFAE

(1) Width(cow∗
(K )) = 0.

(2) Width(K ) = 0.

(3) Bindexc(K ) = 0.

(4) Bindexc(cow∗
(K )) = 0.
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w ∗-CD boundaries

Proposition

Let X be a Banach space, K ⊂ X ∗ a w∗-compact subset and
B ⊂ K a w∗-CD boundary such that co(B) 6= cow∗

(K ). Then K
contains a w∗-N-family and a copy of the basis of `1(c).



The boundary Ext(K )

Proposition

Let X be a Banach space and K a w∗-compact metrizable subset
of X ∗ such that dist(cow∗

(K ), co(Ext(K ))) > d > 0. Then Ext(K )
has a w∗-N-family A of width(A) > d > 0 and a copy of the basis
of `1(c). Thus Width(Ext(K )) ≥ dist(cow∗

(K ), co(Ext(K )).

Proof. Since K is metrizable, Ext(K ) is a Gδ subset and for every
w ∈ cow∗

(K ) there exists a Radon Borel probability µ carried by
Ext(K ) such that w = r(µ). This fact and the hypothesis
dist(cow∗

(K ), co(Ext(K ))) > d > 0 imply that there exists a
w∗-compact subset H ⊂ Ext(K ) such that
dist(cow∗

(H), co(H)) > d . So, H contains a w∗-N-family A with
width(A) ≥ d .
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Proposition

Let K be a w∗-compact subset of a dual Banach space X ∗ with
K /∈ (P). Then Ext(K ) has a w∗-N-family and a copy of the basis
of `1(c).

Proposition

Let K be a w∗-compact subset of a dual Banach space X ∗. TFAE:

(1) Ext(K ) has a w∗-N-family.

(2) K /∈ (P), i.e., K has a w∗-N-family.

(3) co(Ext(W )) 6= cow∗
(W ) for some w∗-compact subset W of K .
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Proposition

Let K be a w∗-compact subset of a dual Banach space X ∗. TFAE:

(1) Ext(K ) has a copy of the basis of `1(c).

(2) K has a copy of the basis of `1(c).

Proof. (1)⇒ (2) is obvious.

(2)⇒ (1). There are two cases:

Case 1. Suppose that K ∈ (P). Then co(Ext(K )) = cow∗
(K ).

From a result of Talagrand we obtain that Ext(K ) has a copy of
the basis of `1(c).

Case 2. Suppose that K /∈ (P). Then K has a w∗-N-family and
by the above Proposition we get that Ext(K ) has a w∗-N-family,
and so a copy of the basis of `1(c).
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Kσ boundaries

Let X be a Banach space, K a w∗-compact subset and B a
boundary of K . If B is a Kσ subset, its behavior is analogous to
that of Ext(K ).

Proposition

Let X be a Banach space, K a w∗-compact subset of X ∗ that has
a w∗-N-family and B a boundary of K which is a Kσ set. Then
(1) B has a w∗-N-family iff K does.
(2) B has a copy of the basis of `1(c) iff K does.
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w ∗KA boundaries

Lemma

Let X be a separable Banach space and E be a norm-closed
w∗KA subspace of X ∗ such that E ∈ (P). If w∗1 = σ(E ∗,E ) then
(B(E ∗),w∗1 ) is angelic.

Lemma

Let X be a separable Banach space, K be a w∗-compact subset of
X ∗ containing a w∗-N-family and B a w∗KA boundary of K .
Then B contains a w∗-N-family.

Proof. Suppose that B fails to contain a w∗-N-family and let
E := [B]. Clearly, E is a w∗KA subspace of X ∗ such that E ∈ (P)
and so E fails to contain a w∗-N-family. Then (B(E ∗), σ(E ∗,E ))
is angelic by the previous Lemma. Thus co(B) = cow∗

(K ) by a
Theorem of Godefroy and so E contains a w∗-N-family, a
contradiction that proves the statement.
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Proposition

Let X be a Banach space and K a w∗-compact subset of X ∗. Let
B ⊂ K be a w∗KA boundary of K . Then

(A) If co(B) 6= cow∗
(K ), K has a w∗-N-family.

(B) We have
(B1) K contains a w∗-N-family if and only if B contains a
w∗-N-family.
(B2) K contains a copy of the basis of `1(c) if and only if B does.

Proof. (A) This is true for every w∗-CD boundary.

(B1) Suppose that K has a w∗-N-family A. Then X contains a
copy of `1. Let T : `1 → X be the corresponding isomorphism. If
B is a w∗KA boundary of K , then it is easy to see that: (a)
T ∗(B) is a w∗KA boundary of T ∗(K ); (b) T ∗(A) is a
w∗-N-family inside T ∗(K ).
Now we apply the previous Lemma.
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(B2) We prove that B contains a copy of the basis of `1(c) when
K does. We consider two cases, namely:
Case 1. co(B) = cow∗

(K ). The cardinal c satisfies cf(c) > ℵ0

because cf(2α) > α for every infinite cardinal α and because
c = 2ℵ0 . Thus, we can apply Talagrand Theorem and so there
exists a copy of the basis of `1(c) inside B.

Case 2. co(B) 6= cow∗
(K ). Then there exists a w∗-N-family inside

K and so inside B by part (A). Thus B contains a copy of the
basis of `1(c) because every w∗-N-family does.



(B2) We prove that B contains a copy of the basis of `1(c) when
K does. We consider two cases, namely:
Case 1. co(B) = cow∗

(K ). The cardinal c satisfies cf(c) > ℵ0

because cf(2α) > α for every infinite cardinal α and because
c = 2ℵ0 . Thus, we can apply Talagrand Theorem and so there
exists a copy of the basis of `1(c) inside B.

Case 2. co(B) 6= cow∗
(K ). Then there exists a w∗-N-family inside

K and so inside B by part (A). Thus B contains a copy of the
basis of `1(c) because every w∗-N-family does.



Conjecture 1. Let X be a Banach space such that `1 ⊂ X . Then
every boundary of B(X ∗) contains a w∗-N-family.

Proposition

The following are equivalent:

(a) The Conjecture 1 is true.

(b) If X is a Banach space isomorphic to `1, then every boundary
of B(X ∗) contains a w∗-N-family.



Conjecture 1. Let X be a Banach space such that `1 ⊂ X . Then
every boundary of B(X ∗) contains a w∗-N-family.

Proposition

The following are equivalent:

(a) The Conjecture 1 is true.

(b) If X is a Banach space isomorphic to `1, then every boundary
of B(X ∗) contains a w∗-N-family.



Conjecture 2. Let X be a Banach space such that `1(c) ⊂ X ∗.
Then every boundary of B(X ∗) contains a copy of the basis of
`1(c).

Proposition

The following are equivalent:

(a) The Conjecture 2 is true for every separable Banach space X .

(b) If X is a Banach space isomorphic to `1, then every boundary
of B(X ∗) contains a copy of the basis of `1(c).



Conjecture 2. Let X be a Banach space such that `1(c) ⊂ X ∗.
Then every boundary of B(X ∗) contains a copy of the basis of
`1(c).

Proposition

The following are equivalent:

(a) The Conjecture 2 is true for every separable Banach space X .

(b) If X is a Banach space isomorphic to `1, then every boundary
of B(X ∗) contains a copy of the basis of `1(c).



THANKS YOU FOR YOUR ATTENTION


	Introduction
	The equality X**=Seq(X**)
	Martin's Axiom and X**=Seq(X**)
	Copies of 1(c)
	The general case
	The boundary Ext (K)
	w*KA boundaries

