Gul'ko compacta WCG Banach spaces and their relatives WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_p -generating and fixing q₀ in nonseparable setting

COMPACTA IN BANACH SPACES

Alma L. González Correa

Supervised by: Dr. Vicente Montesinos Santalucía Dr. Marián Fabian

Universidad Politécnica de Valencia

V Encuentro de Análisis Funcional y Aplicaciones Salobreña, Abril de 2009

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_{P} -generating and fixing c₀ in nonseparable setting

Outline

Gul'ko compacta

- 2 WCG Banach spaces and their relatives
 - Some tools
 - Biorthogonal systems in WCG Banach spaces
 - Full projectional generators
- 3 A renorming result
- 4 Some remarks on Krein's theorem
- **5** Flat sets, ℓ_p -generating and fixing c_0 in nonseparable setting
 - Asymptotically *p*-flat sets
 - Innerly asymptotically *p*-flat sets
 - The general setting
 - Fixing $c_0(\Gamma)$ by operators

- 4 回 ト - 4 回 ト

$\label{eq:Guilko compacts} Guilko compacts \\ WCG Banach spaces and their relatives$ A renorming resultSome remarks on Krein's theorem $at sets, <math display="inline">\ell_{p}$ -generating and fixing co in nonseparable setting

Outline

Gul'ko compacta

- 2 WCG Banach spaces and their relatives
 - Some tools
 - Biorthogonal systems in WCG Banach spaces
 - Full projectional generators
- A renorming result
- 4 Some remarks on Krein's theorem
- 5 Flat sets, ℓ_p -generating and fixing c_0 in nonseparable setting
 - Asymptotically *p*-flat sets
 - Innerly asymptotically *p*-flat sets
 - The general setting
 - Fixing c₀(Γ) by operators

- 4 同 6 4 日 6 4 日 6

 $\label{eq:GB} \begin{array}{c} {\rm Gul'ko\ compacta}\\ {\rm WCG\ Banach\ spaces\ and\ their\ relatives}\\ {\rm A\ renorming\ result}\\ {\rm Some\ remarks\ on\ Krein\ s\ theorem}\\ {\rm Flat\ sets,\ }\ell_{P}\text{-generating\ and\ fixin\ q\ on\ nonseparable\ setting}} \end{array}$

Gul'ko compacta

$[0,1]^{\Gamma} \cap \Sigma(\Gamma) := \{f : \Gamma \to [0,1]; \ \#\{\gamma \in \Gamma; \ f(\gamma) \neq 0\} \le \aleph_0\}.$

Theorem (Sokolov)

Let $K \subset [0,1]^{\Gamma} \cap \Sigma(\Gamma)$ be a compact space. K is a Gul'ko compactum if and only if there exists $\Gamma_1, \Gamma_2, ... \subset \Gamma$ such that, $\forall \gamma \in \Gamma$, $\forall k \in K$ and $\forall \epsilon > 0, \exists m \in \mathbb{N}$ such that $\gamma \in \Gamma_m$ and $\#\{\gamma \in \Gamma_m; |k(\gamma)| \ge \epsilon\} < \infty$.

イロト イポト イヨト イヨト

 $\label{eq:GB} \begin{array}{c} {\rm Gul'ko\ compacta}\\ {\rm WCG\ Banach\ spaces\ and\ their\ relatives}\\ {\rm A\ renorming\ result}\\ {\rm Some\ remarks\ on\ Krein\ s\ theorem}\\ {\rm Flat\ sets,\ }\ell_{P}\text{-generating\ and\ fixin\ q\ on\ nonseparable\ setting}} \end{array}$

Gul'ko compacta

 $[0,1]^{\Gamma} \cap \Sigma(\Gamma) := \{f: \Gamma \to [0,1]; \ \#\{\gamma \in \Gamma; \ f(\gamma) \neq 0\} \le \aleph_0\}.$

Theorem (Sokolov)

Let $K \subset [0,1]^{\Gamma} \cap \Sigma(\Gamma)$ be a compact space. K is a Gul'ko compactum if and only if there exists $\Gamma_1, \Gamma_2, ... \subset \Gamma$ such that, $\forall \gamma \in \Gamma$, $\forall k \in K$ and $\forall \epsilon > 0, \exists m \in \mathbb{N}$ such that $\gamma \in \Gamma_m$ and $\#\{\gamma \in \Gamma_m; |k(\gamma)| \ge \epsilon\} < \infty$.

We take $\Gamma \subset \mathbb{R}$ uncountable, and $K_{\mathcal{A}} := \{\chi_{\mathcal{A}}; \ \mathcal{A} \in \mathcal{A}\} \subset \{0,1\}^{\Gamma}$, where \mathcal{A} is adequate.

(日) (同) (三) (三)

 $\label{eq:GB} \begin{array}{c} \mbox{Gulko compacta} \\ \mbox{WCG Banach spaces and their relatives} \\ \mbox{A renorming result} \\ \mbox{Some remarks on Krein's theorem} \\ \mbox{Flat sets, } \ell_{p}\mbox{-generating and fixing c_0} in nonsparable setting \\ \end{array}$

Gul'ko compacta

 $[0,1]^{\Gamma} \cap \Sigma(\Gamma) := \{f: \Gamma \to [0,1]; \ \#\{\gamma \in \Gamma; \ f(\gamma) \neq 0\} \le \aleph_0\}.$

Theorem (Sokolov)

Let $K \subset [0,1]^{\Gamma} \cap \Sigma(\Gamma)$ be a compact space. K is a Gul'ko compactum if and only if there exists $\Gamma_1, \Gamma_2, ... \subset \Gamma$ such that, $\forall \gamma \in \Gamma$, $\forall k \in K$ and $\forall \epsilon > 0, \exists m \in \mathbb{N}$ such that $\gamma \in \Gamma_m$ and $\#\{\gamma \in \Gamma_m; |k(\gamma)| \ge \epsilon\} < \infty$.

We take $\Gamma \subset \mathbb{R}$ uncountable, and $K_{\mathcal{A}} := \{\chi_{\mathcal{A}}; \ \mathcal{A} \in \mathcal{A}\} \subset \{0,1\}^{\Gamma}$, where \mathcal{A} is adequate.

Definition

A family \mathcal{A} of subsets of Γ is called adequate if:

- $\forall \gamma \in \Gamma, \{\gamma\} \in \mathcal{A},$
- given $A \in \mathcal{A}$ and $B \subset A$, then $B \in \mathcal{A}$,
- given $A \subset \Gamma$ such that $\forall F \subset A$ finite, $F \in \mathcal{A}$ then $A \in \mathcal{A}$.

 $\label{eq:Gamma} \begin{array}{c} Gul'ko \ compacta\\ WCG \ Banach \ spaces \ and \ their relatives\\ A \ renorming \ result\\ Some \ remarks \ on \ Krein's \ theorem\\ Flat \ sets, \ \ell_{p}\ -generating \ and \ fixing \ c_{0} \ in \ onseparable \ setting\\ \end{array}$

Proposition

Let $\Gamma \subset \mathbb{R}$ uncountable and \mathcal{A} an adequate family. TFAE:

(i) Every $A \in \mathcal{A}$ is closed in Γ .

-

Let $\Gamma \subset \mathbb{R}$ uncountable and \mathcal{A} an adequate family. TFAE:

- (i) Every $A \in \mathcal{A}$ is closed in Γ .
- (ii) $\forall A \in \mathcal{A} \text{ and } \forall C \subset \Gamma \text{ compact, } \#A \cap C < \aleph_0.$

(日) (同) (三) (三)

Let $\Gamma \subset \mathbb{R}$ uncountable and \mathcal{A} an adequate family. TFAE:

- (i) Every $A \in \mathcal{A}$ is closed in Γ .
- (ii) $\forall A \in \mathcal{A} \text{ and } \forall C \subset \Gamma \text{ compact, } \#A \cap C < \aleph_0.$
- (iii) The map φ : Γ → Γ_A defined by φ(γ) = {γ, *} is usco. Where Γ_A := Γ ∪ {*} being * ∉ Γ an extra element, τ_A is the topology on Γ_A given by: every γ ∈ Γ is isolated, and S(*) := {{*} ∪ Γ\A; A ∈ A} is a subbasis of *.

