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Universitat Politècnica de València
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Definitions

Li-Yorke, 1975: An uncountable subset S ⊂ X of a metric space (X , d) is
called a scrambled set for a dynamical system f : X → X if for any
x , y ∈ S with x 6= y we have lim infn d(f n(x), f n(y)) = 0 and
lim supn d(f n(x), f n(y)) > 0.

Schweizer-Sḿıtal, 1994: A dynamical system f : X → X with a
scrambled set S is distributionally chaotic on S if, additionally, there is
δ > 0 so that for each ε > 0 and each pair x , y ∈ S of distinct points we
have

(1) lim inf
n

|{k ≤ n : d(f k(x), f k(y)) < δ}|
n

= 0

and

(2) lim sup
n

|{k ≤ n : d(f k(x), f k(y)) < ε}|
n

= 1.
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We recall that the upper density D(A) of a set A ⊂ N is defined by:

D(A) = lim sup
n

|A ∩ {1, . . . , n}|
n

Equivalent definition of distributional chaos: A dynamical system
f : X → X with a scrambled set S is distributionally chaotic on S if there
is δ > 0 so that for each ε > 0 and each pair x , y ∈ S of distinct points we
have

(1) D({k ∈ N : d(f k(x), f k(y)) ≥ δ}) = 1

and
(2) D({k ∈ N : d(f k(x), f k(y)) < ε}) = 1.
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Given a sequence v = (vn)n of positive weights, we will consider the
weighted `p-space (1 ≤ p < ∞):

X = `p(v) := {x ∈ KN : ‖ x ‖ :=

 
∞X
j=1

| xj |p vj

!1/p

< ∞}

The backward shift T = B : `p(v) → `p(v)

B(x1, x2, x3, . . .) := (x2, x3, x4, . . .)

is well-defined (equivalently, continuous) iff supn
vn

vn+1
< ∞.
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Mart́ınez-Giménez, Oprocha and Peris, 2009

If there is r > 1 such that, for any m ∈ N there exists an integer i such that

r ≤ vj

vj+1
, j = i , . . . , i + m

then B exhibits distributional chaos.

Cao, Cui and Hou, 2009

Let X be a Banach space and let T ∈ L(X ) be an operator. T satisfies the
distributionally chaotic criterion, if there is a constant r > 1 such that for any
m ∈ N, there exists xm ∈ X \ {0} satisfying:

(i) lim
k→∞

‖T kxm‖ = 0 and

(ii) ‖T ixm‖ ≥ r i‖xm‖ for i = 1, 2, . . . , m.

If T satisfies the distributionally chaotic criterion then T is distributionally
chaotic.
Observation: In this case the spectral radius of T is strictly greater than 1.
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Cao, Cui and Hou, 2009 (Weakly distributionally chaotic criterion)

If for any sequence of positive numbers Cm increasing to ∞, there exist
{xm}m∈N in X satisfying:

(a) limn→∞ ‖T nxm‖ = 0

(b) There is a sequence of positive integers Nm increasing to ∞, such that

lim
m→∞

1

Nm
Card{0 ≤ i < Nm : ‖T i (xm)‖ ≥ Cm‖xm‖} = 1,

then T is distributionally chaotic.

Bermúdez, Bonilla, Mart́ınez-Giménez and Peris, 2010

T satisfies the weakly distributionally chaotic criterion if and only if (CDC)
there exist an increasing sequence of integers B = (mk)k with D(B) = 1 and a
subset X0 ⊂ X satisfying

(a) lim
n→∞

T nx = 0, x ∈ X0, and

(b) lim
k
‖Tmk |Y ‖ = ∞, where Y := span(X0).
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We say that T is dense distributionally chaotic if we can find a dense
scrambled set S ⊂ X on which the conditions of distributional chaos happen.

Bermúdez, Bonilla, Mart́ınez-Giménez and Peris, 2010

If

1 T satisfies (CDC) and

2 there exists a dense subset X0 ⊂ X such that lim
n→∞

T nx = 0, for each

x ∈ X0,

then T is dense distributionally chaotic and, moreover, there is a dense linear
manifold Y ⊂ X such that Y is a distributionally scrambled set for T .

