Some constructions of non-separable \mathcal{L}_∞ spaces

J. Lopez-Abad

Instituto de Ciencias Matemáticas CSIC

April 2010

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 = のへで

The aim of this talk is to present some recent constructions of *"non-trivial"* non-separable \mathcal{L}_{∞} -spaces, and discuss about future perspectives.

Definition

Recall that a Banach space space X is called $\mathcal{L}_{\infty,\lambda}$ (for $\lambda > 1$) if for every finite dimensional subspace F of X there is some subspace G of X containing F and such that $d(G, \ell_{\infty}^{\dim G}) \leq \lambda$.

Typical examples of \mathcal{L}_{∞} spaces are c_0 and C(K). Not so well known example is the *Gurarij* space \mathfrak{G} , characterized isometrically by the following properties:

くして 山田 (山田) (山) (山)

Definition

Recall that a Banach space space *X* is called $\mathcal{L}_{\infty,\lambda}$ (for $\lambda > 1$) if for every finite dimensional subspace *F* of *X* there is some subspace *G* of *X* containing *F* and such that $d(G, \ell_{\infty}^{\dim G}) \leq \lambda$.

Typical examples of \mathcal{L}_{∞} spaces are c_0 and $\mathcal{C}(K)$. Not so well known example is the *Gurarij* space \mathfrak{G} , characterized isometrically by the following properties:

Definition

Recall that a Banach space space *X* is called $\mathcal{L}_{\infty,\lambda}$ (for $\lambda > 1$) if for every finite dimensional subspace *F* of *X* there is some subspace *G* of *X* containing *F* and such that $d(G, \ell_{\infty}^{\dim G}) \leq \lambda$.

Typical examples of \mathcal{L}_{∞} spaces are c_0 and C(K). Not so well known example is the *Gurarij* space \mathfrak{G} , characterized isometrically by the following properties:

・ロット 白マ ト 山田 マ ト 山田 うくの

Definition

Recall that a Banach space space *X* is called $\mathcal{L}_{\infty,\lambda}$ (for $\lambda > 1$) if for every finite dimensional subspace *F* of *X* there is some subspace *G* of *X* containing *F* and such that $d(G, \ell_{\infty}^{\dim G}) \leq \lambda$.

Typical examples of \mathcal{L}_{∞} spaces are c_0 and C(K). Not so well known example is the *Gurarij* space \mathfrak{G} , characterized isometrically by the following properties:

\mathfrak{G} is separable and for every $\varepsilon > 0$, every pair $F \subseteq G$ of f.d. spaces and isometry $T : F \to \mathfrak{G}$ there is $U : G \to \mathfrak{G}$ such that $U \upharpoonright F = T$ and $(1 - \varepsilon) \|x\| \le \|U(x)\| \le (1 + \varepsilon) \|x\|$.

Note that the Gurarij space is universal (almost-isometrically) for separable Banach spaces.

Each of the examples mentioned above contain copies of c_0 , but this is not always the case.

 \mathfrak{G} is separable and for every $\varepsilon > 0$, every pair $F \subseteq G$ of f.d. spaces and isometry $T : F \to \mathfrak{G}$ there is $U : G \to \mathfrak{G}$ such that $U \upharpoonright F = T$ and $(1 - \varepsilon) \|x\| \le \|U(x)\| \le (1 + \varepsilon) \|x\|$.

Note that the Gurarij space is universal (almost-isometrically) for separable Banach spaces.

Each of the examples mentioned above contain copies of c_0 , but this is not always the case.

 \mathfrak{G} is separable and for every $\varepsilon > 0$, every pair $F \subseteq G$ of f.d. spaces and isometry $T : F \to \mathfrak{G}$ there is $U : G \to \mathfrak{G}$ such that $U \upharpoonright F = T$ and $(1 - \varepsilon) \|x\| \le \|U(x)\| \le (1 + \varepsilon) \|x\|$.

Note that the Gurarij space is universal (almost-isometrically) for separable Banach spaces.

Each of the examples mentioned above contain copies of c_0 , but this is not always the case.