・ロト ・伺 ト ・ヨト ・ヨト

-

Let $\Gamma \subset \mathbb{R}$ uncountable and \mathcal{A} an adequate family. TFAE:

- (i) Every $A \in \mathcal{A}$ is closed in Γ .
- (ii) $\forall A \in \mathcal{A} \text{ and } \forall C \subset \Gamma \text{ compact, } \#A \cap C < \aleph_0.$
- (iii) The map φ : Γ → Γ_A defined by φ(γ) = {γ, *} is usco. Where Γ_A := Γ ∪ {*} being * ∉ Γ an extra element, τ_A is the topology on Γ_A given by: every γ ∈ Γ is isolated, and S(*) := {{*} ∪ Γ\A; A ∈ A} is a subbasis of *.
- (iv) If \mathcal{B} is a basis of Γ then $\forall A \in \mathcal{A}$ and $\forall \gamma \in \Gamma$, $\exists B \in \mathcal{B}$ such that $\gamma \in B$ and $\#A \cap B < \aleph_0$.

Let $\Gamma \subset \mathbb{R}$ uncountable and \mathcal{A} an adequate family. TFAE:

- (i) Every $A \in \mathcal{A}$ is closed in Γ .
- (ii) $\forall A \in \mathcal{A} \text{ and } \forall C \subset \Gamma \text{ compact, } \#A \cap C < \aleph_0.$
- (iii) The map φ : Γ → Γ_A defined by φ(γ) = {γ, *} is usco. Where Γ_A := Γ ∪ {*} being * ∉ Γ an extra element, τ_A is the topology on Γ_A given by: every γ ∈ Γ is isolated, and S(*) := {{*} ∪ Γ\A; A ∈ A} is a subbasis of *.
- (iv) If \mathcal{B} is a basis of Γ then $\forall A \in \mathcal{A}$ and $\forall \gamma \in \Gamma$, $\exists B \in \mathcal{B}$ such that $\gamma \in B$ and $\#A \cap B < \aleph_0$.

If some condition above holds, then K_A is Gul'ko compactum.

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_p -generating and fixing c_0 in nonseparable setting

Theorem

Let K be a compact space. K is a Gul'ko compactum if and only if K is paired with a \mathcal{K} -countably determined topological space.

3

くぼう くうり くうり

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_p -generating and fixing c_0 in nonseparable setting

Theorem

Let K be a compact space. K is a Gul'ko compactum if and only if K is paired with a \mathcal{K} -countably determined topological space.

Paired means that there exists a separately continuous mapping $f: \mathcal{K} \to \mathcal{K}$ that separates points of \mathcal{K} and \mathcal{K} .

Gul'ko compacta $\begin{array}{c} {\rm Gul'ko \ compacta}\\ {\rm WCG \ Banach \ spaces \ and \ their relatives}\\ {\rm A \ renorming \ result}\\ {\rm Some \ remarks \ on \ Krein's \ theorem}\\ {\rm Flat \ sets, \ }\ell_{p}\mbox{-generating \ and \ fixing \ c_0}\ in \ nonseparable \ setting \ exting \ and \ fixing \ c_0 \ in \ nonseparable \ setting \ exting \ and \ fixing \ c_0 \ in \ nonseparable \ setting \ exting \ and \ fixing \ c_0 \ in \ nonseparable \ setting \ exting \ and \ fixing \ c_0 \ in \ nonseparable \ setting \ exting \ and \ fixing \ c_0 \ in \ nonseparable \ setting \ exting \ c_0 \ c_$

Outline

Some tools Biorthogonal systems in WCG Banach space Full projectional generators

🛭 Gul'ko compacta

- 2 WCG Banach spaces and their relatives
 - Some tools
 - Biorthogonal systems in WCG Banach spaces
 - Full projectional generators

A renorming result

- 4 Some remarks on Krein's theorem
- 5 Flat sets, ℓ_p -generating and fixing c_0 in nonseparable setting
 - Asymptotically *p*-flat sets
 - Innerly asymptotically *p*-flat sets
 - The general setting
 - Fixing c₀(Γ) by operators

- 4 同 6 4 日 6 4 日 6

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_{D} -generating and fixing c₀ in nonseparable setting

Some tools

Some tools Biorthogonal systems in WCG Banach space Full projectional generators

Definition

A PRI $(P_{\alpha})_{\omega_0 \leq \alpha \leq \mu}$ is subordinated to a set $\Gamma \subset X$ if $P_{\alpha}\gamma \in \{0,\gamma\}$ $\forall \gamma \in \Gamma$ and $\forall \alpha \in [\omega_0, \mu]$.

Gul'ko compacta $\begin{array}{c} {\rm Gul'ko \ compacta}\\ {\rm WCG \ Banach \ spaces \ and \ their relatives}\\ {\rm A \ renorming \ result}\\ {\rm Some \ remarks \ on \ Krein's \ theorem}\\ {\rm Flat \ sets, \ }\ell_{p}\text{-generating \ and \ fixing \ c_0}\ in \ nonseparable \ setting \end{array}$

Some tools

Some tools Biorthogonal systems in WCG Banach space Full projectional generators

Definition

A PRI $(P_{\alpha})_{\omega_0 \leq \alpha \leq \mu}$ is subordinated to a set $\Gamma \subset X$ if $P_{\alpha}\gamma \in \{0,\gamma\}$ $\forall \gamma \in \Gamma$ and $\forall \alpha \in [\omega_0, \mu]$.

Theorem

Let X a B. s. with a full-PG, $\Gamma \subset X$ countably supporting X^{*} and $\Delta \subset X^*$ countably supporting X. Then \exists a SPRI subordinated to Γ and Δ .

Where, Γ countably supports X^* means that for all $x^* \in X^*$, $\#\{\gamma \in \Gamma; \langle \gamma, x^* \rangle\} \leq \aleph_0$.

イロン 不同 とくほう イヨン

-

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_{D} -generating and fixing c₀ in nonseparable setting

Some tools

Some tools Biorthogonal systems in WCG Banach space Full projectional generators

Definition

A set $\Gamma \subset X$ has the Amir-Lindenstrauss property if $\forall x^* \in X^*$ and $\forall c > 0$, the set $\{\gamma \in \Gamma; |\langle \gamma, x^* \rangle| > c\}$ is finite.

(日) (同) (三) (三)

-

Guilko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, $\ell_{\mathcal{D}}$ -generating and fixing q₀ in nonseparable setting

Some tools

Some tools Biorthogonal systems in WCG Banach space Full projectional generators

Definition

A set $\Gamma \subset X$ has the Amir-Lindenstrauss property if $\forall x^* \in X^*$ and $\forall c > 0$, the set $\{\gamma \in \Gamma; |\langle \gamma, x^* \rangle| > c\}$ is finite.

Remark

In a fundamental b.o.s. {x_i, f_i}_{i∈I}, {f_i}_{i∈I} countably supports X.

(日) (同) (三) (三)

Gul'ko compacta $\begin{array}{c} {\rm Gul'ko \ compacta}\\ {\rm WCG \ Banach \ spaces \ and \ their relatives}\\ {\rm A \ renorming \ result}\\ {\rm Some \ remarks \ on \ Krein's \ theorem}\\ {\rm Flat \ sets, \ }\ell_{p}\mbox{-generating \ and \ fixing \ c_0}\ in \ nonseparable \ setting \ } \end{array}$

Some tools

Some tools Biorthogonal systems in WCG Banach space Full projectional generators

Definition

A set $\Gamma \subset X$ has the Amir-Lindenstrauss property if $\forall x^* \in X^*$ and $\forall c > 0$, the set $\{\gamma \in \Gamma; |\langle \gamma, x^* \rangle| > c\}$ is finite.

