James boundaries and copies of $\ell_1(\mathfrak{c})$

Antonio S. Granero

Departamento de Análisis Matemático, UCM, España

April 7, 2011

VII Encuentro de Análisis Funcional y Aplicaciones 2011, Jaca, España

1 Introduction

- **2** The equality $X^{**} = Seq(X^{**})$
- 3 Martin's Axiom and $X^{**} = Seq(X^{**})$
- 4 Copies of $\ell_1(\mathfrak{c})$
- 5 The general case
- **(6)** The boundary Ext(K)
- **7** $w^* \mathcal{KA}$ boundaries

Let X be a Banach space and K a w^* -compact subset of the dual X^{*}. A subset $B \subset K$ is said to be a **(James) boundary** of K if every $x \in X$ attains on B its maximum on K.

Let X be a Banach space and K a w^{*}-compact subset of the dual X^* . A subset $B \subset K$ is said to be a **(James) boundary** of K if every $x \in X$ attains on B its maximum on K.

• For instance, K and the set of extreme points Ext(K) are boundaries of K.

Let X be a Banach space and K a w^{*}-compact subset of the dual X^* . A subset $B \subset K$ is said to be a **(James) boundary** of K if every $x \in X$ attains on B its maximum on K.

• For instance, K and the set of extreme points Ext(K) are boundaries of K.

• If B is a boundary of K, then $\overline{co}^{w^*}(B) = \overline{co}^{w^*}(K)$ but, in general, $\overline{co}(B) \neq \overline{co}^{w^*}(K)$. Even $\overline{co}(K) \neq \overline{co}^{w^*}(K)$.

Let X be a Banach space and K a w^{*}-compact subset of the dual X^* . A subset $B \subset K$ is said to be a **(James) boundary** of K if every $x \in X$ attains on B its maximum on K.

• For instance, K and the set of extreme points Ext(K) are boundaries of K.

• If *B* is a boundary of *K*, then $\overline{co}^{w^*}(B) = \overline{co}^{w^*}(K)$ but, in general, $\overline{co}(B) \neq \overline{co}^{w^*}(K)$. Even $\overline{co}(K) \neq \overline{co}^{w^*}(K)$. • We are interested in studying the conditions under which $\overline{co}(B) = \overline{co}^{w^*}(K)$ and the consequences of the inequality $\overline{co}(B) \neq \overline{co}^{w^*}(K)$. • Let us say that a subset A of a dual Banach space X^* has the **property** (P) (**also,** A **is a Pettis set**) if $\overline{co}(K) = \overline{co}^{w^*}(K)$ for every w^* -compact subset K of A.

- Let us say that a subset A of a dual Banach space X^* has the **property** (P) (**also,** A **is a Pettis set**) if $\overline{co}(K) = \overline{co}^{w^*}(K)$ for every w^* -compact subset K of A.
- X^* is super-(P) if $\overline{co}(B) = \overline{co}^{w^*}(K)$ for every w^* -compact subset $K \subset X^*$ and every boundary $B \subset K$.

Theorem

[Haydon, 1976] For a Banach space X the following are equivalent:

(1) X fails to have an isomorphic copy of ℓ_1 .

(2) X^* has property (P).

(3) For every w^{*}-compact subset K of X^{*}, the set of extreme points Ext(K) of K satisfies $\overline{co}(Ext(K)) = \overline{co}^{w^*}(K)$.

(4) Every $z \in X^{**}$ is universally measurable on $(B(X^*), w^*)$.

Theorem

[Haydon, 1976] For a Banach space X the following are equivalent:

(1) X fails to have an isomorphic copy of ℓ_1 .

(2) X^* has property (P).

(3) For every w^{*}-compact subset K of X^{*}, the set of extreme points Ext(K) of K satisfies $\overline{co}(Ext(K)) = \overline{co}^{w^*}(K)$.

(4) Every $z \in X^{**}$ is universally measurable on $(B(X^*), w^*)$.

Theorem

[Godefroy] For a separable Banach space TFAE:

```
(a) X fails to have a copy of \ell_1.
```

```
(b) X^* is super-(P).
```

$Seq(X^{**})$ and 1-Baire functions

• For a subset $A \subset X^*$, let $Seq(X^{**}; A)$ be the subspace of functionals $\psi \in X^{**}$ such that there exists a sequence $(x_n)_{n\geq 1} \subset X$ with $\langle a, x_n \rangle \xrightarrow[n \to \infty]{} \langle \psi, a \rangle$ for every $a \in A$.

$Seq(X^{**})$ and 1-Baire functions

• For a subset $A \subset X^*$, let $Seq(X^{**}; A)$ be the subspace of functionals $\psi \in X^{**}$ such that there exists a sequence $(x_n)_{n\geq 1} \subset X$ with $\langle a, x_n \rangle \xrightarrow[n \to \infty]{} \langle \psi, a \rangle$ for every $a \in A$.

• We put $Seq(X^{**}) := Seq(X^{**}; X^*)$. $Seq(X^{**})$ is a closed subspace of X^{**} (McWilliams, 1962).

• For a subset $A \subset X^*$, let $Seq(X^{**}; A)$ be the subspace of functionals $\psi \in X^{**}$ such that there exists a sequence $(x_n)_{n\geq 1} \subset X$ with $\langle a, x_n \rangle \xrightarrow[n \to \infty]{} \langle \psi, a \rangle$ for every $a \in A$.

• We put $Seq(X^{**}) := Seq(X^{**}; X^*)$. $Seq(X^{**})$ is a closed subspace of X^{**} (McWilliams, 1962).

• Let (T, τ) be a Hausdorf topological space. A real function $f : T \to \mathbb{R}$ is said to be **an** 1-**Baire function** if there exists a sequence $\{f_n : n \ge 1\}$ in the space of continuous real functions C(T) such that $f_n \to f$ pointwise on T. Let $\mathcal{B}_{1b}(T)$ denote the family of real bounded 1-Baire functions.