 \mathfrak{G} is separable and for every $\varepsilon > 0$, every pair $F \subseteq G$ of f.d. spaces and isometry $T : F \to \mathfrak{G}$ there is $U : G \to \mathfrak{G}$ such that $U \upharpoonright F = T$ and $(1 - \varepsilon) \|x\| \le \|U(x)\| \le (1 + \varepsilon) \|x\|$.

Note that the Gurarij space is universal (almost-isometrically) for separable Banach spaces.

Each of the examples mentioned above contain copies of c_0 , but this is not always the case.

By "non-trivial" we mean:

- In the separable structure:Not containing *c*₀,having the RNP, having the RNP and being Asplund space.
- In the non-separable structure:Not having nice renorming (as for example, a renorming with the Mazur intersection property (MIP)), or not having uncountable biorthogonal sequences.

By "non-trivial" we mean:

- In the separable structure:Not containing *c*₀,having the RNP, having the RNP and being Asplund space.
- In the non-separable structure:Not having nice renorming (as for example, a renorming with the Mazur intersection property (MIP)), or not having uncountable biorthogonal sequences.

- Introduction

By "non-trivial" we mean:

- In the separable structure:Not containing c₀, having the RNP, having the RNP and being Asplund space.
- In the non-separable structure:Not having nice renorming (as for example, a renorming with the Mazur intersection property (MIP)), or not having uncountable biorthogonal sequences.
- Note that for the second kind of properties, some additional set-theoretical axioms are needed.

- Introduction

By "non-trivial" we mean:

- In the separable structure:Not containing *c*₀,having the RNP, having the RNP and being Asplund space.
- In the non-separable structure:Not having nice renorming (as for example, a renorming with the Mazur intersection property (MIP)), or not having uncountable biorthogonal sequences.

- Introduction

By "non-trivial" we mean:

- In the separable structure:Not containing *c*₀,having the RNP, having the RNP and being Asplund space.
- In the non-separable structure:Not having nice renorming (as for example, a renorming with the Mazur intersection property (MIP)), or not having uncountable biorthogonal sequences.

- Introduction

By "non-trivial" we mean:

- In the separable structure:Not containing *c*₀,having the RNP, having the RNP and being Asplund space.
- In the non-separable structure:Not having nice renorming (as for example, a renorming with the Mazur intersection property (MIP)), or not having uncountable biorthogonal sequences.

- Introduction

By "non-trivial" we mean:

- In the separable structure:Not containing *c*₀,having the RNP, having the RNP and being Asplund space.
- In the non-separable structure:Not having nice renorming (as for example, a renorming with the Mazur intersection property (MIP)), or not having uncountable biorthogonal sequences.

- Introduction

By "non-trivial" we mean:

- In the separable structure:Not containing *c*₀,having the RNP, having the RNP and being Asplund space.
- In the non-separable structure:Not having nice renorming (as for example, a renorming with the Mazur intersection property (MIP)), or not having uncountable biorthogonal sequences.

The construction of Bourgain-Delbaen

Theorem (1980)

There is a separable Asplund \mathcal{L}_∞ space with the RNP and reflexively saturated.

Theorem (1980)

There is a separable \mathcal{L}_∞ space with the RNP and the Schur property.

Both examples are the result of a parametrized construction of a direct limit of a direct (indeed linear) system of ℓ_{∞}^{n} 's and isomorphism between them. The key is to take into account the natural projections between $\ell_{\infty}^{m} \subseteq \ell_{\infty}^{n}$.

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

The construction of Bourgain-Delbaen

Theorem (1980)

There is a separable Asplund \mathcal{L}_{∞} space with the RNP and reflexively saturated.

Theorem (1980)

There is a separable \mathcal{L}_∞ space with the RNP and the Schur property.

Both examples are the result of a parametrized construction of a direct limit of a direct (indeed linear) system of ℓ_{∞}^{n} 's and isomorphism between them. The key is to take into account the natural projections between $\ell_{\infty}^{m} \subseteq \ell_{\infty}^{n}$.