Remark

- In a fundamental b.o.s. $\{x_i, f_i\}_{i \in I}$, $\{f_i\}_{i \in I}$ countably supports X.
- (Amir and Lindenstrauss) In a WCG B. s. X, ∃Γ ⊂ X linearly dense with the AL-property.

(日) (同) (三) (三)

Guilko compacta $\begin{array}{c} {\rm Guilko compacta}\\ {\rm WCG \ Banach spaces and their relatives}\\ {\rm A renorming result}\\ {\rm Some \ remarks \ on \ Krein's \ theorem}\\ {\rm Flat \ sets, \ }\ell_{p}\text{-generating \ and \ fixing \ q_0 \ in \ onseparable setting} \end{array}$

Some tools

Some tools Biorthogonal systems in WCG Banach space Full projectional generators

Definition

A set $\Gamma \subset X$ has the Amir-Lindenstrauss property if $\forall x^* \in X^*$ and $\forall c > 0$, the set $\{\gamma \in \Gamma; |\langle \gamma, x^* \rangle| > c\}$ is finite.

Remark

- In a fundamental b.o.s. {x_i, f_i}_{i∈I}, {f_i}_{i∈I} countably supports X.
- (Amir and Lindenstrauss) In a WCG B. s. X, ∃Γ ⊂ X linearly dense with the AL-property.
- If X is WCG, Γ ⊂ X has the AL-property and {x_λ, f_λ}_{λ∈Λ} is a fundamental b.o.s, then ∃ a SPRI subordinated to Γ and {f_λ}_{λ∈Λ}.

Gul'ko compacta $\begin{array}{c} {\rm Gul'ko \ compacta}\\ {\rm WCG \ Banach \ spaces \ and \ their relatives}\\ {\rm A \ renorming \ result}\\ {\rm Some \ remarks \ on \ Krein's \ theorem}\\ {\rm Flat \ sets, \ }\ell_{p}\mbox{-generating \ and \ fixing \ c_0}\ in \ nonseparable \ setting \ } \end{array}$

Some tools Biorthogonal systems in WCG Banach spaces Full projectional generators

Biorthogonal systems in WCG Banach spaces

Theorem

Let X be a B.s., $K \subset X$ w-compact and $\{x_{\lambda}, f_{\lambda}\}_{\lambda \in \Lambda}$ be a fundamental b.o.s. Let $\Lambda^{0} := \{\lambda \in \Lambda; \langle k, f_{\lambda} \rangle \neq 0, \text{ for some } k \in K\}$. Then $\exists (\Lambda^{0}_{m})_{m \in \mathbb{N}}$ such that $\Lambda^{0} = \bigcup_{m=1}^{\infty} \Lambda^{0}_{m}$ and $\Vert \sum_{i=1}^{n} f_{\lambda_{i}} \Vert \to +\infty$ for every $(\lambda_{i})_{i=1}^{\infty} \in \Lambda^{0}_{m}$ and $\forall m \in \mathbb{N}$.

Guilko compacta $\begin{array}{c} {\rm Guilko compacta}\\ {\rm WCG \ Banach spaces and their relatives}\\ {\rm A renorming result}\\ {\rm Some \ remarks \ on \ Krein's \ theorem}\\ {\rm Flat \ sets, \ }\ell_{p}\text{-generating \ and \ fixing \ q_0 \ in \ onseparable setting} \end{array}$

Some tools Biorthogonal systems in WCG Banach spaces Full projectional generators

Biorthogonal systems in WCG Banach spaces

Theorem

Let X be a B.s., $K \subset X$ w-compact and $\{x_{\lambda}, f_{\lambda}\}_{\lambda \in \Lambda}$ be a fundamental b.o.s. Let $\Lambda^{0} := \{\lambda \in \Lambda; \langle k, f_{\lambda} \rangle \neq 0, \text{ for some } k \in K\}$. Then $\exists (\Lambda^{0}_{m})_{m \in \mathbb{N}}$ such that $\Lambda^{0} = \bigcup_{m=1}^{\infty} \Lambda^{0}_{m}$ and $\Vert \sum_{i=1}^{n} f_{\lambda_{i}} \Vert \to +\infty$ for every $(\lambda_{i})_{i=1}^{\infty} \in \Lambda^{0}_{m}$ and $\forall m \in \mathbb{N}$.

Corollaries

• (Argyros and Mercourakis) For X a WCG B. s. and $\{x_{\lambda}, f_{\lambda}\}_{\lambda \in \Lambda}$ an M-basis.

Guilko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_p -generating and fixing q₀ in nonseparable setting

Some tools Biorthogonal systems in WCG Banach spaces Full projectional generators

Biorthogonal systems in WCG Banach spaces

Theorem

Let X be a B.s., $K \subset X$ w-compact and $\{x_{\lambda}, f_{\lambda}\}_{\lambda \in \Lambda}$ be a fundamental b.o.s. Let $\Lambda^{0} := \{\lambda \in \Lambda; \langle k, f_{\lambda} \rangle \neq 0, \text{ for some } k \in K\}$. Then $\exists (\Lambda^{0}_{m})_{m \in \mathbb{N}}$ such that $\Lambda^{0} = \bigcup_{m=1}^{\infty} \Lambda^{0}_{m}$ and $\Vert \sum_{i=1}^{n} f_{\lambda_{i}} \Vert \to +\infty$ for every $(\lambda_{i})_{i=1}^{\infty} \in \Lambda^{0}_{m}$ and $\forall m \in \mathbb{N}$.

Corollaries

- (Argyros and Mercourakis) For X a WCG B. s. and {x_λ, f_λ}_{λ∈Λ} an M-basis.
- (Argyros and Farmaki) Let X be a B.s., $K \subset X$ w-compact and $\{x_{\lambda}, f_{\lambda}\}_{\lambda \in \Lambda}$ an unconditional basis. Then $\Lambda^0 = \bigcup_{m=1}^{\infty} \Lambda^0_m$ such that $\{x_{\lambda}; \lambda \in \Lambda^0_m\} \cup \{0\}$ is w-compact $\forall m \in \mathbb{N}$.

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_p -generating and fixing c_0 in nonseparable setting

Some tools Biorthogonal systems in WCG Banach spaces Full projectional generators

Biorthogonal systems in WCG Banach spaces

Theorem

Let X be a B.s., $K \subset X$ w-compact and $\{x_{\lambda}, f_{\lambda}\}_{\lambda \in \Lambda}$ be a fundamental b.o.s. Let $\Lambda^{0} := \{\lambda \in \Lambda; \langle k, f_{\lambda} \rangle \neq 0, \text{ for some } k \in K\}$. Then $\exists (\Lambda^{0}_{m})_{m \in \mathbb{N}}$ such that $\Lambda^{0} = \bigcup_{m=1}^{\infty} \Lambda^{0}_{m}$ and $\Vert \sum_{i=1}^{n} f_{\lambda_{i}} \Vert \to +\infty$ for every $(\lambda_{i})_{i=1}^{\infty} \in \Lambda^{0}_{m}$ and $\forall m \in \mathbb{N}$.

Corollaries

- (Argyros and Mercourakis) For X a WCG B. s. and {x_λ, f_λ}_{λ∈Λ} an M-basis.
- (Argyros and Farmaki) Let X be a B.s., $K \subset X$ w-compact and $\{x_{\lambda}, f_{\lambda}\}_{\lambda \in \Lambda}$ an unconditional basis. Then $\Lambda^0 = \bigcup_{m=1}^{\infty} \Lambda^0_m$ such that $\{x_{\lambda}; \lambda \in \Lambda^0_m\} \cup \{0\}$ is w-compact $\forall m \in \mathbb{N}$.
- (Jonhson) X a WCG B.s. with an unconditional basis $\{x_{\lambda}\}_{\lambda \in \Lambda}$. Then $\exists \Lambda = \bigcup_{m=1}^{\infty} \Lambda_m$ such that $\{x_{\lambda}; \lambda \in \Lambda_m\} \cup \{0\}$ is w-compact $\forall m \in \mathbb{N}$.