• The fact $\overline{co}(K) \neq \overline{co}^{w^*}(K)$ implies the existence of a functional $\psi \in X^{**}$ not universally measurable and so not 1-Baire on $\overline{co}^{w^*}(K)$.

• The fact $\overline{co}(K) \neq \overline{co}^{w^*}(K)$ implies the existence of a functional $\psi \in X^{**}$ not universally measurable and so not 1-Baire on $\overline{co}^{w^*}(K)$.

• When *B* is a boundary of *K*, the fact $\overline{co}(B) \neq \overline{co}^{w^*}(K)$ generally does not imply the existence of a functional $\psi \in X^{**}$ not universally measurable on $\overline{co}^{w^*}(K)$, but always implies the existence of a functional $\psi \in S(X^{**})$ such that $\psi \notin \mathcal{B}_{1b}(\overline{co}^{w^*}(K))$ and $\psi \notin Seq(X^{**})$. We calculate in the sequel an estimation of the distances $dist(\psi, Seq(X^{**}))$, $dist(\psi, Seq(X^{**}; \overline{co}^{w^*}(K)))$ and $dist(\psi, \mathcal{B}_{1b}(\overline{co}^{w^*}(K)))$ with respect to the distance $dist(\overline{co}^{w^*}(K), \overline{co}(B))$.

Distance to $\mathcal{B}_{1b}(H)$

Proposition

Let X be a Banach space, H a convex w^* -compact subset of X^* , B a boundary of H, $w_0 \in H$, d > 0 and $\psi \in S(X^{**})$ fulfilling $\langle \psi, w_0 \rangle > \sup \langle \psi, B \rangle + d$. Then $dist(\psi \upharpoonright H, \mathcal{B}_{1b}(H)) \ge \frac{1}{6}d$ in $\ell_{\infty}(H)$.

[An idea of the proof]

Let X be a Banach space, H a convex w^{*}-compact subset of X^{*}, B a boundary of H, $w_0 \in H$, d > 0 and $\psi \in S(X^{**})$ fulfilling $\langle \psi, w_0 \rangle > \sup \langle \psi, B \rangle + d$. Then $dist(\psi \upharpoonright H, \mathcal{B}_{1b}(H)) \ge \frac{1}{6}d$ in $\ell_{\infty}(H)$.

[An idea of the proof] **Part A.** Let $T : X \to C(H)$ be such that $Tx = x \upharpoonright H, \forall x \in X$. If $\varphi \in \mathcal{B}_{1b}(H)$, let $\tilde{\varphi} \in \mathcal{S}eq((C(H)^{**}))$ be such that

$$\langle \tilde{\varphi}, \mu \rangle = \int_{H} \varphi \cdot d\mu, \forall \mu \in C(H)^*.$$

Then

$$\begin{aligned} \|T^{**}\psi - \tilde{\varphi}\| &\leq 3\|\psi \upharpoonright H - \varphi\|,\\ dist(T^{**}\psi, \mathcal{S}eq(C(H)^{**})) &\leq 3dist(\psi \upharpoonright H, \mathcal{B}_{1b}(H)). \end{aligned}$$

Part B. If $\psi \in S(X^{**})$ satisfies

 $\langle \psi, w_0 \rangle > \sup \langle \psi, \overline{\operatorname{co}}(B) \rangle + d,$

then $dist(T^{**}\psi, Seq(C(H)^{**})) \geq \frac{1}{2}d$.

Part B. If $\psi \in S(X^{**})$ satisfies

 $\langle \psi, w_0 \rangle > \sup \langle \psi, \overline{\operatorname{co}}(B) \rangle + d,$

then $dist(T^{**}\psi, Seq(C(H)^{**})) \geq \frac{1}{2}d$.

Proposition (Simons equality, 1995)

Let E be a Banach space and $B \subset G \subset E^*$ subsets such that every element of E attains on B its maximum on G. Then if $(x_n)_{n\geq 1} \subset E$ is a bounded sequence, we have

$$\sup_{b\in B}\limsup_{n\to\infty} \langle b, x_n\rangle = \sup_{g\in G}\limsup_{n\to\infty} \langle g, x_n\rangle.$$

Distances $Seq(X^{**})$ and $Seq(X^{**}; H)$

Corollary

Let X be a Banach space, H a convex w*-compact subset of $B(X^*)$, B a boundary of H and d > 0 such that $dist(H, \overline{co}(B)) > d$. Then there exist $w_0 \in H$ and a functional $\psi \in S(X^{**})$ fulfilling

 $\langle \psi, w_0
angle > \sup \langle \psi, B
angle + d$

such that dist $(\psi, Seq(X^{**})) \ge dist(\psi, Seq(X^{**}; H)) \ge \frac{d}{2}$.

Distances $Seq(X^{**})$ and $Seq(X^{**}; H)$

Corollary

Let X be a Banach space, H a convex w*-compact subset of $B(X^*)$, B a boundary of H and d > 0 such that $dist(H, \overline{co}(B)) > d$. Then there exist $w_0 \in H$ and a functional $\psi \in S(X^{**})$ fulfilling

 $\langle \psi, w_0 \rangle > \sup \langle \psi, B \rangle + d$

such that dist $(\psi, Seq(X^{**})) \ge dist(\psi, Seq(X^{**}; H)) \ge \frac{d}{2}$.

• **Proof.** Let $T : X \to C(H)$ be the restriction operator such that $Tx = x \upharpoonright H$, $\forall x \in X$. Since $||T|| \le 1$ (because $H \subset B(X^*)$) and $T^{**}(Seq(X^{**}, H)) \subset Seq(C(H)^{**})$ by Part A, then

 $dist(\psi, Seq(X^{**}, H)) \geq dist(T^{**}\psi, Seq(C(H)^{**})).$

• Now an application of Part B gives that

$$dist(\psi, Seq(X^{**}, H)) \geq dist(T^{**}\psi, Seq(C(H)^{**})) \geq \frac{d}{2}.$$

Finally, the inequality $dist(\psi, Seq(X^{**})) \ge dist(\psi, Seq(X^{**}, H))$ is obvious because $Seq(X^{**})$ is a subspace of $Seq(X^{**}, H)$.

