Miembros del grupo de Investigación

Juán Manuel Delgado Sánchez Begoña Marchena González Cándido Piñeiro Gómez Enrique Serrano Aguilar

イロト イポト イヨト イヨト

ъ

Miembros del grupo de Investigación

Juán Manuel Delgado Sánchez Begoña Marchena González Cándido Piñeiro Gómez Enrique Serrano Aguilar

Tesis Doctorales dirigidas

- Begoña Marchena González (1999): Subconjuntos del rango de una medida vectorial
- J. M. Delgado Sánchez (2002): Conjuntos uniformemente sumantes de operadores
- E. Serrano Aguilar (2005): Conjuntos equicompactos de operadores definidos en espacios de Banach

・ロト ・四ト ・ヨト ・ヨト

Líneas de investigación

- Rango de una medida vectorial
- Teoría de operadores en espacios de Banach: operadores p-sumantes, compactos, p-compactos, etc.
- Propiedad de aproximación de orden p

イロト イポト イヨト イヨト

p-Compact Operators

J. M. Delgado C. Piñeiro E. Serrano

Department of Mathematics University of Huelva

イロト 不得 とくほと くほとう

E 900

J. M. Delgado, C. Piñeiro, E. Serrano *p*-compact operators

2 p-Compact sets and p-compact operators

3 Relationship with *p*-summing operators

イロト イポト イヨト イヨト

ъ

p-Compact sets and p-compact operators

3 Relationship with *p*-summing operators

J. M. Delgado, C. Piñeiro, E. Serrano *p*-compact operators

(日) (四) (日) (日) (日)

ъ

D. P. Sinha, A. K. Karn, "Compact operators whose adjoints factor through subspaces of ℓ_p ", Studia Math. 150 (2002), no. 1, 17–33.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

D. P. Sinha, A. K. Karn, "*Compact operators whose adjoints factor through subspaces of* ℓ_p ", Studia Math. 150 (2002), no. 1, 17–33.

Theorem [Grothendieck]

Let *X* be a Banach space. $K \subset X$ is relatively compact iff there exists $(x_n) \in c_0(X)$ such that

$$A \subset \overline{co}(x_n)$$

ヘロン 人間 とくほ とくほ とう

= 990

D. P. Sinha, A. K. Karn, "*Compact operators whose adjoints factor through subspaces of* ℓ_p ", Studia Math. 150 (2002), no. 1, 17–33.

Theorem [Grothendieck]

Let X be a Banach space. $K \subset X$ is relatively compact iff there exists $(x_n) \in c_0(X)$ such that

 $A \subset \overline{co}(x_n)$

Definition [D. P. Sinha and A. K. Karn, 2002]

Let $p \ge 1$ and 1/p + 1/p' = 1. A set $K \subset X$ is relatively *p*-compact if there exists $(x_n) \in \ell_p(X)$ such that $K \subset p$ -co $(x_n) := \left\{ \sum_n a_n x_n : (a_n) \in B_{\ell_{p'}} \right\}.$

<ロ> (四) (四) (三) (三) (三)

Definition [D. P. Sinha and A. K. Karn, 2002]

An operator $T \in \mathcal{L}(X, Y)$ is *p*-compact if $T(B_X)$ is relatively *p*-compact, i.e., there exists $(y_n) \in \ell_p(Y)$ such that $T(B_X) \subset p$ -co (y_n) . $\mathcal{K}_p(X, Y) = \{T \in \mathcal{L}(X, Y): T \text{ is } p\text{-compact}\}$

Definition [D. P. Sinha and A. K. Karn, 2002]

An operator $T \in \mathcal{L}(X, Y)$ is *p*-compact if $T(B_X)$ is relatively *p*-compact, i.e., there exists $(y_n) \in \ell_p(Y)$ such that $T(B_X) \subset p$ -co (y_n) . $\mathcal{K}_p(X, Y) = \{T \in \mathcal{L}(X, Y): T \text{ is } p\text{-compact}\}$

Definition

A Banach space X has the approximation property if the identity map I_X can be approximated uniformly on every compact subset of X by finite rank operators.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- *p*-compact operators defined on same classes of Banach spaces: Hilbert spaces, function spaces,etc.
- Relationship with other operator ideals
- The *p*-approximation property of Sinha y Karn