 $\label{eq:Guillow} \begin{array}{c} {\rm Guillow}\ {\rm compacta}\\ {\rm WCG}\ {\rm Banach}\ {\rm space}\ {\rm and}\ {\rm their}\ {\rm relatives}\\ {\rm A}\ {\rm renorming}\ {\rm result}\\ {\rm Some\ remarks\ on\ Krein's\ theorem}\\ {\rm Flat\ sets},\ \ell_{p}\ {\rm generating\ and\ fixing\ e_{0}}\ {\rm nonseparable\ setting} \end{array}$

Some tools Biorthogonal systems in WCG Banach spaces Full projectional generators

Biorthogonal systems in WCG Banach spaces

Theorem

Let X be a B.s., $K \subset X$ w-compact and $\{x_{\lambda}, f_{\lambda}\}_{\lambda \in \Lambda}$ be a fundamental b.o.s. Let $\Lambda^{0} := \{\lambda \in \Lambda; \langle k, f_{\lambda} \rangle \neq 0, \text{ for some } k \in K\}$. Then $\exists (\Lambda^{0}_{m})_{m \in \mathbb{N}}$ such that $\Lambda^{0} = \bigcup_{m=1}^{\infty} \Lambda^{0}_{m}$ and $\Vert \sum_{i=1}^{n} f_{\lambda_{i}} \Vert \to +\infty$ for every $(\lambda_{i})_{i=1}^{\infty} \in \Lambda^{0}_{m}$ and $\forall m \in \mathbb{N}$.

Corollaries

- (Argyros and Mercourakis) For X a WCG B. s. and {x_λ, f_λ}_{λ∈Λ} an M-basis.
- (Argyros and Farmaki) Let X be a B.s., $K \subset X$ w-compact and $\{x_{\lambda}, f_{\lambda}\}_{\lambda \in \Lambda}$ an unconditional basis. Then $\Lambda^0 = \bigcup_{m=1}^{\infty} \Lambda^0_m$ such that $\{x_{\lambda}; \lambda \in \Lambda^0_m\} \cup \{0\}$ is w-compact $\forall m \in \mathbb{N}$.
- (Jonhson) X a WCG B.s. with an unconditional basis $\{x_{\lambda}\}_{\lambda \in \Lambda}$. Then $\exists \Lambda = \bigcup_{m=1}^{\infty} \Lambda_m$ such that $\{x_{\lambda}; \lambda \in \Lambda_m\} \cup \{0\}$ is w-compact $\forall m \in \mathbb{N}$.
- Argyros' example of a WCG space C(K) with a subspace not WCG.

Theorem (Pták)

Let X be a Banach space. TFAE:

- (i) X is reflexive.
- (ii) \forall b.o.s $\{x_n, f_n\}_{n \in \mathbb{N}}$ with $\{f_n\}_{n \in \mathbb{N}}$ bounded, $\|\sum_{n=1}^k x_n\| \to +\infty$.
- (iii) \forall b.o.s $\{x_n, f_n\}_{n \in \mathbb{N}}$ with $\{x_n\}_{n \in \mathbb{N}}$ bounded, $\|\sum_{n=1}^k f_n\| \to +\infty$.

Theorem (Pták)

Let X be a Banach space. TFAE:

- (i) X is reflexive.
- (ii) \forall b.o.s $\{x_n, f_n\}_{n \in \mathbb{N}}$ with $\{f_n\}_{n \in \mathbb{N}}$ bounded, $\|\sum_{n=1}^k x_n\| \to +\infty$.
- (iii) \forall b.o.s $\{x_n, f_n\}_{n \in \mathbb{N}}$ with $\{x_n\}_{n \in \mathbb{N}}$ bounded, $\|\sum_{n=1}^k f_n\| \to +\infty$.

Proposition

Let $\{x_{\lambda}; f_{\lambda}\}_{\lambda \in \Lambda}$ be a total biorthogonal system. TFAE:

- (i) $\{x_{\lambda}\}_{\lambda \in \Lambda}$ has the AL-property.
- (ii) $\{x_{\lambda}\}_{\lambda \in \Lambda} \cup \{0\}$ is weakly compact.

Proposition

Let X be a B.s. and $\{x_{\lambda}; f_{\lambda}\}_{\lambda \in \Lambda}$ a b.o.s. If $\{x_{\lambda}\}_{\lambda \in \Lambda}$ has the AL-property, then $\|\sum_{i=1}^{k} f_{\lambda_i}\| \to +\infty$.

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_p -generating and fixing c₀ in nonseparable setting

Some tools Biorthogonal systems in WCG Banach spaces Full projectional generators

Full projectional generators

Proposition

Let X be a WCG Banach space, then \exists a full-PG such that $\Phi(x^*) \subset K$, $\forall x^* \in X^*$

(日) (同) (三) (三)

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_{D} -generating and fixing c₀ in nonseparable setting

Some tools Biorthogonal systems in WCG Banach spaces Full projectional generators

Full projectional generators

Proposition

Let X be a WCG Banach space, then \exists a full-PG such that $\Phi(x^*) \subset K$, $\forall x^* \in X^*$

WCD Banach spaces

Let S be a family of all subsets of \mathbb{N} , and $L_S := \overline{X \cap_{n \in s} K_n}^{w^*}$, for $s \in S$. Let $\Phi : X^* \to 2^X$ defined by

$$\sup_{x\in L_s} |\langle x, x^*\rangle| = \sup_{x\in L_s\cap \Phi(x^*)} |\langle x, x^*\rangle|, \qquad \forall s\in S.$$

イロト イポト イヨト イヨト

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_{D} -generating and fixing c₀ in nonseparable setting

Some tools Biorthogonal systems in WCG Banach spaces Full projectional generators

Full projectional generators

Proposition

Let X be a WCG Banach space, then \exists a full-PG such that $\Phi(x^*) \subset K$, $\forall x^* \in X^*$

WCD Banach spaces

Let S be a family of all subsets of \mathbb{N} , and $L_S := \overline{X \cap_{n \in s} K_n}^{w^*}$, for $s \in S$. Let $\Phi : X^* \to 2^X$ defined by

$$\sup_{x\in L_s} |\langle x, x^*\rangle| = \sup_{x\in L_s\cap \Phi(x^*)} |\langle x, x^*\rangle|, \qquad \forall s\in \mathcal{S}.$$

Proposition

The mapping Φ is a full-PG on a WCD Banach space.

イロン イボン イヨン イヨン

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_p -generating and fixing q in nonseparable setting

WLD Banach spaces

Some tools Biorthogonal systems in WCG Banach spaces Full projectional generators

Proposition

Every subspace of a WLD Banach space is WLD.

- 4 同 6 4 日 6 4 日 6

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_p -generating and fixing q in nonseparable setting

Some tools Biorthogonal systems in WCG Banach spaces Full projectional generators

WLD Banach spaces

Proposition

Every subspace of a WLD Banach space is WLD.

Theorem

Let X be a Banach space. TFAE:

- (i) X is WLD,
- (ii) X has a full-PG,
- (iii) \exists an *M*-basis that countably supports X^* .
- (iv) $\exists \Gamma \subset X$ linearly dense that countably supports X^* .

- 4 同 6 4 日 6 4 日 6

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_{D} -generating and fixing c₀ in nonseparable setting

Some tools Biorthogonal systems in WCG Banach spaces Full projectional generators

WLD Banach spaces

Proposition

Every subspace of a WLD Banach space is WLD.

Theorem

Let X be a Banach space. TFAE:

- (i) X is WLD,
- (ii) X has a full-PG,
- (iii) \exists an *M*-basis that countably supports X^* .
- (iv) $\exists \Gamma \subset X$ linearly dense that countably supports X^* .

Corollary

Every WLD Banach space is DENS, i. e., dens $X = w^* - \text{dens } X^*$.