Now an application of Part B gives that

$$\mathsf{dist}(\psi,\mathsf{Seq}(\mathsf{X}^{**},\mathsf{H}))\geq\mathsf{dist}(\mathsf{T}^{**}\psi,\mathsf{Seq}(\mathsf{C}(\mathsf{H})^{**}))\geq rac{d}{2}.$$

Finally, the inequality $dist(\psi, Seq(X^{**})) \ge dist(\psi, Seq(X^{**}, H))$ is obvious because $Seq(X^{**})$ is a subspace of $Seq(X^{**}, H)$.

Corollary

For a Banach space X always $(1) \Rightarrow (2) \Rightarrow (2')$, where $(1) X^{**} = Seq(X^{**})$. $(2) X^*$ is ultra-(P), i.e., Y^* is super-(P), for every subspace $Y \subset X$. $(2') X^*$ is super-(P), i.e., $\overline{co}(B) = \overline{co}^{w^*}(K)$, for every w*-compact subset $K \subset X^*$ and every boundary B of K. On the equality $X^{**} = Seq(X^{**})$

Proposition

Let X be a Banach space. Consider the following statements: (0) $(B(X^{**}), w^*)$ is angelic; (1) $X^* \in (C)$. (2) X^* fails to have an uncountable basic sequence of type ℓ_1^+ . (3) $X^{**} = Seq(X^{**})$. (4) X^* is ultra-(P); (4') X^* is super-(P). (5) $X \in (C)$ and X fails to have a copy of ℓ_1 . Then always $(0) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (4') \Rightarrow (5)$. On the equality $X^{**} = Seq(X^{**})$

Proposition

Let X be a Banach space. Consider the following statements: (0) $(B(X^{**}), w^*)$ is angelic; (1) $X^* \in (C)$. (2) X^* fails to have an uncountable basic sequence of type ℓ_1^+ . (3) $X^{**} = Seq(X^{**})$. (4) X^* is ultra-(P); (4') X^* is super-(P). (5) $X \in (C)$ and X fails to have a copy of ℓ_1 . Then always $(0) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (4') \Rightarrow (5)$.

Corollary

If X is a Banach space and X^* has the property (C), then X has the property (C).

If X is a separable Banach space all the above statements are equivalent.

If X is a separable Banach space all the above statements are equivalent.

Proposition

Let K be a Hausdorf compact space. TFAE: (1) K is scattered countable; (2) $C(K)^* \in (C)$. (3) $Seq(C(K)^{**}) = C(K)^{**}$. (4) $C(K)^*$ is ultra-(P);(4') $C(K)^*$ is super-(P).

If X is a separable Banach space all the above statements are equivalent.

Proposition

Let K be a Hausdorf compact space. TFAE: (1) K is scattered countable; (2) $C(K)^* \in (C)$. (3) $Seq(C(K)^{**}) = C(K)^{**}$. (4) $C(K)^*$ is ultra-(P); (4') $C(K)^*$ is super-(P).

Proposition

Let X be either a σ -complete Banach lattice or a dual Banach lattice. TFAE: (1) $X^* \in (C)$; (2) $X^{**} = Seq(X^{**})$; (3) X^* is ultra-(P); (3') X^* is super-(P).

Let V be a Banach space with a projective generator. TFAE:

(1)
$$V^*$$
 is super-(P); (2) $V^{**} = Seq(V^{**})$.

(3) V^* is ultra-(P); (4) V^* is \aleph_1 -super-(P).

Let V be a Banach space with a projective generator. TFAE:

(1)
$$V^*$$
 is super-(P); (2) $V^{**} = Seq(V^{**})$.

(3) V^* is ultra-(P); (4) V^* is \aleph_1 -super-(P).

 V^* is \aleph_1 -super-(P)) if Y^* is super-(P) for every $Y \subset X$ subspace with $Dens(Y) = \aleph_1$.

Let V be a Banach space with a projective generator. TFAE:

(1)
$$V^*$$
 is super-(P) ; (2) $V^{**} = Seq(V^{**})$.

(3) V^* is ultra-(P); (4) V^* is \aleph_1 -super-(P).

 V^* is \aleph_1 -super-(P)) if Y^* is super-(P) for every $Y \subset X$ subspace with $Dens(Y) = \aleph_1$.

Proposition

Let X be a Banach space Asplund with a projective generator. TFAE

(1) X* has the property (C); (2) X** = Seq(X**).
(3) X* is ultra-(P).(3') X* is super-(P).

Martin's Axiom and $X^{**} = Seq(X^{**})$

Proposition (MM)

Let X be a Banach space. TFAE:

(1) $X^{**} = Seq(X^{**})$; (2) X^* is ultra-(P); (3) X^* is \aleph_1 -super-(P).

Martin's Axiom and $X^{**} = Seq(X^{**})$

Proposition (MM)

Let X be a Banach space. TFAE:

(1) $X^{**} = Seq(X^{**})$; (2) X^* is ultra-(P); (3) X^* is \aleph_1 -super-(P).

Proposition (MM)

Let X be a Banach space such that $Dens(X) = \aleph_1$. TFAE

(1) $X^{**} = Seq(X^{**})$. (2) X^* is super-(P).

The Martin's Maximum Axiom MM

- If X is a topological space
- $\mathcal{DO}(X)$ =the family of dense and open subsets of X.