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

P-Compact sets and p-compact operators

3 Relationship with *p*-summing operators

J. M. Delgado, C. Piñeiro, E. Serrano *p*-compact operators

イロン イロン イヨン イヨン

ъ

Definition

If \mathcal{L} denotes the class of all bounded operators between Banach spaces, we recall that a subclass \mathcal{A} is called an operator ideal if the components $\mathcal{A}(X, Y) = \mathcal{A} \cap \mathcal{L}(X, Y)$ satisfy (for all Banach spaces X and Y):

• $\mathcal{A}(X, Y)$ is a vector subspace of $\mathcal{L}(X, Y)$

•
$$\mathcal{F}(X, Y) \subset \mathcal{A}(X, Y)$$

• $S \circ T \circ R$ belongs to $\mathcal{A}(X, W)$, whenever $S \in \mathcal{L}(Z, W)$, $R \in \mathcal{L}(X, Y)$ and $T \in \mathcal{A}(Y, Z)$

Definition

If \mathcal{L} denotes the class of all bounded operators between Banach spaces, we recall that a subclass \mathcal{A} is called an operator ideal if the components $\mathcal{A}(X, Y) = \mathcal{A} \cap \mathcal{L}(X, Y)$ satisfy (for all Banach spaces X and Y):

• $\mathcal{A}(X, Y)$ is a vector subspace of $\mathcal{L}(X, Y)$

•
$$\mathcal{F}(X, Y) \subset \mathcal{A}(X, Y)$$

• $S \circ T \circ R$ belongs to $\mathcal{A}(X, W)$, whenever $S \in \mathcal{L}(Z, W)$, $R \in \mathcal{L}(X, Y)$ and $T \in \mathcal{A}(Y, Z)$

Definition

If \mathcal{A} is an operator ideal, \mathcal{A}^d is the dual operator ideal defined by

$$\mathcal{A}^{d}(X,Y) = \{T \in \mathcal{L}(X,Y) : T^{*} \in \mathcal{A}(Y^{*},X^{*})\}$$

Definition [D. P. Sinha and A. K. Karn, 2002]

An operator $T \in \mathcal{L}(X, Y)$ is *p*-compact if $T(B_X)$ is relatively *p*-compact, i.e., there exists $(y_n) \in \ell_p(Y)$ such that $T(B_X) \subset p$ -co (y_n) . $\mathcal{K}_p(X, Y) = \{T \in \mathcal{L}(X, Y): T \text{ is } p\text{-compact}\}$

- If $1 \le p \le q \le \infty$, $\mathcal{K}_{p}(X, Y) \subset \mathcal{K}_{q}(X, Y)$.
- \mathcal{K}_p is an operator ideal.

Definition [D. P. Sinha and A. K. Karn, 2002]

An operator $T \in \mathcal{L}(X, Y)$ is *p*-compact if $T(B_X)$ is relatively *p*-compact, i.e., there exists $(y_n) \in \ell_p(Y)$ such that $T(B_X) \subset p$ -co (y_n) . $\mathcal{K}_p(X, Y) = \{T \in \mathcal{L}(X, Y): T \text{ is } p\text{-compact}\}$

• If
$$1 \le p \le q \le \infty$$
, $\mathcal{K}_p(X, Y) \subset \mathcal{K}_q(X, Y)$.

• \mathcal{K}_p is an operator ideal.

Proposition [D. P. Sinha and A. K. Karn, 2002]

Let $p \ge 1$. Then:

Definition

An operator $T \in \mathcal{L}(X, Y)$ is *p*-nuclear if it admits a representation of the form $T = \sum_n x_n^* \otimes y_n$, where $(y_n) \in \ell_{p'}^w(Y)$ and $(x_n^*) \in \ell_p(X^*)$.

Definition

An operator $T \in \mathcal{L}(X, Y)$ is *p*-summing if it maps *p*-weakly summable sequences to absolutely *p*-summable sequences.