The construction of Bourgain-Delbaen

Theorem (1980)

There is a separable Asplund \mathcal{L}_{∞} space with the RNP and reflexively saturated.

Theorem (1980)

There is a separable \mathcal{L}_∞ space with the RNP and the Schur property.

Both examples are the result of a parametrized construction of a direct limit of a direct (indeed linear) system of ℓ_{∞}^{n} 's and isomorphism between them. The key is to take into account the natural projections between $\ell_{\infty}^{m} \subseteq \ell_{\infty}^{n}$.

The construction of Bourgain-Delbaen

Theorem (1980)

There is a separable Asplund \mathcal{L}_{∞} space with the RNP and reflexively saturated.

Theorem (1980)

There is a separable \mathcal{L}_∞ space with the RNP and the Schur property.

Both examples are the result of a parametrized construction of a direct limit of a direct (indeed linear) system of ℓ_{∞}^{n} 's and isomorphism between them. The key is to take into account the natural projections between $\ell_{\infty}^{m} \subseteq \ell_{\infty}^{n}$.

The construction of Bourgain-Pisier

The last Bourgain-Delbaen construction was extended by the following result.

Theorem (1983)

So in

particular, the space Y is ℓ_1 -saturated.

The construction of Bourgain-Pisier

The last Bourgain-Delbaen construction was extended by the following result.

Theorem (1983)

For every separable Banach space X and every $\lambda > 1$ there is a separable $\mathcal{L}_{\infty,\lambda}$ -space Y such that $X \subseteq Y$ and such that Y/Xhas both the Schur and the Radon Nikodym property. So in particular, the space Y is ($_1$ -saturated.

The construction of Bourgain-Pisier

The last Bourgain-Delbaen construction was extended by the following result.

Theorem (1983)

For every separable Banach space X and every $\lambda > 1$ there is a separable $\mathcal{L}_{\infty,\lambda}$ -space Y such that $X \subseteq Y$ and such that Y/Xhas both the Schur and the Radon Nikodym property. So in particular, the space Y is ℓ_1 -saturated.

The construction of Bourgain-Pisier

The last Bourgain-Delbaen construction was extended by the following result.

Theorem (1983)

For every separable Banach space X and every $\lambda > 1$ there is a separable $\mathcal{L}_{\infty,\lambda}$ -space Y such that $X \subseteq Y$ and such that Y/Xhas both the Schur and the Radon Nikodym property. So in particular, the space Y is ℓ_1 -saturated.

Kunen and Shelah spaces

- 1 C(K) is non-separable and Asplund (i.e. K is non-metrizable and scattered).
- 2 $(C(K), w)^n$ is hereditarily Lindelöf (HL) for every integer *n*. Consequently, C(K) cannot be renormed to have the MIP. This space is built with the extra help of the Continuum Hypothesis.

Kunen and Shelah spaces

- 1 C(K) is non-separable and Asplund (i.e. K is non-metrizable and scattered).
- (C(K), w)ⁿ is hereditarily Lindelöf (HL) for every integer n.
 Consequently, C(K) cannot be renormed to have the MIP.
 This space is built with the extra help of the Continuum Hypothesis.

Kunen and Shelah spaces

- 1 C(K) is non-separable and Asplund (i.e. K is non-metrizable and scattered).
- (C(K), w)ⁿ is hereditarily Lindelöf (HL) for every integer n. Consequently, C(K) cannot be renormed to have the MIP. This space is built with the extra help of the Continuum Hypothesis.

Kunen and Shelah spaces

- 1 C(K) is non-separable and Asplund (i.e. K is non-metrizable and scattered).
- (C(K), w)ⁿ is hereditarily Lindelöf (HL) for every integer n.
 Consequently, C(K) cannot be renormed to have the MIP.
 This space is built with the extra help of the Continuum Hypothesis.