The Martin's Maximum Axiom MM

- If X is a topological space
- $\mathcal{DO}(X)$ =the family of dense and open subsets of X.
- $\mathfrak{m}(X) := \min\{|\mathcal{U}| : \mathcal{U} \subset \mathcal{DO}(X), \cap \mathcal{U} = \emptyset\}.$

The Martin's Maximum Axiom MM

If X is a topological space

- $\mathcal{DO}(X)$ =the family of dense and open subsets of X.
- $\mathfrak{m}(X) := \min\{|\mathcal{U}| : \mathcal{U} \subset \mathcal{DO}(X), \cap \mathcal{U} = \emptyset\}.$

• \mathcal{M} =the family of Čech-complete spaces K with the que CCC property fulfilling that, given a sequence of regular open subsets $\{O_{\alpha} : \alpha < \omega_1\}$ of K, there exists a "club" $\Gamma \subset \omega_1$ such that $O_{[\alpha\beta)}$ is constant for every pair $\alpha, \beta \in \Gamma, \alpha < \beta$, where

$$O_{[\alpha\beta)} := int(\overline{\cup_{\alpha \leq \xi < \beta} O_{\xi}}).$$
The Martin's Maximum Axiom MM

If X is a topological space

- $\mathcal{DO}(X)$ =the family of dense and open subsets of X.
- $\mathfrak{m}(X) := \min\{|\mathcal{U}| : \mathcal{U} \subset \mathcal{DO}(X), \cap \mathcal{U} = \emptyset\}.$

• \mathcal{M} =the family of Čech-complete spaces K with the que CCC property fulfilling that, given a sequence of regular open subsets $\{O_{\alpha} : \alpha < \omega_1\}$ of K, there exists a "club" $\Gamma \subset \omega_1$ such that $O_{[\alpha\beta)}$ is constant for every pair $\alpha, \beta \in \Gamma, \alpha < \beta$, where

$$O_{[\alpha\beta)} := int(\overline{\cup_{lpha \leq \xi < \beta} O_{\xi}}).$$

•
$$\mathfrak{mm} := \mathfrak{m}(\mathcal{M}) := \min\{\mathfrak{m}(\mathcal{K}) : \mathcal{K} \in \mathcal{M}\}.$$

mm satisfies $\omega_1 \leq \mathfrak{mm} \leq \omega_2.$

The Martin's Maximum Axiom MM

If X is a topological space

- $\mathcal{DO}(X)$ =the family of dense and open subsets of X.
- $\mathfrak{m}(X) := \min\{|\mathcal{U}| : \mathcal{U} \subset \mathcal{DO}(X), \cap \mathcal{U} = \emptyset\}.$

• \mathcal{M} =the family of Čech-complete spaces K with the que CCC property fulfilling that, given a sequence of regular open subsets $\{O_{\alpha} : \alpha < \omega_1\}$ of K, there exists a "club" $\Gamma \subset \omega_1$ such that $O_{[\alpha\beta)}$ is constant for every pair $\alpha, \beta \in \Gamma, \alpha < \beta$, where

$$O_{[\alpha\beta)} := int(\overline{\cup_{\alpha \leq \xi < \beta} O_{\xi}}).$$

•
$$\mathfrak{mm} := \mathfrak{m}(\mathcal{M}) := \min\{\mathfrak{m}(\mathcal{K}) : \mathcal{K} \in \mathcal{M}\}.$$

 \mathfrak{mm} satisfies $\omega_1 \leq \mathfrak{mm} \leq \omega_2.$

• The Martin's Maximum Axiom MM is the claim $\omega_1 < \mathfrak{mm}$.

Theorem

(Talagrand) Let τ be a cardinal with cofinality $cf(\tau) > \aleph_0$, X a Banach space and A a subset of X. The following are equivalent (1) A has a copy of the basis of $\ell_1(\tau)$. (2) $\overline{co}(A)$ has a copy of the basis of $\ell_1(\tau)$. (3) $\overline{[A]}$ has a copy of $\ell_1(\tau)$.

[G. and S.] For a w*-compact subset K of a dual Banach space X* TFAE: (1) $K \notin (P)$. (2) There exists in K a w*-N-**family** and a copy of the basis of $\ell_1(\mathfrak{c})$. (3) There exists $z \in X^{**}$ which is not universally measurable on K.

• A. S. GRANERO AND M. SÁNCHEZ, *Distances to convex sets*, Studia Math., 182 (2007), 165-181.

• Convex w*-closures versus convex norm-closures, J. Math. Anal. Appl., 350 (2009), 485-497.

w^* - \mathbb{N} -families

(1) A subset \mathcal{F} of X^* is said to be a $w^*-\mathbb{N}$ -family of width d > 0 if \mathcal{F} is bounded and has the form

 $\mathcal{F} = \{\eta_{M,N} : M, N \text{ disjoint subsets of } \mathbb{N}\},\$

and there exist a number $r_0 \in \mathbb{R}$ and a sequence $\{x_m : m \ge 1\} \subset B(X)$ such that for every pair of disjoint subsets M, N of \mathbb{N} we have

 $\eta_{M,N}(x_m) \ge r_0 + d, \ \forall m \in M, \ \text{ and } \ \eta_{M,N}(x_n) \le r_0, \ \forall n \in N.$

We say that $Width(\mathcal{F}) \geq d$.

w^* - \mathbb{N} -families

(1) A subset \mathcal{F} of X^* is said to be a $w^*-\mathbb{N}$ -family of width d > 0 if \mathcal{F} is bounded and has the form

 $\mathcal{F} = \{\eta_{M,N} : M, N \text{ disjoint subsets of } \mathbb{N}\},\$

and there exist a number $r_0 \in \mathbb{R}$ and a sequence $\{x_m : m \ge 1\} \subset B(X)$ such that for every pair of disjoint subsets M, N of \mathbb{N} we have

 $\eta_{M,N}(x_m) \ge r_0 + d, \ \forall m \in M, \ \text{ and } \ \eta_{M,N}(x_n) \le r_0, \ \forall n \in N.$

We say that $Width(\mathcal{F}) \geq d$.

(2) We define the Width(Y) of a subset Y of X^* as follows:

 $Width(Y) := \sup\{d \ge 0 : \exists K \subset Y \ w^*\text{-compact} \\ \text{and a } w^*\text{-}\mathbb{N}\text{-family } \mathcal{A} \subset K \text{ of width } \ge d\}.$

• J. DIESTEL, *Sequences and Series in Banach Spaces*, Springer-Verlag, New-York, 1984, pag. 206.

• J. DIESTEL, Sequences and Series in Banach Spaces, Springer-Verlag, New-York, 1984, pag. 206.