<ロ> (四) (四) (三) (三) (三)

Definition

An operator $T \in \mathcal{L}(X, Y)$ is said to be quasi *p*-nuclear $(T \in \mathcal{QN}_p(X, Y))$ if there exists $(x_n^*) \in \ell_p(X^*)$ such that $||Tx|| \leq (\sum_n |\langle x_n^*, x \rangle|^p)^{1/p}, \quad \forall x \in X.$

J. M. Delgado, C. Piñeiro, E. Serrano *p*-compact operators

Definition

An operator $T \in \mathcal{L}(X, Y)$ is said to be quasi *p*-nuclear $(T \in \mathcal{QN}_p(X, Y))$ if there exists $(x_n^*) \in \ell_p(X^*)$ such that $||Tx|| \leq (\sum_n |\langle x_n^*, x \rangle|^p)^{1/p}, \quad \forall x \in X.$

Proposition [J. M. Delgado, C. Piñeiro, E. Serrano]

• $T(B_X) \subset p$ -co $(y_n) \Leftrightarrow ||T^*y^*|| \le (\sum_n |\langle y_n, y^* \rangle|^p)^{1/p}, \forall y^* \in Y^*$.

Definition

An operator $T \in \mathcal{L}(X, Y)$ is said to be quasi *p*-nuclear $(T \in \mathcal{QN}_p(X, Y))$ if there exists $(x_n^*) \in \ell_p(X^*)$ such that $||Tx|| \leq (\sum_n |\langle x_n^*, x \rangle|^p)^{1/p}, \quad \forall x \in X.$

Proposition [J. M. Delgado, C. Piñeiro, E. Serrano]

• $T(B_X) \subset p$ -co $(y_n) \Leftrightarrow ||T^*y^*|| \le (\sum_n |\langle y_n, y^* \rangle|^p)^{1/p}, \forall y^* \in Y^*$.

Corollary

• If
$$T \in \mathcal{K}_p(X, Y)$$
 then $T^* \in \mathcal{QN}_p(Y^*, X^*)$. $[\mathcal{K}_p \subset \mathcal{QN}_p^d]$

Definition

An operator $T \in \mathcal{L}(X, Y)$ is said to be quasi *p*-nuclear $(T \in \mathcal{QN}_p(X, Y))$ if there exists $(x_n^*) \in \ell_p(X^*)$ such that $\|Tx\| \leq (\sum_n |\langle x_n^*, x \rangle|^p)^{1/p}, \quad \forall x \in X.$

Proposition [J. M. Delgado, C. Piñeiro, E. Serrano]

$$T(B_X) \subset p\text{-co}(y_n) \Leftrightarrow ||T^*y^*|| \leq (\sum_n |\langle y_n, y^* \rangle|^p)^{1/p}, \forall y^* \in Y^*.$$

$$T^*(B_{Y^*}) \subset p\text{-co}(x_n^*) \Leftrightarrow ||Tx|| \leq (\sum_n |\langle x_n^*, x \rangle|^p)^{1/p}, \forall x \in X.$$

Corollary

• If
$$T \in \mathcal{K}_p(X, Y)$$
 then $T^* \in \mathcal{QN}_p(Y^*, X^*)$. $[\mathcal{K}_p \subset \mathcal{QN}_p^d]$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Definition

An operator $T \in \mathcal{L}(X, Y)$ is said to be quasi *p*-nuclear $(T \in \mathcal{QN}_p(X, Y))$ if there exists $(x_n^*) \in \ell_p(X^*)$ such that $\|Tx\| \leq (\sum_n |\langle x_n^*, x \rangle|^p)^{1/p}, \quad \forall x \in X.$

Proposition [J. M. Delgado, C. Piñeiro, E. Serrano]

•
$$T(B_X) \subset p$$
-co $(y_n) \Leftrightarrow ||T^*y^*|| \le (\sum_n |\langle y_n, y^* \rangle|^p)^{1/p}, \forall y^* \in Y^*.$
• $T^*(B_{Y^*}) \subset p$ -co $(x_n^*) \Leftrightarrow ||Tx|| \le (\sum_n |\langle x_n^*, x \rangle|^p)^{1/p}, \forall x \in X.$

Corollary

• If
$$T \in \mathcal{K}_p(X, Y)$$
 then $T^* \in \mathcal{QN}_p(Y^*, X^*)$. $[\mathcal{K}_p \subset \mathcal{QN}_p^d]$
• $T \in \mathcal{QN}_p(X, Y)$ iff $T \in \mathcal{K}_p(Y^*, X^*)$. $[\mathcal{QN}_p = \mathcal{K}_p^d]$

$$\mathcal{QN}_p^d \subset \mathcal{K}_p$$
 ?

