James boundaries and copies of /1(c)

Antonio S. Granero

Departamento de Anilisis Matematico, UCM, Espafia

April 7, 2011

VIl Encuentro de Anélisis Funcional y Aplicaciones 2011, Jaca,
Espaiia



© Introduction

© The equality X** = Seq(X**)

© Martin's Axiom and X** = Seq(X**)
@ Copies of 41(¢)

© The general case

@ The boundary Ext(K)

0 w*ICA boundaries



Introduction and preliminaries

Definition

Let X be a Banach space and K a w*-compact subset of the dual
X*. A subset B C K is said to be a (James) boundary of K if
every x € X attains on B its maximum on K.




Introduction and preliminaries

Definition

Let X be a Banach space and K a w*-compact subset of the dual
X*. A subset B C K is said to be a (James) boundary of K if
every x € X attains on B its maximum on K.

e For instance, K and the set of extreme points Ext(K) are
boundaries of K.



Introduction and preliminaries

Definition

Let X be a Banach space and K a w*-compact subset of the dual
X*. A subset B C K is said to be a (James) boundary of K if
every x € X attains on B its maximum on K.

e For instance, K and the set of extreme points Ext(K) are
boundaries of K.

e If B is a boundary of K, then " (B) = @ (K) but, in
general, ©o(B) # 6" (K). Even co(K) # 6" (K).



Introduction and preliminaries

Definition

Let X be a Banach space and K a w*-compact subset of the dual
X*. A subset B C K is said to be a (James) boundary of K if
every x € X attains on B its maximum on K.

e For instance, K and the set of extreme points Ext(K) are
boundaries of K.

e If B is a boundary of K, then " (B) = @ (K) but, in
general, ©o(B) # 6" (K). Even co(K) # 6" (K).

e We are interested in studying the conditions under which
c6(B) = 0" (K) and the consequences of the inequality
co(B) # " (K).



e Let us say that a subset A of a dual Banach space X* has the
property (P) ( also, A is a Pettis set) if co(K) = c6" (K) for
every w*-compact subset K of A.



e Let us say that a subset A of a dual Banach space X* has the
property (P) ( also, A is a Pettis set) if co(K) = c6" (K) for
every w*-compact subset K of A.

e X* is super-(P) if co(B) = &" (K) for every w*-compact
subset K C X* and every boundary B C K.



Theorem

[Haydon, 1976] For a Banach space X the following are equivalent:
(1) X fails to have an isomorphic copy of ¢;.
(2) X* has property (P).

(3) For every w*-compact subset K of X*, the set of extreme points
Ext(K) of K satisfies co( Ext(K)) = @™ (K).

(4) Every z € X** is universally measurable on (B(X*), w*).




Theorem

[Haydon, 1976] For a Banach space X the following are equivalent:
(1) X fails to have an isomorphic copy of ¢;.
(2) X* has property (P).

(3) For every w*-compact subset K of X*, the set of extreme points
Ext(K) of K satisfies co( Ext(K)) = @™ (K).

(4) Every z € X** is universally measurable on (B(X*), w*).

.

Theorem

[Godefroy| For a separable Banach space TFAE:

(a) X fails to have a copy of ¢;.

(b) X* is super-(P).

.




Seq(X**) and 1-Baire functions

e For a subset A C X* , let Seq(X**; A) be the subspace of
functionals ¢ € X** such that there exists a sequence (xp)n>1 C X
with (a,x,) — (1, a) for every a € A.
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subspace of X** (McWilliams, 1962).



Seq(X**) and 1-Baire functions

e For a subset A C X* , let Seq(X**; A) be the subspace of
functionals ¢ € X** such that there exists a sequence (xp)n>1 C X
with (a,x,) — (1, a) for every a € A.

n—oo

o We put Seq(X**) := Seq(X*™*; X*). Seq(X**) is a closed
subspace of X** (McWilliams, 1962).

e Let (T,7) be a Hausdorf topological space. A real function
f: T — Ris said to be an 1-Baire function if there exists a
sequence {f, : n > 1} in the space of continuous real functions
C(T) such that f, — f pointwise on T. Let Byp(T) denote the
family of real bounded 1-Baire functions.



e The fact co(K) # ¢ (K) implies the existence of a functional
¥ € X** not universally measurable and so not 1-Baire on
o (K).