• If $\mathcal{F} \subset X^*$ is a w^* -N-family, a standard argument proves that a subset of \mathcal{F} is equivalent to the basis of $\ell_1(\mathfrak{c})$. Moreover, the same argument yields that the sequence $\{x_n : n \ge 1\} \subset B(X)$ associated to \mathcal{F} is equivalent to the basis of ℓ_1 .

• J. DIESTEL, Sequences and Series in Banach Spaces, Springer-Verlag, New-York, 1984, pag. 206.

• If $\mathcal{F} \subset X^*$ is a w^* -N-family, a standard argument proves that a subset of \mathcal{F} is equivalent to the basis of $\ell_1(\mathfrak{c})$. Moreover, the same argument yields that the sequence $\{x_n : n \ge 1\} \subset B(X)$ associated to \mathcal{F} is equivalent to the basis of ℓ_1 .

• So, if $\mathcal{A} \subset K \subset X^*$ is a w^* - \mathbb{N} -family, K has a copy of the basis of $\ell_1(\mathfrak{c})$ and X has an isomorphic copy of ℓ_1 . And vice versa, if X has a copy of ℓ_1 , then X^* contains a w^* - \mathbb{N} -family.

Question. Let $K \subset X^*$ be a w^* -compact subset and $B \subset K$ a boundary:

(Q1) If $\overline{co}(B) \neq \overline{co}^{w^*}(K)$, does K contain a w^* -N-family (and a copy of the basis of $\ell_1(\mathfrak{c})$)? And B?

(Q2) Does B contain a w^* - \mathbb{N} -family if K does?

(Q3) Does B contain a copy of the basis of $\ell_1(\mathfrak{c})$ if $\overline{\mathrm{co}}^{w^*}(K)$ does?

Question. Let $K \subset X^*$ be a w^* -compact subset and $B \subset K$ a boundary:

(Q1) If $\overline{co}(B) \neq \overline{co}^{w^*}(K)$, does K contain a w^* -N-family (and a copy of the basis of $\ell_1(\mathfrak{c})$)? And B?

(Q2) Does B contain a w^* -N-family if K does?

(Q3) Does B contain a copy of the basis of $\ell_1(\mathfrak{c})$ if $\overline{\mathrm{co}}^{w^*}(K)$ does?

 \bullet The answer to Q1 is, in general, negative (see the following Counterexample).

Question. Let $K \subset X^*$ be a w^* -compact subset and $B \subset K$ a boundary:

(Q1) If $\overline{co}(B) \neq \overline{co}^{w^*}(K)$, does K contain a w^* -N-family (and a copy of the basis of $\ell_1(\mathfrak{c})$)? And B?

(Q2) Does B contain a w^* -N-family if K does?

(Q3) Does *B* contain a copy of the basis of $\ell_1(\mathfrak{c})$ if $\overline{\mathrm{co}}^{w^*}(K)$ does?

• The answer to Q1 is, in general, negative (see the following Counterexample).

• The answers to Q2 and Q3 are affirmative in many cases. We do not know Counterexamples for these two questions.

• **Counterexample**. Let Y be the isometric predual of the long James space $J(\omega_1)$ and $X := Y^* = J(\omega_1)$. Then:

(i) Y and all its successive dual spaces are Asplund. So, $X^* = Y^{**} = J(\omega_1)^*$ does not have a copy of $\ell_1(\mathfrak{c})$.

(ii) Let $K := B(X^*)$ and $B_0 := Y_c \cap K$, where

$$Y_c := \bigcup \{ \overline{[A]}^{w^*} : A \subset Y \text{ countable } \}.$$

It is easy to see that Y_c is a norm-closed subspace of X^* and that B_0 is a boundary of K such that $\overline{co}(B_0) \subset Y_c$.

(iii) There is a vector e_{ω_1} that satisfies $e_{\omega_1} \in B(X^*)$ but $e_{\omega_1} \notin Y_c$ and so $e_{\omega_1} \notin \overline{co}(B_0)$. Thus $\overline{co}(B_0) \neq \overline{co}^{w^*}(K)$. \Box

R. D. BOURGIN, *Geometric Aspects of Convex Sets with the Radon-Nikodým Property*, Lect. Notes in Math., Springer-Verlag, Vol. 993(1983), p.346.

Our approach to the question Q1 consists of two step:

Our approach to the question Q1 consists of two step:

• Step 1. The metrizable case.

Our approach to the question Q1 consists of two step:

- Step 1. The metrizable case.
- Step 2. The general case.

The metrizable case

• Let (H, τ) be a topological space. The **index of fragmentation** Frag(f, H) of a function $f : H \to \mathbb{R}$ is the infimum of the family of numbers $\epsilon \ge 0$ such that for every $\eta > \epsilon$ and every non-empty subset $F \subset H$, there exists an open set $V \subset H$ such that $V \cap F \neq \emptyset$ and $diam(f(V \cap F)) \le \eta$.

The metrizable case

• Let (H, τ) be a topological space. The **index of fragmentation** Frag(f, H) of a function $f : H \to \mathbb{R}$ is the infimum of the family of numbers $\epsilon \ge 0$ such that for every $\eta > \epsilon$ and every non-empty subset $F \subset H$, there exists an open set $V \subset H$ such that $V \cap F \neq \emptyset$ and $diam(f(V \cap F)) \le \eta$.

Proposition

If H is a separable metric space and $f \in \ell_{\infty}(H)$ then $dist(f, \mathcal{B}_{1b}(H)) \leq \frac{1}{2} Frag(f, H).$

The metrizable case

• Let (H, τ) be a topological space. The **index of fragmentation** Frag(f, H) of a function $f : H \to \mathbb{R}$ is the infimum of the family of numbers $\epsilon \ge 0$ such that for every $\eta > \epsilon$ and every non-empty subset $F \subset H$, there exists an open set $V \subset H$ such that $V \cap F \neq \emptyset$ and $diam(f(V \cap F)) \le \eta$.