Bermúdez, Bonilla, Mart́ınez-Giménez and Peris, 2010

Suppose that

1 there exists a dense set X0 such that limn→∞ ‖T nx‖ = 0, ∀x ∈ X0 and

2 there exists a eigenvalue λ with |λ| > 1.

Then T is dense distributionally chaotic.
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Bermúdez, Bonilla, Mart́ınez-Giménez and Peris, 2010
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Definitions

Beauzamy, 1988: A vector x ∈ X is called irregular for an operator
T : X → X provided that supn ‖T nx‖ = ∞ and infn ‖T nx‖ = 0. In
particular, the line S := {λx : λ ∈ K} is a scrambled set for T .

Prajitura, 2009: An operator T : X → X is completely irregular if every
x ∈ X \ {0} is irregular. In particular, the full space S = X is a scrambled
set for T .

Beauzamy (1988) constructs weighted forward shifts which are completely
irregular, later slightly modified by Prajitura (2009). Smith (2008) also
obtains completely irregular operators with some additional properties.
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The forward shift F : X → X , F (x1, . . . ) := (0, x1, . . . ) is well-defined
(continuous) on X = `p(v) iff supn

vn+1

vn
< ∞.

Peris, 2009

Let X := `p(v), where v = (vn)n is a sequence of weights satisfying that, for a
suitable strictly increasing sequence (nk)k of natural numbers, we have

k < vnk ,

vj := 1/k!, nk < j ≤ 2nk ,

vj := (1 + 1/nk)
j−2nk /k!, 2nk < j ≤ nk+1,

k ∈ N. Then the forward shift T : X → X is a completely irregular operator
such that the sequence {‖T nz‖ ; n ∈ N} is dense in [0,∞[ for each z ∈ X ,
z 6= 0.
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Mart́ınez-Giménez, Oprocha and Peris, 2009

Let X := `p(v), where v = (vn)n is a sequence of weights defined as above for
a rapidly strictly increasing sequence (nk)k of natural numbers, then the
forward shift T : X → X is a completely irregular operator, and exhibits
distributional chaos on S = X .
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Based on the Dvoretzky theorem on almost spherical sections

Shkarin, 2008

Let X be a separable infinite dimensional Banach space, let {bk}k∈N be a
sequence of numbers in [3,∞) such that bk →∞ as k →∞ and {nk}k∈N be a
stricly increasing sequence of positive integers such that n0 = 0 and
nk+1 − nk ≥ 2 for each k ∈ N. Then there exists a biorthogonal sequence
{(yk , fk)}k∈N in X × X ∗ such that
(B1) ‖yk‖ = 1 for each k ∈ N;
(B2) span{yk : k ∈ N} is dense in X ;
(B3) ‖fnk ‖ ≤ bk for each k ∈ N;
(B4) ‖fj‖ ≤ 3 if j ∈ N \ {nk : k ∈ N};
(B5) for any k ∈ N and any numbers cj ∈ K with nk + 1 ≤ j ≤ nk+1 − 1

1

2
‖

nk+1−1X
j=nk+1

cjyj‖ ≤ (‖
nk+1−1X
j=nk+1

|cj |2‖)
1
2 ≤ 2‖

nk+1−1X
j=nk+1

cjyj‖
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Shkarin, 2008

Given a sequence {wn}n∈N in `2(N) there exists T : X → X satisfying that
Ty0 = 0 and Tyn+1 = wnyn with ‖yn‖ = 1 where {yn} is given by the result
above. The operator I + T is so that there exists a dense sequence {xk}k in X
such that limn(I + T )nxk = 0 for all k ∈ N and I + T admits dense orbits (it is
hypercyclic).

Bermúdez, Bonilla, Mart́ınez-Giménez and Peris, 2010

If wn = n−2/3 and nk = (k + 1)!, under the above conditions, I + T is
hypercyclic and distributionally chaotic on X , with a dense linear manifold that
constitutes a distributional scrambled set.
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