e The fact co(K) # ¢ (K) implies the existence of a functional

¥ € X** not universally measurable and so not 1-Baire on
o (K).

e When B is a boundary of K, the fact co(B) # @" (K) generally
does not imply the existence of a functional ¢ € X** not
universally measurable on " (K), but always implies the
existence of a functional ¢ € S(X**) such that ¢ ¢ Bip(co" (K))
and ¢ ¢ Seq(X**). We calculate in the sequel an estimation of
the distances dist(v, Seq(X**)), dist(1, Seq(X**;e6"" (K))) and
dist(1, B1p(co™ (K))) with respect to the distance

dist(co"" (K),co(B)).



Distance to Bi,(H)

Proposition

Let X be a Banach space, H a convex w*-compact subset of X*,
B a boundary of H, wy € H, d > 0 and ¢ € S(X**) fulfilling
(1, wo) > sup (¢, B) + d. Then dist(y | H, Bip(H)) > td in
loo(H).

[An idea of the proof]



Distance to Bi,(H)

Proposition

Let X be a Banach space, H a convex w*-compact subset of X*,
B a boundary of H, wy € H, d > 0 and ¢ € S(X**) fulfilling
(1, wo) > sup (¢, B) + d. Then dist(y | H, Bip(H)) > td in
loo(H).

[An idea of the proof] Part A. Let T : X — C(H) be such that
Tx=x | H,Vx € X. If ¢ € B1p(H), let $ € Seq((C(H)**) be
such that

(@, u) Z/Hso-du,vue C(H)".
Then

[Ty — @l <3|l [ H—oll,
dist(T**, Seq(C(H)™)) < 3dist(s | H, Bup(H)).



Part B. If ¢y € S(X**) satisfies

(¢, wo) > sup(t,co(B)) + d,

then dist( T, Seq(C(H)*)) > 3d.



Part B. If ¢y € S(X**) satisfies

(¢, wo) > sup(y,co(B)) + d,

then dist( T, Seq(C(H)*)) > 3d.

Proposition (Simons equality, 1995)

Let E be a Banach space and B C G C E* subsets such that every
element of E attains on B its maximum on G. Then if (x,)p>1 C E
is a bounded sequence, we have

sup limsup (b, x,) = sup limsup (g, x,).
beB n—oo geG n—oo




Distances Seq(X**) and Seq(X**; H)

Corollary

Let X be a Banach space, H a convex w*-compact subset of
B(X*), B a boundary of H and d > 0 such that
dist(H,co(B)) > d. Then there exist wg € H and a functional
€ S(X**) fulfilling

(¢, wo) > sup (¢, B) + d

such that dist(¢, Seq(X**)) > dist(1, Seq(X**; H)) > 4.




Distances Seq(X**) and Seq(X**; H)

Corollary

Let X be a Banach space, H a convex w*-compact subset of
B(X*), B a boundary of H and d > 0 such that
dist(H,co(B)) > d. Then there exist wg € H and a functional
€ S(X**) fulfilling

(¢, wo) > sup (¢, B) + d

such that dist(¢, Seq(X**)) > dist(1, Seq(X**; H)) > 4.

A

e Proof. Let T : X — C(H) be the restriction operator such that
Tx =x | H, ¥x € X. Since || T|| <1 (because H C B(X*)) and
T**(Seq(X**, H)) C Seq(C(H)**) by Part A, then

dist(1p, Seq(X**, H)) > dist(T**¢), Seq(C(H)™)).



e Now an application of Part B gives that
d
dist(v, Seq(X™*, H)) > dist(T**¢,Seq(C(H)*™)) > >

Finally, the inequality dist(v, Seq(X**)) > dist(1), Seq(X**, H)) is
obvious because Seq(X**) is a subspace of Seq(X**, H).



e Now an application of Part B gives that
d
dist(v, Seq(X™*, H)) > dist(T**¢,Seq(C(H)*™)) > >

Finally, the inequality dist(v, Seq(X**)) > dist(1), Seq(X**, H)) is
obvious because Seq(X**) is a subspace of Seq(X**, H).

Corollary

For a Banach space X always (1) = (2) = (2'), where

(1) X** = Seq(X**).