 $\label{eq:Gamma} \begin{array}{c} {\rm Gul'ko\ compacta}\\ {\rm WCG\ Banach\ spaces\ and\ their\ relatives}\\ {\rm A\ renoming\ result}\\ {\rm Some\ remarks\ on\ Krein\ s\ theorem}\\ {\rm Flat\ sets,\ }\ell_p\mbox{-generating\ and\ fixing\ }c_0\ in\ onseparable\ setting\ } \end{array}$

Outline

🕽 Gul'ko compacta

- 2 WCG Banach spaces and their relatives
 - Some tools
 - Biorthogonal systems in WCG Banach spaces
 - Full projectional generators

3 A renorming result

- Some remarks on Krein's theorem
- 5 Flat sets, ℓ_p -generating and fixing c_0 in nonseparable setting
 - Asymptotically *p*-flat sets
 - Innerly asymptotically *p*-flat sets
 - The general setting
 - Fixing c₀(Γ) by operators

- 4 回 ト - 4 回 ト

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_p -generating and fixing c₀ in nonseparable setting

A strictly convex norm on $c_0(\Gamma)$

Let $\Gamma \subset \mathbb{R}$ uncountable and $(\Gamma_n)_{n \in \mathbb{N}}$ a countable basis of Γ . We introduce the following norm on $c_0(\Gamma)$,

$$|||x||| := \left(\sum_{n=1}^{\infty} 2^{-n} ||x||_{\Gamma_n} ||_{\infty}^2\right)^{\frac{1}{2}}.$$

- 4 回 ト 4 三 ト

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_p -generating and fixing c₀ in nonseparable setting

A strictly convex norm on $c_0(\Gamma)$

Let $\Gamma \subset \mathbb{R}$ uncountable and $(\Gamma_n)_{n \in \mathbb{N}}$ a countable basis of Γ . We introduce the following norm on $c_0(\Gamma)$,

$$|||x||| := \left(\sum_{n=1}^{\infty} 2^{-n} ||x||_{\Gamma_n} ||_{\infty}^2\right)^{\frac{1}{2}}.$$

Theorem

 $\||\cdot|\|$ is strictly convex.

- 4 同 2 4 日 2 4 日 2

 $\label{eq:Gamma} \begin{array}{c} {\rm Gul'ko}\ {\rm compacta}\\ {\rm WCG}\ {\rm Banach\ spaces\ and\ their\ relatives}\\ {\rm A\ renorming\ result}\\ {\rm Some\ remarks\ on\ Krein\ s\ theorem}\\ {\rm Flat\ sets,\ \ell_{p}\ -generating\ and\ fixing\ c_0\ in\ onseparable setting\ } \end{array}$

A strictly convex norm on $c_0(\Gamma)$

Let $\Gamma \subset \mathbb{R}$ uncountable and $(\Gamma_n)_{n \in \mathbb{N}}$ a countable basis of Γ . We introduce the following norm on $c_0(\Gamma)$,

$$||x|| := \left(\sum_{n=1}^{\infty} 2^{-n} ||x||_{\Gamma_n} ||_{\infty}^2\right)^{\frac{1}{2}}.$$

Theorem

 $\| \cdot \|$ is strictly convex.

Proof.

Let $x, y \in c_0(\Gamma)$ with |||x||| = |||y||| = 1 and $x \neq y$.

Gul'ko compacta WCG Banach spaces and their relatives WCG Banach spaces and their relatives Some remarks on Krein's theorem Flat sets, ℓ_p -generating and fixing c_0 in nonseparable setting

A strictly convex norm on $c_0(\Gamma)$

Let $\Gamma \subset \mathbb{R}$ uncountable and $(\Gamma_n)_{n \in \mathbb{N}}$ a countable basis of Γ . We introduce the following norm on $c_0(\Gamma)$,

$$||x|| := \left(\sum_{n=1}^{\infty} 2^{-n} ||x||_{\Gamma_n} ||_{\infty}^2\right)^{\frac{1}{2}}.$$

Theorem

 $\| \cdot \|$ is strictly convex.

Proof.

Let
$$x, y \in c_0(\Gamma)$$
 with $||x||| = ||y||| = 1$ and $x \neq y$. It is possible to find $k \in \mathbb{N}$, s. t. $||x| \upharpoonright_{\Gamma_k} ||_{\infty} \neq ||y| \upharpoonright_{\Gamma_k} ||_{\infty}$ or $||(x+y) \upharpoonright_{\Gamma_k} ||_{\infty} < ||x| \upharpoonright_{\Gamma_k} ||_{\infty} + ||y| \upharpoonright_{\Gamma_k} ||_{\infty}$.

Gul'ko compacta WCG Banach spaces and their relatives WCG Banach spaces and their relatives Some remarks on Krein's theorem Flat sets, ℓ_p -generating and fixing c_0 in nonseparable setting

A strictly convex norm on $c_0(\Gamma)$

Let $\Gamma \subset \mathbb{R}$ uncountable and $(\Gamma_n)_{n \in \mathbb{N}}$ a countable basis of Γ . We introduce the following norm on $c_0(\Gamma)$,

$$||x|| := \left(\sum_{n=1}^{\infty} 2^{-n} ||x||_{\Gamma_n} ||_{\infty}^2\right)^{\frac{1}{2}}.$$

Theorem

 $\| \cdot \|$ is strictly convex.

Proof.

Let
$$x, y \in c_0(\Gamma)$$
 with $||x||| = ||y||| = 1$ and $x \neq y$. It is possible to find $k \in \mathbb{N}$, s. t. $||x| \upharpoonright_{\Gamma_k} ||_{\infty} \neq ||y| \upharpoonright_{\Gamma_k} ||_{\infty}$ or $||(x+y)| \upharpoonright_{\Gamma_k} ||_{\infty} < ||x| \upharpoonright_{\Gamma_k} ||_{\infty} + ||y| \upharpoonright_{\Gamma_k} ||_{\infty}$. Then in both cases we have $|||x+y||| < ||x||| + ||y|||$.

 $\label{eq:Gamma} \begin{array}{c} {\rm Gul'ko}\ {\rm compacta}\\ {\rm WCG}\ {\rm Banach}\ {\rm spaces}\ {\rm and}\ {\rm their}\ {\rm renorming}\ {\rm result}\\ {\rm A}\ {\rm renorming}\ {\rm result}\\ {\rm Some\ remarks\ on\ Krein's\ theorem}\\ {\rm Flat\ sets},\ \ell_p\ {\rm generating\ and\ fixing\ c_0\ in\ nonseparable setting} \end{array}$

Outline

Gul'ko compacta

- 2 WCG Banach spaces and their relatives
 - Some tools
 - Biorthogonal systems in WCG Banach spaces
 - Full projectional generators
- 3 A renorming result

4 Some remarks on Krein's theorem

- 5 Flat sets, ℓ_p -generating and fixing c_0 in nonseparable setting
 - Asymptotically *p*-flat sets
 - Innerly asymptotically *p*-flat sets
 - The general setting
 - Fixing c₀(Γ) by operators

- 4 同 6 4 日 6 4 日 6

 $\label{eq:Gamma} \begin{array}{c} {\rm Gul'ko}\ {\rm compacta}\\ {\rm WCG}\ {\rm Banach\ spaces\ and\ their\ relatives}\\ {\rm A\ renorming\ result}\\ {\rm Some\ remarks\ on\ Krein\ s\ theorem}\\ {\rm Flat\ sets,\ \ell_{p}\ -generating\ and\ fixing\ c_{0}\ in\ onseparable\ setting} \end{array}$

Some remarks on Krein's theorem

We consider a result on quantification of Krein's theorem:

Theorem (Fabian, Hájek, Montesinos and Zizler)

Let X a B.s. and $M \subset X$ bounded. If $\overline{M}^{w^*} \subset X + \epsilon B_{X^{**}}$ (M is ϵ -WK), for some $\epsilon > 0$. Then $\overline{conv(M)}^{w^*} \subset X + 2\epsilon B_{X^{**}}$.