Kunen and Shelah spaces

Shelah space S has the following properties:

- 1 S is non-separable, and Gurarij (hence, a $\mathcal{L}_{\infty,1+}$ -space)
- 2 $(S, w)^n$ is HL for every integer *n*.
- *S* is given from the set-theoretical axiom called diamond (which is stronger than the continuum hypothesis)

Kunen and Shelah spaces

Shelah space *S* has the following properties:

- **1** *S* is non-separable, and Gurarij (hence, a $\mathcal{L}_{\infty,1+}$ -space)
- 2 $(S, w)^n$ is HL for every integer *n*.

S is given from the set-theoretical axiom called diamond (which is stronger than the continuum hypothesis)

Kunen and Shelah spaces

Shelah space *S* has the following properties:

- **1** *S* is non-separable, and Gurarij (hence, a $\mathcal{L}_{\infty,1+}$ -space)
- 2 $(S, w)^n$ is HL for every integer *n*.

S is given from the set-theoretical axiom called diamond (which is stronger than the continuum hypothesis)

Kunen and Shelah spaces

Shelah space *S* has the following properties:

- **1** *S* is non-separable, and Gurarij (hence, a $\mathcal{L}_{\infty,1+}$ -space)
- 2 $(S, w)^n$ is HL for every integer *n*.

S is given from the set-theoretical axiom called diamond (which is stronger than the continuum hypothesis)

Theorem (LA-Todorcevic 2010)

1 There are $X \subseteq Y$ non-separable such that:

1 *X* is Asplund and c_0 -sat., *Y* is Gurarij and $Y/\mathfrak{G} \equiv X$. 2 Both $(X, w)^n$ and $(Y, w)^n$ are HL for every integer n. 3 Both X and Y have no supported sets.

- 2 A pair X and Y related as above such that X have uncountable fundamental ε-biorthogonal sequences for every ε > 0 but no uncountable biorthogonal sequences.
- 3 A non-separable space X with uncountable ε-Schauder basic sequences for every ε > 0 but no uncountable monotone basic sequences.

- 1 There are $X \subseteq Y$ non-separable such that:
 - X is Asplund and c₀-sat., Y is Gurarij and Y/𝔅 ≡ X.
 Both (X, w)ⁿ and (Y, w)ⁿ are HL for every integer n.
 Both X and Y have no supported sets.
- 2 A pair X and Y related as above such that X have uncountable fundamental ε-biorthogonal sequences for every ε > 0 but no uncountable biorthogonal sequences.
- 3 A non-separable space X with uncountable ε-Schauder basic sequences for every ε > 0 but no uncountable monotone basic sequences.

- 1 There are $X \subseteq Y$ non-separable such that:
 - 1 *X* is Asplund and c_0 -sat., *Y* is Gurarij and $Y/\mathfrak{G} \equiv X$.
 - 2 Both $(X, w)^n$ and $(Y, w)^n$ are HL for every integer n.
 - 3 Both X and Y have no supported sets.
- 2 A pair X and Y related as above such that X have uncountable fundamental ε-biorthogonal sequences for every ε > 0 but no uncountable biorthogonal sequences.
- 3 A non-separable space X with uncountable ε-Schauder basic sequences for every ε > 0 but no uncountable monotone basic sequences.

- 1 There are $X \subseteq Y$ non-separable such that:
 - 1 *X* is Asplund and c_0 -sat., *Y* is Gurarij and $Y/\mathfrak{G} \equiv X$.
 - 2 Both $(X, w)^n$ and $(Y, w)^n$ are HL for every integer n.
 - 3 Both X and Y have no supported sets.
- 2 A pair X and Y related as above such that X have uncountable fundamental ε-biorthogonal sequences for every ε > 0 but no uncountable biorthogonal sequences.
- 3 A non-separable space X with uncountable ε-Schauder basic sequences for every ε > 0 but no uncountable monotone basic sequences.

- 1 There are $X \subseteq Y$ non-separable such that:
 - 1 *X* is Asplund and c_0 -sat., *Y* is Gurarij and $Y/\mathfrak{G} \equiv X$.
 - 2 Both $(X, w)^n$ and $(Y, w)^n$ are HL for every integer n.
 - 3 Both X and Y have no supported sets.
- 2 A pair X and Y related as above such that X have uncountable fundamental ε-biorthogonal sequences for every ε > 0 but no uncountable biorthogonal sequences.
- 3 A non-separable space X with uncountable ε-Schauder basic sequences for every ε > 0 but no uncountable monotone basic sequences.