(2) X* is ultra-(P), i.e., Y* is super-(P), for every subspace

Y C X.

(2') X* is super-(P), i.e., c6(B) = co" (K), for every w*-compact
subset K C X* and every boundary B of K.

v




On the equality X** = Seq(X**)

Proposition

Let X be a Banach space. Consider the following statements:
(0) (B(X**), w*) is angelic; (1) X* € (C).

(2) X* fails to have an uncountable basic sequence of type (1 .
(3) X** = Seq(X**).

(4) X* is ultra-(P) ;(4’) X* is super-(P).

(5) X € (C) and X fails to have a copy of ¢;.

Then always (0) = (1) = (2) = (3) = (4) = (4) = (5).

.




On the equality X** = Seq(X**)

Proposition

Let X be a Banach space. Consider the following statements:
(0) (B(X**), w*) is angelic; (1) X* € (C).

(2) X* fails to have an uncountable basic sequence of type (1 .
(3) X** = Seq(X**).

(4) X* is ultra-(P) ;(4’) X* is super-(P).

(5) X € (C) and X fails to have a copy of ¢;.

Then always (0) = (1) = (2) = (3) = (4) = (4) = (5).

.

If X is a Banach space and X* has the property (C), then X has
the property (C).
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Positive results

Proposition

If X is a separable Banach space all the above statements are
equivalent.

Proposition

Let K be a Hausdorf compact space. TFAE:
(1) K is scattered countable; (2) C(K)* € (C).
(3) Seq(C(K)*™) = C(K)**.

(4) C(K)* is ultra-(P);(4’) C(K)* is super-(P).

A

Proposition

Let X be either a o-complete Banach lattice or a dual Banach
lattice. TFAE:

(1) X* € (C); (2) X** = Seq(X**),; (3) X* is ultra-(P); (3') X* is
super-(P).

.




Proposition

Let V' be a Banach space with a projective generator. TFAE:
(1) V* is super-(P) ; (2) V** = Seq(V**).
(3) V* is ultra-(P); (4) V* is Ny-super-(P).
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(1) V* is super-(P) ; (2) V** = Seq(V**).
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V* is Wy-super-(P)) if Y* is super-(P) for every Y C X subspace
with Dens(Y) = N;.



Proposition

Let V' be a Banach space with a projective generator. TFAE:
(1) V* is super-(P) ; (2) V** = Seq(V**).
(3) V* is ultra-(P); (4) V* is Xy -super-(P).

V* is Wy-super-(P)) if Y* is super-(P) for every Y C X subspace
with Dens(Y) = N;.

Proposition

Let X be a Banach space Asplund with a projective generator.
TFAE

(1) X* has the property (C); (2) X** = Seq(X**).
(3) X* is ultra-(P).(3’) X* is super-(P).




Martin's Axiom and X** = Seq(X**)

Proposition (MM)
Let X be a Banach space. TFAE:

(1) X** = Seq(X**); (2) X* is ultra-(P); (3) X* is Ny-super-(P).




Martin's Axiom and X** = Seq(X**)

Proposition (MM)
Let X be a Banach space. TFAE:

(1) X** = Seq(X**); (2) X* is ultra-(P); (3) X* is Ny-super-(P).

Proposition (MM)

Let X be a Banach space such that Dens(X) = N;. TFAE

(1) X** = Seq(X*). (2) X* is super-(P).
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The Martin’'s Maximum Axiom MM

If X is a topological space
e DO(X) =the family of dense and open subsets of X.
e m(X) :=min{|U|: U C DO(X),NU = 0}.

e M =the family of Cech-complete spaces K with the que CCC
property fulfilling that, given a sequence of regular open subsets
{04 1 a < wi} of K, there exists a “club” I C wy such that Oy
is constant for every pair o, 8 € I, a < 3, where

O[aﬁ) = int(Ua§§<ﬁ Og)

e mm = m(M) := min{m(K) : K € M}.
mm satisfies w; < mm < ws.

e The Martin's Maximum Axiom MM is the claim w; < mm.



El Teorema de Talagrand

(Talagrand) Let T be a cardinal with cofinality cT) > Ng, X a
Banach space and A a subset of X. The following are equivalent
(1) A has a copy of the basis of {1(T).