< 同 > < 三 > < 三 >

Some remarks on Krein's theorem

We consider a result on quantification of Krein's theorem:

Theorem (Fabian, Hájek, Montesinos and Zizler)

Let X a B.s. and $M \subset X$ bounded. If $\overline{M}^{w^*} \subset X + \epsilon B_{X^{**}}$ (M is ϵ -WK), for some $\epsilon > 0$. Then $\overline{conv(M)}^{w^*} \subset X + 2\epsilon B_{X^{**}}$.

We make a variation on the concept of ϵ -WK.

Definition

Let X a B.s. and $M \subset X$ bounded, we say that M is ϵ -weakly self compact (ϵ -WSK) if for some $\epsilon > 0$,

$$\overline{M}^{w^*} \subset M + \epsilon B_{X^{**}}.$$

イロト イポト イヨト イヨト

Some remarks on Krein's theorem

We consider a result on quantification of Krein's theorem:

Theorem (Fabian, Hájek, Montesinos and Zizler)

Let X a B.s. and $M \subset X$ bounded. If $\overline{M}^{w^*} \subset X + \epsilon B_{X^{**}}$ (M is ϵ -WK), for some $\epsilon > 0$. Then $\overline{conv(M)}^{w^*} \subset X + 2\epsilon B_{X^{**}}$.

We make a variation on the concept of ϵ -WK.

Definition

Let X a B.s. and $M \subset X$ bounded, we say that M is ϵ -weakly self compact (ϵ -WSK) if for some $\epsilon > 0$,

$$\overline{M}^{w^*} \subset M + \epsilon B_{X^{**}}.$$

We deal with a version of Krein's Theorem considering $M \epsilon$ -WSK.

< ロ > < 同 > < 三 > < 三 >

 $\label{eq:GB} Gul'ko compacta \\ WCG Banach spaces and their relatives$ A renorming resultSome remarks on Krein's theorem $Flat sets, <math display="inline">\ell_{p}$ -generating and fixing cq in nonseparable setting

Upper envelopes

Let $x^{**} \in X^{**}$, we introduce the concept of the $w(X^*, M)$ -usc envelope of x^{**} as follows

 $\hat{x}_{M}^{**} := \inf\{f; f: B_{X^*} \to \mathbb{R}, f \text{ is } w(X^*, M) - \text{continous and } f \ge x^{**}|_{B_{X^*}}\}.$

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_p -generating and fixing c₀ in nonsparable setting

Upper envelopes

Let $x^{**} \in X^{**}$, we introduce the concept of the $w(X^*, M)$ -usc envelope of x^{**} as follows

 $\hat{x}_M^{**} := \inf\{f; f: B_{X^*} \to \mathbb{R}, f \text{ is } w(X^*, M) - \text{continous and } f \ge x^{**}|_{B_{X^*}}\}.$

We prove that

$$\operatorname{hgraph}(\hat{x}_M^{**}) = \overline{\operatorname{hgraph}(x^{**})}^{w(X^*,M) \times R}$$

Proposition Let $x^{**} \in X^{**}$ and $M \subset X$ bounded, then a) $\hat{x}_{M}^{**}(x^{*}) = \inf\{\langle x, x^{*} \rangle + \lambda; x \in M, \lambda \in \mathbb{R} \text{ with } x + \lambda \ge x^{**} \text{ on } B_{X^{*}}\}.$ b) $\hat{x}_{M}^{**}(x^{*}) = \lim_{N \in \mathcal{N}_{M}(x^{*})} \sup\{\langle x^{**}, N \rangle, \forall x^{*} \in B_{X^{*}}.$ c) $\hat{x}_{M}^{**}(x^{*}) = \inf\{\langle x, x^{*} \rangle + ||x^{**} - x||; x \in M\}, \forall x^{*} \in B_{X^{*}}.$

 $\label{eq:Gamma} \begin{array}{c} {\rm Gul'ko\ compacta}\\ {\rm WCG\ Banach\ spaces\ and\ their\ relatives}\\ {\rm A\ renorming\ result}\\ {\rm Some\ remarks\ on\ Krein\ S\ theorem}\\ {\rm Flat\ sets,\ \ell_{p}\ -generating\ and\ fixin\ q_{0}\ in\ onseparable setting} \end{array}$

Quantitative Krein's Theorem

Theorem

Let X a B.s. and $M \subset X$ bounded. If M is ϵ -WSK, for some $\epsilon \ge 0$, then $\overline{\operatorname{conv}(M)}^{w^*} \subset \operatorname{conv}(M) + (2\epsilon + \delta)B_{X^{**}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_p-generating and fixing C₀ in nonseparable setting

Asymptotically *p*-flat sets nnerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

Outline

🕽 Gul'ko compacta

- 2 WCG Banach spaces and their relatives
 - Some tools
 - Biorthogonal systems in WCG Banach spaces
 - Full projectional generators
- 3 A renorming result
- 4 Some remarks on Krein's theorem
- **5** Flat sets, ℓ_p -generating and fixing c_0 in nonseparable setting
 - Asymptotically *p*-flat sets
 - Innerly asymptotically p-flat sets
 - The general setting
 - Fixing $c_0(\Gamma)$ by operators

- 4 同 6 4 日 6 4 日 6

Guilko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, *ℓ*_p-generating and fixing **c**₀ in nonseparable setting

Asymptotically *p*-flat sets nnerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

Flat sets and ℓ_p -generating

The original idea comes from:

Proposition (Godefroy, Kalton and Lancien)

A separable B. s. X is isomorphic to a subspace of c_0 if and only if it has an equivalent C-LKK^{*} norm for some $C \in (0, 1]$.

(日) (同) (三) (三)

Gullko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_p -generating and fixing \mathbf{c}_0 in nonseparable setting

Asymptotically *p*-flat sets nnerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

Flat sets and ℓ_p -generating

The original idea comes from:

Proposition (Godefroy, Kalton and Lancien)

A separable B. s. X is isomorphic to a subspace of c_0 if and only if it has an equivalent C-LKK^{*} norm for some $C \in (0, 1]$.

Where,

Definition

 $\|\cdot\|$ on a B. s. X is C-LKK* for some $C \in (0, 1]$ if

$$\limsup_{n \to \infty} \|x^* + x_n^*\| \ge \|x^*\| + C \limsup \|x_n^*\|,$$

for every $x^* \in X^*$ and every w^* -null sequence $(x_n^*)_{n \in \mathbb{N}}$ in X^* .

(日) (同) (三) (三)

Guilko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, *ℓ*_p-generating and fixing c₀ in nonseparable setting

Asymptotically *p*-flat sets Innerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

Asymptotically *p*-flat set

We deal with $\ell_{\rho}(\omega_1)$ -generation by introducing the following concept:

Definition

Let $(X, \|\cdot\|)$ be a B.s., $p \in (1, +\infty]$ and $q = \frac{p}{p-1}$. $M \subset X$ is $\|\cdot\|$ -asymptotically *p*-flat if *M* is bounded and $\exists C > 0$ such that $\forall f \in X^*$ and every *w*^{*}-null sequence $(f_n)_{n \in \mathbb{N}} \subset X^*$, it holds

$$\limsup_{n\to\infty} \|f+f_n\|^q \ge \|f\|^q + C\limsup_{n\to\infty} \|f_n\|_M^q.$$

< ロ > < 同 > < 三 > < 三 >

Guilko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, *ℓ*_p-generating and fixing c₀ in nonseparable setting

Asymptotically *p*-flat sets Innerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

Asymptotically *p*-flat set

We deal with $\ell_p(\omega_1)$ -generation by introducing the following concept:

Definition

Let
$$(X, \|\cdot\|)$$
 be a B.s., $p \in (1, +\infty]$ and $q = \frac{p}{p-1}$. $M \subset X$ is $\|\cdot\|$ -asymptotically *p*-flat if M is bounded and $\exists C > 0$ such that $\forall f \in X^*$ and every w^* -null sequence $(f_n)_{n \in \mathbb{N}} \subset X^*$, it holds

$$\limsup_{n\to\infty} \|f+f_n\|^q \ge \|f\|^q + C\limsup_{n\to\infty} \|f_n\|_M^q.$$

Where

$$||f||_M = \sup\{|\langle x, f\rangle|; \ x \in M\}.$$

We say that *M* is asymptotically *p*-flat if \exists an equivalent $||| \cdot |||$ such that *M* is $||| \cdot |||$ -asymptotically *p*-flat.