J. M. Delgado, C. Piñeiro, E. Serrano *p*-compact operators

$$\mathcal{QN}_{p}^{d} \subset \mathcal{K}_{p}$$
 ?

$$T \in \mathcal{QN}^d_p(X,Y) \Rightarrow T^* \in \mathcal{QN}_p(Y^*,X^*) \Rightarrow T^{**} \in \mathcal{K}_p(X^{**},Y^{**}).$$

J. M. Delgado, C. Piñeiro, E. Serrano *p*-compact operators

$$\mathcal{QN}_{p}^{d} \subset \mathcal{K}_{p}$$
 ?

$$T \in \mathcal{QN}^d_p(X,Y) \Rightarrow T^* \in \mathcal{QN}_p(Y^*,X^*) \Rightarrow T^{**} \in \mathcal{K}_p(X^{**},Y^{**}).$$

$$T^{**} \circ i_X \in \mathcal{K}_p(X, Y^{**})$$

J. M. Delgado, C. Piñeiro, E. Serrano *p*-compact operators

$$\mathcal{QN}_{p}^{d} \subset \mathcal{K}_{p}$$
 ?

 $T \in \mathcal{QN}^d_p(X, Y) \Rightarrow T^* \in \mathcal{QN}_p(Y^*, X^*) \Rightarrow T^{**} \in \mathcal{K}_p(X^{**}, Y^{**}).$

$$T^{**} \circ i_X \in \mathcal{K}_p(X, Y^{**})$$

Theorem [Reinov (2001)]

Let $p \in [1, +\infty]$, $T \in \mathcal{L}(X, Y)$. If X^* enjoys the approximation property, then the *p*-nuclearity of the conjugate operator T^* implies *T* belongs to the space $\mathcal{N}^p(X, Y)$.

• We recall that $T \in \mathcal{N}^{p}(X, Y)$ if there exist sequences $(x_{n}^{*}) \in \ell_{p'}^{w}(X^{*})$ and $(y_{n}) \in \ell_{p}(Y)$ such that T admits the representation $T = \sum_{n} x_{n}^{*} \otimes y_{n}$. Note that $\mathcal{N}^{p}(X, Y) \subseteq \mathcal{K}_{p}(X, Y)$.

- We recall that $T \in \mathcal{N}^{p}(X, Y)$ if there exist sequences $(x_{n}^{*}) \in \ell_{p'}^{w}(X^{*})$ and $(y_{n}) \in \ell_{p}(Y)$ such that T admits the representation $T = \sum_{n} x_{n}^{*} \otimes y_{n}$. Note that $\mathcal{N}^{p}(X, Y) \subseteq \mathcal{K}_{p}(X, Y)$.
- The norm in this ideal will be denoted by ν^p and is defined by

$$\nu^{p}(T) = \inf \|(y_{n})\|_{p} \cdot \varepsilon_{p'}(x_{n}^{*})$$

where the infimun is taken over all possible representations in the above form of the operator T.

イロト イポト イヨト イヨト

э.

If A ⊂ X is bounded, consider the operator U : ℓ₁(A) → X defined by U(ψ_a) = ∑_{a∈A} ψ_a ⋅ a for all (ψ_a) ∈ ℓ₁(A).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- If A ⊂ X is bounded, consider the operator U : ℓ₁(A) → X defined by U(ψ_a) = ∑_{a∈A} ψ_a ⋅ a for all (ψ_a) ∈ ℓ₁(A).
- $U^*: X^* \to \ell_{\infty}(A)$ is the evaluation map defined by $U^*(x^*) = (\langle a, x^* \rangle)_{a \in A}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- If A ⊂ X is bounded, consider the operator U : ℓ₁(A) → X defined by U(ψ_a) = ∑_{a∈A}ψ_a ⋅ a for all (ψ_a) ∈ ℓ₁(A).
- $U^*: X^* \to \ell_{\infty}(A)$ is the evaluation map defined by $U^*(x^*) = (\langle a, x^* \rangle)_{a \in A}$.