(2) ©o(A) has a copy of the basis of {1(T).

(3) [A] has a copy of ¢1(T).




Characterization of the fact K € (P)

Proposition

[G. and S.] For a w*-compact subset K of a dual Banach space X*
TFAE:

(1) K & (P).

(2) There exists in K a w*-N-family and a copy of the basis of

61(c).

(3) There exists z € X** which is not universally measurable on K.
v

e A. S. GRANERO AND M. SANCHEZ, Distances to convex sets,
Studia Math.,182 (2007), 165-181.

e Convex w*-closures versus convex norm-closures, J. Math. Anal.
Appl., 350 (2009), 485-497.



w*-N-families

(1) A subset F of X* is said to be a w*-N-family of width d > 0
if F is bounded and has the form

F ={nmn : M, N disjoint subsets of N},

and there exist a number rp € R and a sequence {x,n : m > 1} C
B(X) such that for every pair of disjoint subsets M, N of N we have

nmn(Xm) > ro+d, YVme M, and ny n(xp) < ro, Vn € N.

We say that Width(F) > d.



w*-N-families

(1) A subset F of X* is said to be a w*-N-family of width d > 0
if F is bounded and has the form

F ={nmn : M, N disjoint subsets of N},

and there exist a number rp € R and a sequence {x,n : m > 1} C
B(X) such that for every pair of disjoint subsets M, N of N we have

nmn(Xm) > ro+d, YVme M, and ny n(xp) < ro, Vn € N.

We say that Width(F) > d.
(2) We define the Width(Y') of a subset Y of X* as follows:

Width(Y) :=sup{d > 0: 3K C Y w*-compact
and a w*-N-family A C K of width > d}.



e J. DIESTEL, Sequences and Series in Banach Spaces,
Springer-Verlag, New-York, 1984, pag. 206.
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o If F C X* is a w*-N-family, a standard argument proves that a
subset of F is equivalent to the basis of ¢1(c). Moreover, the same
argument yields that the sequence {x, : n > 1} C B(X) associated
to F is equivalent to the basis of /5.



e J. DIESTEL, Sequences and Series in Banach Spaces,
Springer-Verlag, New-York, 1984, pag. 206.

o If F C X* is a w*-N-family, a standard argument proves that a
subset of F is equivalent to the basis of ¢1(c). Moreover, the same
argument yields that the sequence {x, : n > 1} C B(X) associated
to F is equivalent to the basis of /5.

e So, if A C K C X*is a w*-N-family, K has a copy of the basis
of £1(¢) and X has an isomorphic copy of ¢1. And vice versa, if X
has a copy of /1, then X* contains a w*-N-family.



Question. Let K C X* be a w*-compact subset and B C K a
boundary:

(Q1) If c6(B) # 0" (K), does K contain a w*-N-family (and a
copy of the basis of ¢1(c))? And B?

(Q2) Does B contain a w*-N-family if K does?
(Q3) Does B contain a copy of the basis of ¢1(c) if @0 (K) does?

v
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e The answer to Q1 is, in general, negative (see the following
Counterexample).



Question. Let K C X* be a w*-compact subset and B C K a
boundary:

(Q1) If c6(B) # 0" (K), does K contain a w*-N-family (and a
copy of the basis of ¢1(c))? And B?

(Q2) Does B contain a w*-N-family if K does?

(Q3) Does B contain a copy of the basis of ¢1(c) if @0 (K) does?

e The answer to Q1 is, in general, negative (see the following
Counterexample).

e The answers to Q2 and Q3 are affirmative in many cases. We do
not know Counterexamples for these two questions.



e Counterexample . Let Y be the isometric predual of the long
James space J(w1) and X := Y* = J(w1). Then:

(i) Y and all its successive dual spaces are Asplund. So, X* =
Y** = J(w1)* does not have a copy of ¢1(c).

(ii) Let K := B(X*) and By := Y. N K, where
Ye = U{WW : AC Y countable }.

It is easy to see that Y. is a norm-closed subspace of X* and that
By is a boundary of K such that @6(By) C Y.