4 All of the spaces above have few operators.

5 A non-metrizable Poulsen simplex and a non-metrizable Bauer simplex such that the corresponding space of probability measures is hereditarily separable in all finite powers.

Sac

All these examples are built in a unified way, and they are consequence of the diamond principle.

- 4 All of the spaces above have few operators.
- 5 A non-metrizable Poulsen simplex and a non-metrizable Bauer simplex such that the corresponding space of probability measures is hereditarily separable in all finite powers.

All these examples are built in a unified way, and they are consequence of the diamond principle.

- 4 All of the spaces above have few operators.
- 5 A non-metrizable Poulsen simplex and a non-metrizable Bauer simplex such that the corresponding space of probability measures is hereditarily separable in all finite powers.

All these examples are built in a unified way, and they are consequence of the diamond principle.

Theorem

For every non-separable Banach space X of density \aleph_1 there is a $Y \supseteq X$ such that Y/X has both the Schur and the RNP.

Ingredients of the proof:

- Follow the Bourgain-Pisier construction.
- 2 Now step-up the B-P construction to ℵ₁ by using the following combinatorial property of ℵ₁:

・ロト ・ (目 ト ・ 三 ト ・ 日 ト - 三 三 -

Dac

Theorem

For every non-separable Banach space X of density \aleph_1 there is a $Y \supseteq X$ such that Y/X has both the Schur and the RNP.

Ingredients of the proof:

- Follow the Bourgain-Pisier construction.
- 2 Now step-up the B-P construction to ℵ₁ by using the following combinatorial property of ℵ₁:

-New spaces

Theorem

For every non-separable Banach space X of density \aleph_1 there is a $Y \supseteq X$ such that Y/X has both the Schur and the RNP.

Ingredients of the proof:

- 1 Follow the Bourgain-Pisier construction.
- 2 Now step-up the B-P construction to ℵ₁ by using the following combinatorial property of ℵ₁:

Theorem

For every non-separable Banach space X of density \aleph_1 there is a $Y \supseteq X$ such that Y/X has both the Schur and the RNP.

Ingredients of the proof:

- 1 Follow the Bourgain-Pisier construction.
- 2 Now step-up the B-P construction to ℵ₁ by using the following combinatorial property of ℵ₁:

Inductive family

There is a family \mathcal{F} consisting on finite subsets of ω_1 such that:

- 1 \mathcal{F} is cofinal (i.e. for every $s \subseteq \omega_1$ finite there is $t \in \mathcal{F}$ such that $s \subseteq t$).
- 2 For every $s \in \mathcal{F}$ there is a total ordering \preceq_s on $\mathcal{F} \upharpoonright s := \{t \in \mathcal{F} : t \subseteq s\}$ such that
 - 1 \leq_s extends the inclusion.
 - 2 If $t \subseteq s$ are both in \mathcal{F} , then $\preceq_s \upharpoonright (\mathcal{F} \upharpoonright t) = \preceq_t$.

うせん 一部 二人間を入却す 人間を入りす

New spaces

Inductive family

There is a family \mathcal{F} consisting on finite subsets of ω_1 such that:

- 1 \mathcal{F} is cofinal (i.e. for every $s \subseteq \omega_1$ finite there is $t \in \mathcal{F}$ such that $s \subseteq t$).
- 2 For every $s \in \mathcal{F}$ there is a total ordering \preceq_s on $\mathcal{F} \upharpoonright s := \{t \in \mathcal{F} : t \subseteq s\}$ such that
 - 1 \leq_s extends the inclusion.
 - 2 If $t \subseteq s$ are both in \mathcal{F} , then $\preceq_s \upharpoonright (\mathcal{F} \upharpoonright t) = \preceq_t$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

```
Inductive family
There is a family F consisting on finite subsets of ω<sub>1</sub> such that:
1 F is cofinal (i.e. for every s ⊆ ω<sub>1</sub> finite there is t ∈ F such that s ⊆ t).
2 For every s ∈ F there is a total ordering ≺<sub>s</sub> on F ↾ s := {t ∈ F : t ⊆ s} such that
1 ∠<sub>s</sub> extends the inclusion.
2 If t ⊂ s are both in F, then ≺<sub>s</sub> ↾ (F ↾ t) = ≺<sub>s</sub>.
```