Proposition

Let $p \in [1, +\infty]$ and $A \subset X$ bounded. The following statements are equivalent:

- A is relatively p-compact.
- U is p-compact.
- \bigcirc U^* is *p*-nuclear.
- U belongs to \mathcal{N}^p .

- If A ⊂ X is bounded, consider the operator U : ℓ₁(A) → X defined by U(ψ_a) = ∑_{a∈A}ψ_a ⋅ a for all (ψ_a) ∈ ℓ₁(A).
- $U^*: X^* \to \ell_{\infty}(A)$ is the evaluation map defined by $U^*(x^*) = (\langle a, x^* \rangle)_{a \in A}$.

Proposition

Let $p \in [1, +\infty]$ and $A \subset X$ bounded. The following statements are equivalent:

- A is relatively p-compact.
- U is p-compact.
- \bigcirc U^* is *p*-nuclear.
- U belongs to \mathcal{N}^p .

Proof. (1)⇔(2)

$$A \subset U(B_{\ell_1(A)}) \subset \overline{aco}(A).$$

Corollary 1

Let $p \in [1, +\infty]$ and $A \subset X$ bounded. A is relatively *p*-compact in X iff is relatively *p*-compact as a subset of X^{**} .

イロト イポト イヨト イヨト

= 990

Corollary 1

Let $p \in [1, +\infty]$ and $A \subset X$ bounded. A is relatively *p*-compact in X iff is relatively *p*-compact as a subset of X^{**} .

Corollary 2

If
$$p \in [1, +\infty]$$
, then $\mathcal{Q}N_p^d = \mathcal{K}_p$.

イロト イポト イヨト イヨト

= 990

p-Compact sets and p-compact operators

3 Relationship with *p*-summing operators

J. M. Delgado, C. Piñeiro, E. Serrano *p*-compact operators

イロト イポト イヨト イヨト

ъ

If $T \in \mathcal{K}_{p}(X, Y)$, we consider the natural norm $\kappa_{p}(T) = \inf \left(\sum_{n} \|y_{n}\|^{p} \right)^{1/p}$, where the infimun runs over all sequences $(y_{n}) \in \ell_{p}(Y)$ satisfying

$$T(B_X) \subseteq \left\{ \sum_n \alpha_n y_n : (\alpha_n) \in B_{\ell_{p'}} \right\}.$$

If $T \in \mathcal{K}_{p}(X, Y)$, we consider the natural norm $\kappa_{p}(T) = \inf \left(\sum_{n} \|y_{n}\|^{p} \right)^{1/p}$, where the infimun runs over all sequences $(y_{n}) \in \ell_{p}(Y)$ satisfying

$$T(B_X) \subseteq \left\{ \sum_n \alpha_n y_n : (\alpha_n) \in B_{\ell_{p'}} \right\}.$$

Proposition

If X and Y are Hilbert spaces, then $\mathcal{K}_2(X, Y)$ and $\mathcal{HS}(X, Y)$ are isometric

Theorem 1

Let $T \in \mathcal{L}(X, Y)$ and $p \in [1, +\infty)$. The following statements are equivalent:

- **T** is *p*-summing.
- T* maps relatively compact subsets of Y* to relatively p-compact subsets of X*.

Theorem 1

Let $T \in \mathcal{L}(X, Y)$ and $p \in [1, +\infty)$. The following statements are equivalent:

- **T** is *p*-summing.
- T* maps relatively compact subsets of Y* to relatively p-compact subsets of X*.

Proof. (1) \Rightarrow (2) If (y_n^*) is a null sequence in Y^* , we define $S: y \in Y \longrightarrow (\langle y, y_n^* \rangle) \in c_0$. Then S is ∞ -nuclear, $S \circ T$ is *p*-nuclear and

 $u_{
ho}(S \circ T) \leq
u_{\infty}(S)\pi_{
ho}(T) \leq \pi_{
ho}(T) \sup_{n} \|y_{n}^{*}\|$

Theorem 1

Let $T \in \mathcal{L}(X, Y)$ and $p \in [1, +\infty)$. The following statements are equivalent:

- **T** is *p*-summing.
- T* maps relatively compact subsets of Y* to relatively p-compact subsets of X*.