(iii) There is a vector e, that satisfies e,, € B(X*) but e,, ¢ Y
and so e, ¢ co(By). Thus co(By) # o (K). O

R. D. BOURGIN, Geometric Aspects of Convex Sets with the
Radon-Nikodym Property, Lect. Notes in Math., Springer-Verlag,
Vol. 993(1983), p.346.
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The metrizable case

e Let (H,7) be a topological space. The index of fragmentation
Frag(f, H) of a function f : H — R is the infimum of the family of
numbers ¢ > 0 such that for every 1 > € and every non-empty
subset F C H, there exists an open set V' C H such that

VN F #0and diam(f(VNF)) <n.
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The metrizable case

e Let (H,7) be a topological space. The index of fragmentation
Frag(f, H) of a function f : H — R is the infimum of the family of
numbers ¢ > 0 such that for every 1 > € and every non-empty
subset F C H, there exists an open set V' C H such that

VN F #0and diam(f(VNF)) <n.

Proposition

If H is a separable metric space and f € {o(H) then
dist(f, Bis(H)) < 5 Frag(f, H).

Proposition

Let (H,T) be a hereditarily Baire space, € > 0 and f € {(H).
TFAE:

(1) Frag(f,H) < e.

(2) For every non-empty closed subset F C H and every pair of
real numbers s < t such that t — s > e we have either
FN{f<s}#ForFNn{f>t}#F.




Solution of the metrizable case.

Proposition

Let X be a Banach space, H C X* a convex w*-compact subset
and B a boundary of H such that dist(H,co6(B)) >d > 0. If H is
w*-metrizable, H has a w*-N-family A of width(A) > $ and a
copy of the basis of {1(c). So Width(H) > Ldist(H,co(B)).




Sketch of the proof.

e As dist(H,co(B)) > d, we can choose wy € H with
dist(wp,co(B)) > d > 0 and ¢ € S(X**) such that

(¥, wo) > sup(¢,co(B)) + d

Thus dist(y) | H, Bip(H)) > £d in loo(H).
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(1, wo) > sup(¢,co(B)) + d
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e As H is w*-compact and metrizable,
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this fact we deduce the existence in F of a w*-N-family F such
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Sketch of the proof.

e As dist(H,co(B)) > d, we can choose wy € H with
dist(wp,co(B)) > d > 0 and ¢ € S(X**) such that

(1, wo) > sup(¢,co(B)) + d
Thus dist(y) | H, Bip(H)) > £d in loo(H).

e As H is w*-compact and metrizable,

dist(y) | H,Bip(H)) < LFrag(y | H,H). Thus

Frag(y | H,H) > %d. Hence there exists a non-empty
w*-compact subset F C H and two *real numbers s < t Witb

t —s > 1d such that FN{y<s} =F=Fn{¢Y>t} . From
this fact we deduce the existence in F of a w*-N-family F such
that width(F) > 3d.

A. S. GRANERO AND M. SANCHEZ, Convex w*-closures versus
convex norm-closures, J. Math. Anal. Appl., 350 (2009), 485-497.



The general case

Definition

Let X be a Banach space and K a w*-compact subset of X*.
(A) The Bindex(K) is

Bindex(K) = sup{dist(cc"”" (W),co(B)) : W C K w*-compact
and B a boundary of W}.

(B) The Bindex.(K) is the supremum of the Bindex(i*(K)),
where i : Y — X is the canonical inclusion mapping and Y C X is
a separable subspace.

V.




Proposition

Let X be a Banach space and H a w*-compact subset of X*. Then
(A) Width(H) < Bindex.(H).
(B) If H is convex then Width(H) < Bindex.(H) < 3Width(H).




Proposition

Let X be a Banach space and H a w*-compact subset of X*. Then
(A) Width(H) < Bindex.(H).
(B) If H is convex then Width(H) < Bindex.(H) < 3Width(H).

v

Corollary

Let X be a Banach space and K C X* a w*-compact subset of
X*. TFAE

(1) Width(cs"" (K)) = 0.
(2) Width(K) = 0.
(3) Bindex.(K) = 0.

(4) Bindex.(co" (K)) = 0.

.




w*-CD boundaries

Proposition

Let X be a Banach space, K C X* a w*-compact subset and
B C K a w*-CD boundary such that co(B) # c" (K). Then K
contains a w*-N-family and a copy of the basis of ¢1(c).