Proposition

If H is a separable metric space and $f \in \ell_{\infty}(H)$ then $dist(f, \mathcal{B}_{1b}(H)) \leq \frac{1}{2} Frag(f, H)$.

Proposition

Let (H, τ) be a hereditarily Baire space, $\epsilon \ge 0$ and $f \in \ell_{\infty}(H)$. TFAE:

(1) $Frag(f, H) \leq \epsilon$. (2) For every non-empty closed subset $F \subset H$ and every pair of real numbers s < t such that $t - s > \epsilon$ we have either $\overline{F \cap \{f \leq s\}} \neq F$ or $\overline{F \cap \{f \geq t\}} \neq F$.

Let X be a Banach space, $H \subset X^*$ a convex w^* -compact subset and B a boundary of H such that $dist(H, \overline{co}(B)) > d > 0$. If H is w^* -metrizable, H has a w^* - \mathbb{N} -family \mathcal{A} of $width(\mathcal{A}) \geq \frac{d}{3}$ and a copy of the basis of $\ell_1(\mathfrak{c})$. So $Width(H) \geq \frac{1}{3}dist(H, \overline{co}(B))$.

Sketch of the proof.

• As $dist(H, \overline{co}(B)) > d$, we can choose $w_0 \in H$ with $dist(w_0, \overline{co}(B)) > d > 0$ and $\psi \in S(X^{**})$ such that

 $\langle \psi, w_0 \rangle > \sup \langle \psi, \overline{\operatorname{co}}(B) \rangle + d$

Thus $dist(\psi \upharpoonright H, \mathcal{B}_{1b}(H)) > \frac{1}{6}d$ in $\ell_{\infty}(H)$.

• As $dist(H, \overline{co}(B)) > d$, we can choose $w_0 \in H$ with $dist(w_0, \overline{co}(B)) > d > 0$ and $\psi \in S(X^{**})$ such that

 $\langle \psi, w_0 \rangle > \sup \langle \psi, \overline{\operatorname{co}}(B) \rangle + d$

Thus $dist(\psi \upharpoonright H, \mathcal{B}_{1b}(H)) > \frac{1}{6}d$ in $\ell_{\infty}(H)$.

• As *H* is *w**-compact and metrizable, $dist(\psi \upharpoonright H, \mathcal{B}_{1b}(H)) \leq \frac{1}{2}Frag(\psi \upharpoonright H, H)$. Thus $Frag(\psi \upharpoonright H, H) > \frac{1}{3}d$. Hence there exists a non-empty *w**-compact subset $F \subset H$ and two real numbers s < t with $t - s > \frac{1}{3}d$ such that $\overline{F \cap \{\psi \leq s\}}^{w^*} = F = \overline{F \cap \{\psi \geq t\}}^{w^*}$. From this fact we deduce the existence in *F* of a *w**-N-family \mathcal{F} such that $width(\mathcal{F}) > \frac{1}{3}d$. • As $dist(H, \overline{co}(B)) > d$, we can choose $w_0 \in H$ with $dist(w_0, \overline{co}(B)) > d > 0$ and $\psi \in S(X^{**})$ such that

 $\langle \psi, w_0 \rangle > \sup \langle \psi, \overline{\operatorname{co}}(B) \rangle + d$

Thus $dist(\psi \upharpoonright H, \mathcal{B}_{1b}(H)) > \frac{1}{6}d$ in $\ell_{\infty}(H)$.

• As *H* is *w**-compact and metrizable, $dist(\psi \upharpoonright H, \mathcal{B}_{1b}(H)) \leq \frac{1}{2}Frag(\psi \upharpoonright H, H)$. Thus $Frag(\psi \upharpoonright H, H) > \frac{1}{3}d$. Hence there exists a non-empty *w**-compact subset $F \subset H$ and two real numbers s < t with $t - s > \frac{1}{3}d$ such that $\overline{F \cap \{\psi \leq s\}}^{w^*} = F = \overline{F \cap \{\psi \geq t\}}^{w^*}$. From this fact we deduce the existence in *F* of a *w**-N-family \mathcal{F} such that $width(\mathcal{F}) > \frac{1}{3}d$.

A. S. GRANERO AND M. SÁNCHEZ, Convex w^{*}-closures versus convex norm-closures, J. Math. Anal. Appl., 350 (2009), 485-497.

Definition

Let X be a Banach space and K a w^* -compact subset of X^* .

(A) The Bindex(K) is

 $Bindex(K) = \sup\{dist(\overline{co}^{w^*}(W), \overline{co}(B)) : W \subset K \ w^*\text{-compact} \\ and B a boundary of W\}.$

(B) The $Bindex_c(K)$ is the supremum of the $Bindex(i^*(K))$, where $i : Y \to X$ is the canonical inclusion mapping and $Y \subset X$ is a separable subspace.

Let X be a Banach space and H a w^* -compact subset of X^* . Then

(A) $Width(H) \leq Bindex_c(H)$.

(B) If H is convex then $Width(H) \leq Bindex_c(H) \leq 3Width(H)$.

Let X be a Banach space and H a w^* -compact subset of X^* . Then

(A) $Width(H) \leq Bindex_c(H)$.

(B) If H is convex then $Width(H) \leq Bindex_c(H) \leq 3Width(H)$.

Corollary

Let X be a Banach space and $K \subset X^*$ a w^* -compact subset of X^* . TFAE

- (1) Width $(\overline{\mathrm{co}}^{w^*}(K)) = 0.$
- (2) Width(K) = 0.
- (3) $Bindex_c(K) = 0.$

```
(4) Bindex_c(\overline{co}^{w^*}(K)) = 0.
```

Let X be a Banach space, $K \subset X^*$ a w^* -compact subset and $B \subset K$ a w^* -CD boundary such that $\overline{co}(B) \neq \overline{co}^{w^*}(K)$. Then K contains a w^* - \mathbb{N} -family and a copy of the basis of $\ell_1(\mathfrak{c})$.