Proof. (1) \Rightarrow (2) If (y_n^*) is a null sequence in Y^* , we define $S: y \in Y \longrightarrow (\langle y, y_n^* \rangle) \in c_0$. Then *S* is ∞ -nuclear, $S \circ T$ is *p*-nuclear and

$$\begin{split} \nu_p(S \circ T) &\leq \nu_\infty(S) \pi_p(T) \leq \pi_p(T) \sup_n \|y_n^*\|\\ \text{Therefore } (S \circ T)^* \text{ belongs to } \mathcal{N}^p(\ell_1, X^*) \text{ and }\\ \nu^p((S \circ T)^*) &\leq \nu_p(S \circ T). \end{split}$$

Theorem 1

Let $T \in \mathcal{L}(X, Y)$ and $p \in [1, +\infty)$. The following statements are equivalent:

- T is p-summing.
- 2 T^* maps relatively compact subsets of Y^* to relatively *p*-compact subsets of X^* .

Proof. (1) \Rightarrow (2) If (y_n^*) is a null sequence in Y^* , we define $S: y \in Y \longrightarrow (\langle y, y_n^* \rangle) \in c_0$. Then *S* is ∞ -nuclear, $S \circ T$ is *p*-nuclear and

 $\nu_{p}(S \circ T) \leq \nu_{\infty}(S)\pi_{p}(T) \leq \pi_{p}(T) \sup_{n} ||y_{n}^{*}||$ Therefore $(S \circ T)^{*}$ belongs to $\mathcal{N}^{p}(\ell_{1}, X^{*})$ and $\nu^{p}((S \circ T)^{*}) \leq \nu_{p}(S \circ T)$. It is easy to check that $\mathcal{K}_{p}(\ell_{1}, X^{*})$ and $\mathcal{N}^{p}(\ell_{1}, X^{*})$ are isometric. Then $\kappa_{p}((S \circ T)^{*}) \leq \nu_{p}(S \circ T) \leq \pi_{p}(T) \sup_{n} ||y_{n}^{*}||$.

This proves that the linear map

$$\begin{array}{rcl} U \colon c_0(Y^*) & \longrightarrow & \mathcal{K}_p(\ell_1, X^*) \\ (y_n^*) & \longmapsto & \sum_n e_n^* \otimes T^* y_n^* \end{array}$$

is well defined and $||U|| \le \pi_p(T)$. Notice that, in particular, we have proved that the set $\{T^*y_n^* : n \in \mathbb{N}\}$ is relatively *p*-compact.

(日) (四) (日) (日) (日)

æ

This proves that the linear map $\begin{array}{cccc}
U \colon c_0(Y^*) & \longrightarrow & \mathcal{K}_p(\ell_1, X^*) \\
& (y_n^*) & \longmapsto & \sum_n e_n^* \otimes T^* y_n^* \\
\text{is well defined and } \|U\| \leq \pi_p(T). \text{ Notice that, in particular, we} \\
\text{have proved that the set } \{T^* y_n^* : n \in \mathbb{N}\} \text{ is relatively } p\text{-compact.} \\
(2) \Rightarrow (1)\end{array}$

Proposition[R. Ryan]

 $T: X \longrightarrow Y$ is *p*-summing iff there is a constant C > 0 such that for every finite dimensional subspace *E* of *X* and every finite codimensional subspace *F* of *Y*, the finite dimensional operator $q_F \circ T \circ i_E : E \longrightarrow X \longrightarrow Y \longrightarrow Y/F$ satisfies $\pi_p(q_F \circ T \circ i_E) \leq C$. Furthermore, we have $\pi_p(T) = \inf C$, where the infimum is taken over all such pairs, *E*, *F*.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem 2

Let $T \in \mathcal{L}(X, Y)$ and $p \in [1, +\infty)$. The following statements are equivalent:

- T^* is *p*-summing.
- T maps relatively compact subsets of X to relatively p-compact subsets of Y.