The boundary Ext(K)

Proposition

Let X be a Banach space and K a w*-compact metrizable subset
of X* such that dist(co"" (K),co(Ext(K))) > d > 0. Then Ext(K)
has a w*-N-family A of width(A) > d > 0 and a copy of the basis
of £1(c). Thus Width(Ext(K)) > dist(co" (K),co(Ext(K)).




The boundary Ext(K)

Proposition

Let X be a Banach space and K a w*-compact metrizable subset
of X* such that dist(co"" (K),co(Ext(K))) > d > 0. Then Ext(K)
has a w*-N-family A of width(A) > d > 0 and a copy of the basis
of £1(c). Thus Width(Ext(K)) > dist(co" (K),co(Ext(K)).

Proof. Since K is metrizable, Ext(K) is a Gs subset and for every
w € ©@"" (K) there exists a Radon Borel probability ;. carried by
Ext(K) such that w = r(u). This fact and the hypothesis
dist(co"" (K),co(Ext(K))) > d > 0 imply that there exists a
w*-compact subset H C Ext(K) such that

dist(co"”" (H),co(H)) > d. So, H contains a w*-N-family A with
width(A) > d.



Proposition

Let K be a w*-compact subset of a dual Banach space X* with

K ¢ (P). Then Ext(K) has a w*-N-family and a copy of the basis
of@l(c).




Proposition

Let K be a w*-compact subset of a dual Banach space X* with
K ¢ (P). Then Ext(K) has a w*-N-family and a copy of the basis
of€1(c).

.

Proposition |
Let K be a w*-compact subset of a dual Banach space X*. TFAE:

(1) Ext(K) has a w*-N-family.
(2) K ¢ (P), i.e., K has a w*-N-family.

(3) co( Ext(W)) # c" (W) for some w*-compact subset W of K.




Proposition

Let K be a w*-compact subset of a dual Banach space X*. TFAE:
(1) Ext(K) has a copy of the basis of {1(c).
(2) K has a copy of the basis of ¢1(c).




Proposition

Let K be a w*-compact subset of a dual Banach space X*. TFAE:
(1) Ext(K) has a copy of the basis of {1(c).
(2) K has a copy of the basis of ¢1(c).

Proof. (1) = (2) is obvious.



Proposition

Let K be a w*-compact subset of a dual Banach space X*. TFAE:
(1) Ext(K) has a copy of the basis of {1(c).
(2) K has a copy of the basis of ¢1(c).

Proof. (1) = (2) is obvious.

(2) = (1). There are two cases:



Proposition

Let K be a w*-compact subset of a dual Banach space X*. TFAE:
(1) Ext(K) has a copy of the basis of {1(c).
(2) K has a copy of the basis of ¢1(c).

Proof. (1) = (2) is obvious.
(2) = (1). There are two cases:

Case 1. Suppose that K € (P). Then co(Ext(K)) = co" (K).
From a result of Talagrand we obtain that Ext(K) has a copy of
the basis of /1(c).



Proposition

Let K be a w*-compact subset of a dual Banach space X*. TFAE:
(1) Ext(K) has a copy of the basis of {1(c).
(2) K has a copy of the basis of ¢1(c).

Proof. (1) = (2) is obvious.
(2) = (1). There are two cases:

Case 1. Suppose that K € (P). Then co(Ext(K)) = co" (K).
From a result of Talagrand we obtain that Ext(K) has a copy of
the basis of /1(c).

Case 2. Suppose that K ¢ (P). Then K has a w*-N-family and
by the above Proposition we get that Ext(K) has a w*-N-family,
and so a copy of the basis of ¢1(c).



Let X be a Banach space, K a w*-compact subset and B a
boundary of K. If B is a K, subset, its behavior is analogous to
that of Ext(K).



Let X be a Banach space, K a w*-compact subset and B a
boundary of K. If B is a K, subset, its behavior is analogous to
that of Ext(K).

Proposition

Let X be a Banach space, K a w*-compact subset of X* that has
a w*-N-family and B a boundary of K which is a K, set. Then
(1) B has a w*-N-family iff K does.