(日) (同) (三) (三)

Gui'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, *ℓ*_p-generating and fixing **c**₀ in nonseparable setting

Asymptotically *p*-flat sets Innerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

Asymptotically *p*-flat set

We deal with $\ell_p(\omega_1)$ -generation by introducing the following concept:

Definition

Let $(X, \|\cdot\|)$ be a B.s., $p \in (1, +\infty]$ and $q = \frac{p}{p-1}$. $M \subset X$ is $\|\cdot\|$ -asymptotically *p*-flat if *M* is bounded and $\exists C > 0$ such that $\forall f \in X^*$ and every *w*^{*}-null sequence $(f_n)_{n \in \mathbb{N}} \subset X^*$, it holds

$$\limsup_{n\to\infty} \|f+f_n\|^q \ge \|f\|^q + C\limsup_{n\to\infty} \|f_n\|_M^q.$$

Where

$$||f||_M = \sup\{|\langle x, f\rangle|; \ x \in M\}.$$

We say that *M* is asymptotically *p*-flat if \exists an equivalent $||| \cdot |||$ such that *M* is $||| \cdot |||$ -asymptotically *p*-flat.

Observe that if $\|\cdot\|$ is C-LKK^{*}, then B_X is $\|\cdot\|$ -asymptotically ∞ -flat.

・ロト ・ 同ト ・ ヨト ・ ヨト

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_{p} -generating and fixing ${\rm G}_0$ in nonseparable setting

Asymptotically *p*-flat sets Innerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

Examples

• Every limited set $M \subset X$ (i.e., $\lim_{n\to\infty} ||f_n||_M = 0 \ \forall (f_n) \subset X^*$ w*-null sequence) is asymptotically p-flat $\forall p \in (1, +\infty]$.

(日) (同) (三) (三)

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_{p} -generating and fixing ${\rm G}_0$ in nonseparable setting

Asymptotically *p*-flat sets Innerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

Examples

- Every limited set $M \subset X$ (i.e., $\lim_{n\to\infty} ||f_n||_M = 0 \ \forall (f_n) \subset X^*$ w^* -null sequence) is asymptotically p-flat $\forall p \in (1, +\infty]$.
- In $c_0(\Gamma)$, $B_{c_0(\Gamma)}$ is $\|\cdot\|_{\infty}$ -asymptotically ∞ -flat with C = 1.

-

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_{p} -generating and fixing ${\rm G}_0$ in nonseparable setting

Asymptotically *p*-flat sets Innerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

Examples

- Every limited set M ⊂ X (i.e., lim_{n→∞} ||f_n||_M = 0 ∀(f_n) ⊂ X* w*-null sequence) is asymptotically p-flat ∀p ∈ (1, +∞].
- In $c_0(\Gamma)$, $B_{c_0(\Gamma)}$ is $\|\cdot\|_{\infty}$ -asymptotically ∞ -flat with C = 1.
- In $\ell_p(\Gamma)$, $B_{\ell_p(\Gamma)}$ is $\|\cdot\|_p$ -asymptotically *p*-flat with C = 1.

-

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_p-generating and fixing C₀ in nonseparable setting

Asymptotically *p*-flat sets Innerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

Examples

- Every limited set $M \subset X$ (i.e., $\lim_{n\to\infty} ||f_n||_M = 0 \ \forall (f_n) \subset X^*$ w*-null sequence) is asymptotically p-flat $\forall p \in (1, +\infty]$.
- In $c_0(\Gamma)$, $B_{c_0(\Gamma)}$ is $\|\cdot\|_{\infty}$ -asymptotically ∞ -flat with C = 1.
- In ℓ_ρ(Γ), B_{ℓ_ρ(Γ)} is || · ||_ρ-asymptotically p-flat with C = 1.
- M is $\|\cdot\|$ -asymptotically p-flat iff $\exists C > 0$ such that $\forall \epsilon \in (0, C^{-q})$ and $\forall (g_n)_{n \in \mathbb{N}} \subset S_{X^*}$ with $g_n \to_{w^*} f$ and $\|f - g_n\|_M \ge \epsilon \ \forall n \in \mathbb{N}$, then $\|f\|^q \le 1 - C\epsilon^q$.

イロト イポト イヨト イヨト

-

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_p-generating and fixing c_0 in nonseparable setting

Asymptotically *p*-flat sets Innerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

Examples

- Every limited set $M \subset X$ (i.e., $\lim_{n\to\infty} ||f_n||_M = 0 \ \forall (f_n) \subset X^*$ w*-null sequence) is asymptotically p-flat $\forall p \in (1, +\infty]$.
- In $c_0(\Gamma)$, $B_{c_0(\Gamma)}$ is $\|\cdot\|_{\infty}$ -asymptotically ∞ -flat with C = 1.
- In ℓ_ρ(Γ), B_{ℓ_ρ(Γ)} is || · ||_ρ-asymptotically p-flat with C = 1.
- M is $\|\cdot\|$ -asymptotically p-flat iff $\exists C > 0$ such that $\forall \epsilon \in (0, C^{-q})$ and $\forall (g_n)_{n \in \mathbb{N}} \subset S_{X^*}$ with $g_n \to_{w^*} f$ and $\|f - g_n\|_M \ge \epsilon \ \forall n \in \mathbb{N}$, then $\|f\|^q \le 1 - C\epsilon^q$.
- If $(X, \|\cdot\|)$ has modulus of smoothness of power type p, then B_X is $\|\cdot\|$ -asymptotically p-flat.

Guilko compacta WCG Banach spaces and their relatives A renorming result Some remarks on rrein's theorem Flat sets, ℓ_p -generating and fixing G_0 in nonseparable setting

Asymptotically *p*-flat sets Innerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

Examples

- Every limited set $M \subset X$ (i.e., $\lim_{n\to\infty} ||f_n||_M = 0 \ \forall (f_n) \subset X^*$ w*-null sequence) is asymptotically p-flat $\forall p \in (1, +\infty]$.
- In $c_0(\Gamma)$, $B_{c_0(\Gamma)}$ is $\|\cdot\|_{\infty}$ -asymptotically ∞ -flat with C = 1.
- In $\ell_p(\Gamma)$, $B_{\ell_p(\Gamma)}$ is $\|\cdot\|_p$ -asymptotically *p*-flat with C = 1.
- M is $\|\cdot\|$ -asymptotically p-flat iff $\exists C > 0$ such that $\forall \epsilon \in (0, C^{-q})$ and $\forall (g_n)_{n \in \mathbb{N}} \subset S_{X^*}$ with $g_n \to_{w^*} f$ and $\|f - g_n\|_M \ge \epsilon \ \forall n \in \mathbb{N}$, then $\|f\|^q \le 1 - C\epsilon^q$.
- If $(X, \|\cdot\|)$ has modulus of smoothness of power type p, then B_X is $\|\cdot\|$ -asymptotically p-flat.
- Let L_p(Ω, Σ, μ) with positive measure μ. B_{L_p} is || · ||_p-asymptotically p-flat for p ∈ (1, 2), and || · ||_p-asymptotically 2-flat for p ∈ [2, +∞).