Theorem 2

Let $T \in \mathcal{L}(X, Y)$ and $p \in [1, +\infty)$. The following statements are equivalent:

- T^* is *p*-summing.
- T maps relatively compact subsets of X to relatively p-compact subsets of Y.

Proposition

Let $p \in [1, +\infty)$. If $S : X \to Y$ is compact and $T : Y \to Z$ has *p*-summing adjoint, then $T \circ S$ is *p*-compact and $\kappa_p(T \circ S) \le \pi_p(T^*) \cdot ||S||$.

イロト イポト イヨト イヨト 一臣

Definition [D. P. Sinha and A. K. Karn, 2002]

Let $p \ge 1$ and 1/p + 1/p' = 1. A set $K \subset X$ is *relatively weakly* p-compact if there exists $(x_n) \in \ell_p^w(X)$ such that

$$K \subset p$$
-co $(x_n) := \left\{ \sum_n a_n x_n : (a_n) \in B_{\ell_{p'}} \right\}.$

J. M. Delgado, C. Piñeiro, E. Serrano *p*-compact operators

Definition [D. P. Sinha and A. K. Karn, 2002]

Let $p \ge 1$ and 1/p + 1/p' = 1. A set $K \subset X$ is *relatively weakly* p-compact if there exists $(x_n) \in \ell_p^w(X)$ such that

$$\mathcal{K} \subset p\text{-co}(x_n) := \left\{ \sum_n a_n x_n : (a_n) \in \mathcal{B}_{\ell_{p'}} \right\}.$$

Definition [J.M.F Castillo et al]

 $A \subset X$ is said to be relatively weakly *p*-compact if each bounded sequence in *A* admits a weakly *p*-converging subsequence.

イロト イポト イヨト イヨト

Definition [D. P. Sinha and A. K. Karn, 2002]

Let $p \ge 1$ and 1/p + 1/p' = 1. A set $K \subset X$ is *relatively weakly* p-compact if there exists $(x_n) \in \ell_p^w(X)$ such that

$$\mathcal{K} \subset p ext{-co}(x_n) := \Big\{ \sum_n a_n x_n \colon (a_n) \in \mathcal{B}_{\ell_{p'}} \Big\}.$$

Definition [J.M.F Castillo et al]

 $A \subset X$ is said to be relatively weakly *p*-compact if each bounded sequence in *A* admits a weakly *p*-converging subsequence.

Definition

A sequence (x_n) is said to be weakly *p*-convergent to *x* if the sequence $(x_n - x)$ is weakly *p*-summable.

ヘロン 人間 とくほ とくほ とう

Definition [D. P. Sinha and A. K. Karn, 2002]

Let $p \ge 1$ and 1/p + 1/p' = 1. A set $K \subset X$ is *relatively weakly* p-compact if there exists $(x_n) \in \ell_p^w(X)$ such that

$$\mathcal{K} \subset p\text{-co}(x_n) := \left\{ \sum_n a_n x_n : (a_n) \in \mathcal{B}_{\ell_{p'}} \right\}.$$

Definition [J.M.F Castillo et al]

 $A \subset X$ is said to be relatively weakly *p*-compact if each bounded sequence in *A* admits a weakly *p*-converging subsequence.

Definition

A sequence (x_n) is said to be weakly *p*-convergent to *x* if the sequence $(x_n - x)$ is weakly *p*-summable.

As the unit ball of ℓ_p is weakly p'-compact, it follows that the first definition is stronger.

ъ

Definition [D. P. Sinha and A. K. Karn, 2002]

An operator $T \in \mathcal{L}(X, Y)$ is *weakly p-compact* if $T(B_X)$ is relatively weakly *p*-compact, i.e., there exists $(y_n) \in \ell_p^w(Y)$ such that $T(B_X) \subset p$ -co (y_n) .

 $\mathcal{W}_{\rho}(X, Y) = \{T \in \mathcal{L}(X, Y): T \text{ is weakly } p\text{-compact}\}$

Definition [D. P. Sinha and A. K. Karn, 2002]

An operator $T \in \mathcal{L}(X, Y)$ is *weakly p-compact* if $T(B_X)$ is relatively weakly *p*-compact, i.e., there exists $(y_n) \in \ell_p^w(Y)$ such that $T(B_X) \subset p$ -co (y_n) . $\mathcal{W}_p(X, Y) = \{T \in \mathcal{L}(X, Y): T \text{ is weakly } p\text{-compact}\}$

As usual, we denote by $\mathcal{V}(X, Y)$ the set of all completely continuous operators from X into Y. That is, they map weakly compact subsets of X to compact subsets of Y.