Let X be a Banach space and K a w^* -compact metrizable subset of X* such that $dist(\overline{co}^{w^*}(K), \overline{co}(Ext(K))) > d > 0$. Then Ext(K)has a w^* - \mathbb{N} -family \mathcal{A} of width $(\mathcal{A}) > d > 0$ and a copy of the basis of $\ell_1(\mathfrak{c})$. Thus Width $(Ext(K)) \ge dist(\overline{co}^{w^*}(K), \overline{co}(Ext(K)))$.

Let X be a Banach space and K a w*-compact metrizable subset of X* such that $dist(\overline{co}^{w^*}(K), \overline{co}(Ext(K))) > d > 0$. Then Ext(K)has a w*- \mathbb{N} -family \mathcal{A} of width $(\mathcal{A}) > d > 0$ and a copy of the basis of $\ell_1(\mathfrak{c})$. Thus Width $(Ext(K)) \ge dist(\overline{co}^{w^*}(K), \overline{co}(Ext(K)))$.

Proof. Since *K* is metrizable, Ext(K) is a \mathcal{G}_{δ} subset and for every $w \in \overline{\operatorname{co}}^{w^*}(K)$ there exists a Radon Borel probability μ carried by Ext(K) such that $w = r(\mu)$. This fact and the hypothesis $dist(\overline{\operatorname{co}}^{w^*}(K), \overline{\operatorname{co}}(Ext(K))) > d > 0$ imply that there exists a w^* -compact subset $H \subset Ext(K)$ such that $dist(\overline{\operatorname{co}}^{w^*}(H), \overline{\operatorname{co}}(H)) > d$. So, *H* contains a w^* -N-family \mathcal{A} with $width(\mathcal{A}) \geq d$.

Let K be a w^{*}-compact subset of a dual Banach space X^{*} with $K \notin (P)$. Then Ext(K) has a w^{*}- \mathbb{N} -family and a copy of the basis of $\ell_1(\mathfrak{c})$.

Let K be a w^{*}-compact subset of a dual Banach space X^{*} with $K \notin (P)$. Then Ext(K) has a w^{*}- \mathbb{N} -family and a copy of the basis of $\ell_1(\mathfrak{c})$.

Proposition

Let K be a w^* -compact subset of a dual Banach space X^* . TFAE:

(1)
$$Ext(K)$$
 has a w^* - \mathbb{N} -family.

(2) $K \notin (P)$, i.e., K has a w^* - \mathbb{N} -family.

(3) $\overline{co}(Ext(W)) \neq \overline{co}^{w^*}(W)$ for some w^* -compact subset W of K.

Let K be a w^* -compact subset of a dual Banach space X^* . TFAE:

(1) $E_{xt}(K)$ has a copy of the basis of $\ell_1(\mathfrak{c})$.

(2) K has a copy of the basis of $\ell_1(\mathfrak{c})$.

Let K be a w^* -compact subset of a dual Banach space X^* . TFAE:

(1) $E_{xt}(K)$ has a copy of the basis of $\ell_1(\mathfrak{c})$.

(2) K has a copy of the basis of $\ell_1(\mathfrak{c})$.

Proof. (1) \Rightarrow (2) is obvious.

Let K be a w^* -compact subset of a dual Banach space X^* . TFAE:

(1) $E_{xt}(K)$ has a copy of the basis of $\ell_1(\mathfrak{c})$.

(2) K has a copy of the basis of $\ell_1(\mathfrak{c})$.

Proof. (1) \Rightarrow (2) is obvious.

 $(2) \Rightarrow (1)$. There are two cases:

Let K be a w^* -compact subset of a dual Banach space X^* . TFAE:

(1) $E_{xt}(K)$ has a copy of the basis of $\ell_1(\mathfrak{c})$.

(2) K has a copy of the basis of $\ell_1(\mathfrak{c})$.

Proof. (1) \Rightarrow (2) is obvious.

 $(2) \Rightarrow (1)$. There are two cases:

Case 1. Suppose that $K \in (P)$. Then $\overline{co}(Ext(K)) = \overline{co}^{w^*}(K)$. From a result of Talagrand we obtain that Ext(K) has a copy of the basis of $\ell_1(\mathfrak{c})$.

Let K be a w^* -compact subset of a dual Banach space X^* . TFAE:

(1) $E_{xt}(K)$ has a copy of the basis of $\ell_1(\mathfrak{c})$.

(2) K has a copy of the basis of $\ell_1(\mathfrak{c})$.

Proof. (1) \Rightarrow (2) is obvious.

 $(2) \Rightarrow (1)$. There are two cases:

Case 1. Suppose that $K \in (P)$. Then $\overline{co}(Ext(K)) = \overline{co}^{w^*}(K)$. From a result of Talagrand we obtain that Ext(K) has a copy of the basis of $\ell_1(\mathfrak{c})$.

Case 2. Suppose that $K \notin (P)$. Then K has a w^* - \mathbb{N} -family and by the above Proposition we get that Ext(K) has a w^* - \mathbb{N} -family, and so a copy of the basis of $\ell_1(\mathfrak{c})$.
Let X be a Banach space, K a w^* -compact subset and B a boundary of K. If B is a \mathcal{K}_{σ} subset, its behavior is analogous to that of Ext(K). Let X be a Banach space, K a w^* -compact subset and B a boundary of K. If B is a \mathcal{K}_{σ} subset, its behavior is analogous to that of Ext(K).

Proposition

Let X be a Banach space, K a w^{*}-compact subset of X^{*} that has a w^{*}- \mathbb{N} -family and B a boundary of K which is a \mathcal{K}_{σ} set. Then (1) B has a w^{*}- \mathbb{N} -family iff K does. (2) B has a copy of the basis of $\ell_1(\mathfrak{c})$ iff K does.

Lemma

Let X be a separable Banach space and E be a norm-closed $w^* \mathcal{KA}$ subspace of X^* such that $E \in (P)$. If $w_1^* = \sigma(E^*, E)$ then $(B(E^*), w_1^*)$ is angelic.

Lemma

Let X be a separable Banach space and E be a norm-closed $w^*\mathcal{KA}$ subspace of X^* such that $E \in (P)$. If $w_1^* = \sigma(E^*, E)$ then $(B(E^*), w_1^*)$ is angelic.