イロン 不得 とくほう イヨン しほう

Guilko compacta WCG Banach spaces and their relatives A renorming result Some remarks on rrein's theorem Flat sets, ℓ_p -generating and fixing G_0 in nonseparable setting

Asymptotically *p*-flat sets Innerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

Examples

- Every limited set $M \subset X$ (i.e., $\lim_{n\to\infty} ||f_n||_M = 0 \ \forall (f_n) \subset X^*$ w*-null sequence) is asymptotically p-flat $\forall p \in (1, +\infty]$.
- In $c_0(\Gamma)$, $B_{c_0(\Gamma)}$ is $\|\cdot\|_{\infty}$ -asymptotically ∞ -flat with C = 1.
- In $\ell_p(\Gamma)$, $B_{\ell_p(\Gamma)}$ is $\|\cdot\|_p$ -asymptotically *p*-flat with C = 1.
- M is $\|\cdot\|$ -asymptotically p-flat iff $\exists C > 0$ such that $\forall \epsilon \in (0, C^{-q})$ and $\forall (g_n)_{n \in \mathbb{N}} \subset S_{X^*}$ with $g_n \to_{w^*} f$ and $\|f - g_n\|_M \ge \epsilon \ \forall n \in \mathbb{N}$, then $\|f\|^q \le 1 - C\epsilon^q$.
- If $(X, \|\cdot\|)$ has modulus of smoothness of power type p, then B_X is $\|\cdot\|$ -asymptotically p-flat.
- Let L_p(Ω, Σ, μ) with positive measure μ. B_{L_p} is || · ||_p-asymptotically p-flat for p ∈ (1, 2), and || · ||_p-asymptotically 2-flat for p ∈ [2, +∞).
- If X is superreflexive, B_X is asymptotically p-flat, for some $p \leq 2$.

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, *ℓ*_p-generating and fixing c₀ in nonseparable setting

Asymptotically p-flat sets Innerly asymptotically p-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

The Asplund setting

Theorem

Let X be an Asplund B.s. with dens $(X) = \#\omega_1$ and let $p \in (1, +\infty)$. TFAE:

- (i) X is WCG and ∃M ⊂ X linearly dense and asymptotically p-flat set, (asymptotically ∞-flat).
- (ii) X is generated by $\ell_{\rho}(\omega_1)$, (by $c_0(\omega_1)$).

(日) (同) (三) (三)

Gui'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, ℓ_p -generating and fixing ${\bf C}_0$ in nonseparable setting

Asymptotically *p*-flat sets Innerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

The Asplund setting

Theorem

Let X be an Asplund B.s. with dens $(X) = \#\omega_1$ and let $p \in (1, +\infty)$. TFAE:

- (i) X is WCG and ∃M ⊂ X linearly dense and asymptotically p-flat set, (asymptotically ∞-flat).
- (ii) X is generated by $\ell_{\rho}(\omega_1)$, (by $c_0(\omega_1)$).

As a consequece, we have

Corollary

For $p \in (1, +\infty)$, any subspace of $\ell_p(\omega_1)$ is $\ell_p(\omega_1)$ -generated. Every subspace of $c_0(\omega_1)$ is $c_0(\omega_1)$ -generated.

(日) (同) (三) (三)

Guilko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, *ℓ*_p-generating and fixing **c**₀ in nonseparable setting

Asymptotically *p*-flat sets Innerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

Innerly asymptotically *p*-flat sets

In order to deal with the non Asplund setting is necessary to introduce a more restrictive concept:

Definition

Let X be a B.s., $p \in (1, +\infty]$ and $q = \frac{p}{p-1}$. $M \subset X$ is innerly asymptotically *p*-flat if M is bounded and $\exists C > 0$ such that $\forall f \in X^*$ and every w^* -null sequence $(f_n)_{n \in \mathbb{N}} \subset X^*$, it holds

$$\limsup_{n\to\infty} \|f+f_n\|_M^q \ge \|f\|_M^q + C\limsup_{n\to\infty} \|f_n\|_M^q.$$

・ロト ・同ト ・ヨト ・ヨト

 $Gui'ko compacta \\ WCG Banach spaces and their relatives$ A renorming resultSome remarks on Krein's theorem $Flat sets, <math display="inline">\ell_{p}$ -generating and fixing G_{0} in nonseparable setting

Asymptotically *p*-flat sets Innerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

Innerly asymptotically *p*-flat sets

In order to deal with the non Asplund setting is necessary to introduce a more restrictive concept:

Definition

Let X be a B.s., $p \in (1, +\infty]$ and $q = \frac{p}{p-1}$. $M \subset X$ is innerly asymptotically *p*-flat if M is bounded and $\exists C > 0$ such that $\forall f \in X^*$ and every w^* -null sequence $(f_n)_{n \in \mathbb{N}} \subset X^*$, it holds

$$\limsup_{n\to\infty} \|f+f_n\|_M^q \ge \|f\|_M^q + C\limsup_{n\to\infty} \|f_n\|_M^q.$$

An innerly asymptotically *p*-flat set has a certain Asplund behavior.

Proposition

Let X be a B.s. with (B_{X^*}, w^*) angelic. Then, for all $p \in (1, +\infty]$, every asymptotically p-flat set $M \subset X$ is an Asplund set.

イロト イポト イヨト イヨト

Guilko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, *ℓ*_p-generating and fixing c₀ in nonseparable setting

The general setting

Asymptotically *p*-flat sets Innerly asymptotically *p*-flat sets **The general setting** Fixing $c_0(\Gamma)$ by operators

Theorem

Let X be a B.s. with $dens(X) = \#\omega_1$ and $p \in (1, +\infty)$. TFAE:

- (i) X is WLD and ∃M ⊂ X bounded, linearly dense and innerly asymptotically p-flat (∞-flat).
- (ii) X is generated by $\ell_{\rho}(\omega_1)$, (by $c_0(\omega_1)$).

(日) (同) (三) (三)

Guilko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, *ℓ*_p-generating and fixing **c**₀ in nonseparable setting

Asymptotically *p*-flat sets Innerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

Fixing $c_0(\Gamma)$ by operators

We provide alternative proofs for the following results:

Theorem (Dunford, Pettis and Pelczýnski)

Let X be a B.s., $T : c_0(\mathbb{N}) \to X$ bounded, linear and non-weakly compact. Then T fixes a copy of $c_0(\mathbb{N})$.

(日) (同) (三) (三)

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, *ℓ*_p-generating and fixing c₀ in nonseparable setting

Asymptotically *p*-flat sets Innerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

Fixing $c_0(\Gamma)$ by operators

We provide alternative proofs for the following results:

Theorem (Dunford, Pettis and Pelczýnski)

Let X be a B.s., $T : c_0(\mathbb{N}) \to X$ bounded, linear and non-weakly compact. Then T fixes a copy of $c_0(\mathbb{N})$.

Theorem (Rosenthal'70)

Let X be a B.s. and let $T : c_0(\Gamma) \to X$ bounded and linear such that for some $\epsilon > 0$, $||T(e_{\gamma})|| > \epsilon$, $\forall \gamma \in \Gamma$. Then $\exists \Gamma' \subset \Gamma$ such that $\#\Gamma' = \#\Gamma$ and $T|_{c_0(\Gamma')}$ is an isomorphism.

(ロ) (同) (E) (E) (E) (E)

Gul'ko compacta WCG Banach spaces and their relatives A renorming result Some remarks on Krein's theorem Flat sets, *ℓ*_p-generating and fixing c₀ in nonseparable setting

Papers accepted

Asymptotically *p*-flat sets Innerly asymptotically *p*-flat sets The general setting Fixing $c_0(\Gamma)$ by operators

- A. L. González and V. Montesinos, A note on weakly Lindelöf determined Banach spaces. Czechoslovak Mathematical Journal.
- M. Fabian, A. L. González and V. Zizler, Flat sets, *l_p*-generating and fixing c₀(Γ) in a nonseparable setting. Journal of the Australian Mathematical Society.
- M. Fabian, A. L. González, V. Montesinos, A note on biorthogonal systems in weakly compactly generated Banach spaces. Annales Academiae Scientiarum Fennicae Mathematica.

< ロ > < 同 > < 三 > < 三 >