◆ロ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ◆ ○ ◆ ○ ◆

Inductive family There is a family *F* consisting on finite subsets of ω₁ such that: 1 *F* is cofinal (i.e. for every *s* ⊆ ω₁ finite there is *t* ∈ *F* such that *s* ⊆ *t*). 2 For every *s* ∈ *F* there is a total ordering *≤s* on *F* ↾ *s* := {*t* ∈ *F* : *t* ⊆ *s*} such that 1 *≤s* extends the inclusion. 2 If *t* ⊆ *s* are both in *F*, then *≤s* ↾ (*F* ↾ *t*) = *≤t*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Inductive family

There is a family \mathcal{F} consisting on finite subsets of ω_1 such that:

- 1 \mathcal{F} is cofinal (i.e. for every $s \subseteq \omega_1$ finite there is $t \in \mathcal{F}$ such that $s \subseteq t$).
- 2 For every $s \in \mathcal{F}$ there is a total ordering \preceq_s on $\mathcal{F} \upharpoonright s := \{t \in \mathcal{F} : t \subseteq s\}$ such that
 - 1 \leq_s extends the inclusion.
 - 2 If $t \subseteq s$ are both in \mathcal{F} , then $\preceq_s \upharpoonright (\mathcal{F} \upharpoonright t) = \preceq_t$.

Open problems

Problem 1

Is there a non-separable Asplund \mathcal{L}_{∞} -space with the RNP?

Hint: use the existence of such families in \aleph_1 to step-up now the Bourgain-Delbaen construction.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Open problems

Problem 1

Is there a non-separable Asplund \mathcal{L}_{∞} -space with the RNP?

Hint: use the existence of such families in \aleph_1 to step-up now the Bourgain-Delbaen construction.

- Open problems

Problem 2

Is there a non-separable Asplund $\mathcal{L}_\infty\text{-space}$ with the RNP and without nice renorming?

Hint: Use our approach to build non-trivial \mathcal{L}_{∞} spaces together with the Bourgain-Delbaen construction. Note that such space (if exists) would be the first example of an Asplund space without smooth bump functions (Based on a work of Deville-Godefroy and Zizler)

- Open problems

Problem 2

Is there a non-separable Asplund $\mathcal{L}_\infty\text{-space}$ with the RNP and without nice renorming?

Hint: Use our approach to build non-trivial \mathcal{L}_{∞} spaces together with the Bourgain-Delbaen construction. Note that such space (if exists) would be the first example of an Asplund space without smooth bump functions (Based on a work of Deville-Godefroy and Zizler)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Open problems

Problem 2

Is there a non-separable Asplund $\mathcal{L}_\infty\text{-space}$ with the RNP and without nice renorming?

Hint: Use our approach to build non-trivial \mathcal{L}_∞ spaces together with the Bourgain-Delbaen construction. Note that such space (if exists) would be the first example of an Asplund space without smooth bump functions (Based on a work of Deville-Godefroy and Zizler)

Open problems

Problem 3

Is there a non-separable $\mathcal{L}_\infty\text{-space}$ with the Schur, the RNP and not having nice renorming?

Hint: Use our approach to build non-trivial \mathcal{L}_{∞} spaces together with the Bourgain-Pisier construction.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Open problems

Problem 3

Is there a non-separable $\mathcal{L}_\infty\text{-space}$ with the Schur, the RNP and not having nice renorming?

Hint: Use our approach to build non-trivial \mathcal{L}_∞ spaces together with the Bourgain-Pisier construction.