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Some constructions of non-separable L∞ spaces

Introduction

The aim of this talk is to present some recent constructions of
“non-trivial” non-separable L∞-spaces, and discuss about
future perspectives.
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Definition

Recall that a Banach space space X is called L∞,λ (for λ > 1) if
for every finite dimensional subspace F of X there is some
subspace G of X containing F and such that d(G, `dim G

∞ ) ≤ λ.

Typical examples of L∞ spaces are c0 and C(K ). Not so well
known example is the Gurarij space G, characterized
isometrically by the following properties:
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G is separable and for every ε > 0, every pair F ⊆ G of f.d.
spaces and isometry T : F → G there is U : G→ G such that

U � F = T and (1− ε)‖x‖ ≤ ‖U(x)‖ ≤ (1 + ε)‖x‖.

Note that the Gurarij space is universal (almost-isometrically)
for separable Banach spaces.

Each of the examples mentioned above contain copies of c0,
but this is not always the case.
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Introduction

By “non-trivial” we mean:
In the separable structure:Not containing c0,having the
RNP, having the RNP and being Asplund space.
In the non-separable structure:Not having nice renorming
(as for example, a renorming with the Mazur intersection
property (MIP)), or not having uncountable biorthogonal
sequences.

Note that for the second kind of properties, some additional
set-theoretical axioms are needed.
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Introduction

The construction of Bourgain-Delbaen

Theorem (1980)

There is a separable Asplund L∞ space with the RNP and
reflexively saturated.

Theorem (1980)

There is a separable L∞ space with the RNP and the Schur
property.

Both examples are the result of a parametrized construction of
a direct limit of a direct (indeed linear) system of `n∞’s and
isomorphism between them. The key is to take into account the
natural projections between `m∞ ⊆ `n∞.
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The construction of Bourgain-Pisier

The last Bourgain-Delbaen construction was extended by the
following result.

Theorem (1983)

For every separable Banach space X and every λ > 1 there is
a separable L∞,λ-space Y such that X ⊆ Y and such that Y/X
has both the Schur and the Radon Nikodym property. So in
particular, the space Y is `1-saturated.

This construction is also a direct limit of a directed system of
`n∞’s and isomorphisms, but of a different nature.
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Kunen and Shelah spaces

Kunen space is a C(K ) (consequently, a L∞,1+-space) with the
following properties:

1 C(K ) is non-separable and Asplund (i.e. K is
non-metrizable and scattered).

2 (C(K ),w)n is hereditarily Lindelöf (HL) for every integer n.
Consequently, C(K ) cannot be renormed to have the MIP.
This space is built with the extra help of the Continuum
Hypothesis.
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Shelah space S has the following properties:
1 S is non-separable, and Gurarij (hence, a L∞,1+-space)
2 (S,w)n is HL for every integer n.

S is given from the set-theoretical axiom called diamond (which
is stronger than the continuum hypothesis)
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New spaces

Theorem (LA-Todorcevic 2010)

1 There are X ⊆ Y non-separable such that:

1 X is Asplund and c0-sat., Y is Gurarij and Y/G ≡ X.
2 Both (X ,w)n and (Y ,w)n are HL for every integer n.
3 Both X and Y have no supported sets.

2 A pair X and Y related as above such that X have
uncountable fundamental ε-biorthogonal sequences for
every ε > 0 but no uncountable biorthogonal sequences.

3 A non-separable space X with uncountable ε-Schauder
basic sequences for every ε > 0 but no uncountable
monotone basic sequences.
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4 All of the spaces above have few operators.
5 A non-metrizable Poulsen simplex and a non-metrizable

Bauer simplex such that the corresponding space of
probability measures is hereditarily separable in all finite
powers.

All these examples are built in a unified way, and they are
consequence of the diamond principle.
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Theorem

For every non-separable Banach space X of density ℵ1 there is
a Y ⊇ X such that Y/X has both the Schur and the RNP.

Ingredients of the proof:
1 Follow the Bourgain-Pisier construction.
2 Now step-up the B-P construction to ℵ1 by using the

following combinatorial property of ℵ1:
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Inductive family

There is a family F consisting on finite subsets of ω1 such that:
1 F is cofinal (i.e. for every s ⊆ ω1 finite there is t ∈ F such

that s ⊆ t).
2 For every s ∈ F there is a total ordering �s on
F � s := {t ∈ F : t ⊆ s} such that

1 �s extends the inclusion.
2 If t ⊆ s are both in F , then �s� (F � t) =�t .
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Problem 1

Is there a non-separable Asplund L∞-space with the RNP?

Hint: use the existence of such families in ℵ1 to step-up now the
Bourgain-Delbaen construction.
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Problem 2

Is there a non-separable Asplund L∞-space with the RNP and
without nice renorming?

Hint: Use our approach to build non-trivial L∞ spaces together
with the Bourgain-Delbaen construction. Note that such space
(if exists) would be the first example of an Asplund space
without smooth bump functions (Based on a work of
Deville-Godefroy and Zizler)



Some constructions of non-separable L∞ spaces

Open problems

Problem 2

Is there a non-separable Asplund L∞-space with the RNP and
without nice renorming?

Hint: Use our approach to build non-trivial L∞ spaces together
with the Bourgain-Delbaen construction. Note that such space
(if exists) would be the first example of an Asplund space
without smooth bump functions (Based on a work of
Deville-Godefroy and Zizler)



Some constructions of non-separable L∞ spaces

Open problems

Problem 2

Is there a non-separable Asplund L∞-space with the RNP and
without nice renorming?

Hint: Use our approach to build non-trivial L∞ spaces together
with the Bourgain-Delbaen construction. Note that such space
(if exists) would be the first example of an Asplund space
without smooth bump functions (Based on a work of
Deville-Godefroy and Zizler)



Some constructions of non-separable L∞ spaces

Open problems

Problem 3

Is there a non-separable L∞-space with the Schur, the RNP
and not having nice renorming?

Hint: Use our approach to build non-trivial L∞ spaces together
with the Bourgain-Pisier construction.



Some constructions of non-separable L∞ spaces

Open problems

Problem 3

Is there a non-separable L∞-space with the Schur, the RNP
and not having nice renorming?

Hint: Use our approach to build non-trivial L∞ spaces together
with the Bourgain-Pisier construction.


	Introduction
	New spaces
	Open problems