Lemma

Let X be a separable Banach space, K be a w^{*}-compact subset of X^{*} containing a w^{*}- \mathbb{N} -family and B a w^{*} $\mathcal{K}A$ boundary of K. Then B contains a w^{*}- \mathbb{N} -family.

Lemma

Let X be a separable Banach space and E be a norm-closed $w^*\mathcal{KA}$ subspace of X^* such that $E \in (P)$. If $w_1^* = \sigma(E^*, E)$ then $(B(E^*), w_1^*)$ is angelic.

Lemma

Let X be a separable Banach space, K be a w^{*}-compact subset of X^{*} containing a w^{*}- \mathbb{N} -family and B a w^{*} $\mathcal{K}A$ boundary of K. Then B contains a w^{*}- \mathbb{N} -family.

Proof. Suppose that *B* fails to contain a w^* -N-family and let $E := \overline{[B]}$. Clearly, *E* is a $w^*\mathcal{KA}$ subspace of X^* such that $E \in (P)$ and so *E* fails to contain a w^* -N-family. Then $(B(E^*), \sigma(E^*, E))$ is angelic by the previous Lemma. Thus $\overline{\operatorname{co}}(B) = \overline{\operatorname{co}}^{w^*}(K)$ by a Theorem of Godefroy and so *E* contains a w^* -N-family, a contradiction that proves the statement.

Proposition

Let X be a Banach space and K a w^* -compact subset of X^{*}. Let $B \subset K$ be a $w^* \mathcal{K} \mathcal{A}$ boundary of K. Then

(A) If $\overline{co}(B) \neq \overline{co}^{w^*}(K)$, K has a w^* - \mathbb{N} -family.

(B) We have
(B1) K contains a w*-ℕ-family if and only if B contains a w*-ℕ-family.
(B2) K contains a copy of the basis of l₁(c) if and only if B does.

Proposition

Let X be a Banach space and K a w^* -compact subset of X^{*}. Let $B \subset K$ be a $w^* \mathcal{K} \mathcal{A}$ boundary of K. Then

(A) If $\overline{\operatorname{co}}(B) \neq \overline{\operatorname{co}}^{w^*}(K)$, K has a w^* - \mathbb{N} -family.

(B) We have
(B1) K contains a w*-ℕ-family if and only if B contains a w*-ℕ-family.
(B2) K contains a copy of the basis of l₁(c) if and only if B does.

Proof. (A) This is true for every w^* -CD boundary.

(B1) Suppose that K has a w^* - \mathbb{N} -family \mathcal{A} . Then X contains a copy of ℓ_1 . Let $T : \ell_1 \to X$ be the corresponding isomorphism. If B is a $w^*\mathcal{K}\mathcal{A}$ boundary of K, then it is easy to see that: (a) $T^*(B)$ is a $w^*\mathcal{K}\mathcal{A}$ boundary of $T^*(K)$; (b) $T^*(\mathcal{A})$ is a w^* - \mathbb{N} -family inside $T^*(K)$. Now we apply the previous Lemma. (B2) We prove that *B* contains a copy of the basis of $\ell_1(\mathfrak{c})$ when *K* does. We consider two cases, namely: **Case 1.** $\overline{co}(B) = \overline{co}^{w^*}(K)$. The cardinal \mathfrak{c} satisfies $cf(\mathfrak{c}) > \aleph_0$ because $cf(2^{\alpha}) > \alpha$ for every infinite cardinal α and because $\mathfrak{c} = 2^{\aleph_0}$. Thus, we can apply Talagrand Theorem and so there exists a copy of the basis of $\ell_1(\mathfrak{c})$ inside *B*. (B2) We prove that *B* contains a copy of the basis of $\ell_1(\mathfrak{c})$ when *K* does. We consider two cases, namely: **Case 1.** $\overline{\operatorname{co}}(B) = \overline{\operatorname{co}}^{w^*}(K)$. The cardinal \mathfrak{c} satisfies $\operatorname{cf}(\mathfrak{c}) > \aleph_0$ because $\operatorname{cf}(2^{\alpha}) > \alpha$ for every infinite cardinal α and because $\mathfrak{c} = 2^{\aleph_0}$. Thus, we can apply Talagrand Theorem and so there exists a copy of the basis of $\ell_1(\mathfrak{c})$ inside *B*.

Case 2. $\overline{\operatorname{co}}(B) \neq \overline{\operatorname{co}}^{w^*}(K)$. Then there exists a w^* - \mathbb{N} -family inside K and so inside B by part (A). Thus B contains a copy of the basis of $\ell_1(\mathfrak{c})$ because every w^* - \mathbb{N} -family does.

Conjecture 1. Let X be a Banach space such that $\ell_1 \subset X$. Then every boundary of $B(X^*)$ contains a w^* - \mathbb{N} -family.

Conjecture 1. Let X be a Banach space such that $\ell_1 \subset X$. Then every boundary of $B(X^*)$ contains a w^* - \mathbb{N} -family.

Proposition

The following are equivalent:

(a) The Conjecture 1 is true.

(b) If X is a Banach space **isomorphic** to ℓ_1 , then every boundary of $B(X^*)$ contains a w^* - \mathbb{N} -family.

Conjecture 2. Let X be a Banach space such that $\ell_1(\mathfrak{c}) \subset X^*$. Then every boundary of $B(X^*)$ contains a copy of the basis of $\ell_1(\mathfrak{c})$.

Conjecture 2. Let X be a Banach space such that $\ell_1(\mathfrak{c}) \subset X^*$. Then every boundary of $B(X^*)$ contains a copy of the basis of $\ell_1(\mathfrak{c})$.

Proposition

The following are equivalent:

(a) The Conjecture 2 is true for every separable Banach space X.

(b) If X is a Banach space **isomorphic** to ℓ_1 , then every boundary of $B(X^*)$ contains a copy of the basis of $\ell_1(\mathfrak{c})$.

THANKS YOU FOR YOUR ATTENTION