Definition [D. P. Sinha and A. K. Karn, 2002]

An operator $T \in \mathcal{L}(X, Y)$ is *weakly p-compact* if $T(B_X)$ is relatively weakly *p*-compact, i.e., there exists $(y_n) \in \ell_p^w(Y)$ such that $T(B_X) \subset p$ -co (y_n) . $\mathcal{W}_p(X, Y) = \{T \in \mathcal{L}(X, Y): T \text{ is weakly } p\text{-compact}\}$

As usual, we denote by $\mathcal{V}(X, Y)$ the set of all completely continuous operators from X into Y. That is, they map weakly compact subsets of X to compact subsets of Y.

Definition[D. P. Sinha and A. K. Karn, 2002]

Let $p \ge 1$. $T \in \mathcal{V}_p(X, Y)$ if it map weakly *p*-compact subsets of *X* to *p*-compacts subsets of *Y*.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definition [D. P. Sinha and A. K. Karn, 2002]

An operator $T \in \mathcal{L}(X, Y)$ is *weakly p-compact* if $T(B_X)$ is relatively weakly *p*-compact, i.e., there exists $(y_n) \in \ell_p^w(Y)$ such that $T(B_X) \subset p$ -co (y_n) . $\mathcal{W}_p(X, Y) = \{T \in \mathcal{L}(X, Y): T \text{ is weakly } p\text{-compact}\}$

As usual, we denote by $\mathcal{V}(X, Y)$ the set of all completely continuous operators from X into Y. That is, they map weakly compact subsets of X to compact subsets of Y.

Definition[D. P. Sinha and A. K. Karn, 2002]

Let $p \ge 1$. $T \in \mathcal{V}_p(X, Y)$ if it map weakly *p*-compact subsets of *X* to *p*-compacts subsets of *Y*.

It is obvious that

$$\Pi_{\rho}(X, Y) \subset \mathcal{V}_{\rho}(X, Y).$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Proposition

The inclusion $\Pi_p \subset \mathcal{V}_p$ is strict for all $p \ge 1$.

J. M. Delgado, C. Piñeiro, E. Serrano *p*-compact operators

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Proposition

The inclusion $\Pi_p \subset \mathcal{V}_p$ is strict for all $p \ge 1$.

Proposition

If Y is a \mathcal{L}_1 -space, then $\Pi_1(X, Y) = \mathcal{V}_1(X, Y)$ for every Banach space X.

Proposition

The inclusion $\Pi_p \subset \mathcal{V}_p$ is strict for all $p \ge 1$.

Proposition

If Y is a \mathcal{L}_1 -space, then $\Pi_1(X, Y) = \mathcal{V}_1(X, Y)$ for every Banach space X.

Proposition

If *Y* is a Banach space isomorphic to a Hilbert space, then $\Pi_2(X, Y) = \mathcal{V}_2(X, Y)$ for every Banach space *X*.

イロト イポト イヨト イヨト

OPEN PROBLEMS

J. M. Delgado, C. Piñeiro, E. Serrano *p*-compact operators

OPEN PROBLEMS

p-compactness in classical Banach spaces

J. M. Delgado, C. Piñeiro, E. Serrano *p*-compact operators

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

OPEN PROBLEMS

• p-compactness in classical Banach spaces

Examples

- $A \subset \ell_1$ is relatively 1-compact iff A is order bounded.
- If $A \subset \ell_p$ is relatively *p*-compact, then *A* is order bounded
- In general, the above condition is not sufficient

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

OPEN PROBLEMS

• p-compactness in classical Banach spaces

Examples

- $A \subset \ell_1$ is relatively 1-compact iff A is order bounded.
- If $A \subset \ell_p$ is relatively *p*-compact, then *A* is order bounded
- In general, the above condition is not sufficient
 - Operators mapping weakly compact sets to weakly p-compact sets