(2) B has a copy of the basis of {1(c) iff K does.




w*ICA boundaries

Let X be a separable Banach space and E be a norm-closed
w* KA subspace of X* such that E € (P). If wi = o(E*, E) then
(B(E*), wy) is angelic.




w*ICA boundaries

Lemma

Let X be a separable Banach space and E be a norm-closed
w* KA subspace of X* such that E € (P). If wi = o(E*, E) then
(B(E*), wy) is angelic.

Lemma

Let X be a separable Banach space, K be a w*-compact subset of
X* containing a w*-N-family and B a w*ICA boundary of K.
Then B contains a w*-N-family.




w*ICA boundaries

Lemma

Let X be a separable Banach space and E be a norm-closed
w* KA subspace of X* such that E € (P). If wi = o(E*, E) then
(B(E*), wy) is angelic.

Lemma

Let X be a separable Banach space, K be a w*-compact subset of
X* containing a w*-N-family and B a w*ICA boundary of K.
Then B contains a w*-N-family.

Proof f. Suppose that B fails to contain a w*-N-family and let

= [B]. Clearly, E is a w*CA subspace of X* such that E € (P)
and so E fails to contain a w*-N-family. Then (B(E*),o(E*, E))
is angelic by the previous Lemma. Thus co(B) = co" (K) by a
Theorem of Godefroy and so E contains a w*-N-family, a
contradiction that proves the statement.



Proposition

Let X be a Banach space and K a w*-compact subset of X*. Let
B C K be a w*KA boundary of K. Then

(A) Ifco(B) # 6" (K), K has a w*-N-family.

(B) We have

(B1) K contains a w*-N-family if and only if B contains a
w*-N-family.

(B2) K contains a copy of the basis of ¢1(c) if and only if B does. )




Proposition

Let X be a Banach space and K a w*-compact subset of X*. Let
B C K be a w*KA boundary of K. Then

(A) Ifco(B) # 6" (K), K has a w*-N-family.

(B) We have

(B1) K contains a w*-N-family if and only if B contains a
w*-N-family.

(B2) K contains a copy of the basis of ¢1(c) if and only if B does. )

Proof. (A) This is true for every w*-CD boundary.

(B1) Suppose that K has a w*-N-family A. Then X contains a
copy of /1. Let T : {1 — X be the corresponding isomorphism. If
B is a w*CA boundary of K, then it is easy to see that: (a)
T*(B) is a w*K.A boundary of T*(K); (b) T*(A) is a
w*-N-family inside T*(K).

Now we apply the previous Lemma.



(B2) We prove that B contains a copy of the basis of ¢1(c) when
K does. We consider two cases, namely:

Case 1. @o(B) = " (K). The cardinal ¢ satisfies cf(c) > Ng
because cf(2%) > « for every infinite cardinal o and because

¢ = 2% Thus, we can apply Talagrand Theorem and so there
exists a copy of the basis of ¢1(c) inside B.



(B2) We prove that B contains a copy of the basis of ¢1(c) when
K does. We consider two cases, namely:

Case 1. @o(B) = " (K). The cardinal ¢ satisfies cf(c) > Ng
because cf(2%) > « for every infinite cardinal o and because

¢ = 2% Thus, we can apply Talagrand Theorem and so there
exists a copy of the basis of ¢1(c) inside B.

Case 2. @(B) # @" (K). Then there exists a w*-N-family inside
K and so inside B by part (A). Thus B contains a copy of the
basis of ¢1(c) because every w*-N-family does.



Conjecture 1. Let X be a Banach space such that ¢; € X. Then
every boundary of B(X*) contains a w*-N-family.



Conjecture 1. Let X be a Banach space such that ¢; € X. Then
every boundary of B(X*) contains a w*-N-family.

Proposition

The following are equivalent:
(a) The Conjecture 1 is true.

(b) If X is a Banach space isomorphic to (1, then every boundary
of B(X*) contains a w*-N-family.

v




Conjecture 2. Let X be a Banach space such that ¢1(c) C X*.
Then every boundary of B(X*) contains a copy of the basis of

61(c).



Conjecture 2. Let X be a Banach space such that ¢1(c) C X*.
Then every boundary of B(X*) contains a copy of the basis of

fl(t).

Proposition

The following are equivalent:
(a) The Conjecture 2 is true for every separable Banach space X.

(b) If X is a Banach space isomorphic to (1, then every boundary
of B(X*) contains a copy of the basis of {1(c).

V.
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