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Gul’ko compacta

Gul’ko compacta

[0, 1" NE() :={f:T = [0,1]; #{y € T; f(7y)#0} <N}
Theorem (Sokolov)

Let K C [0,1]" N X(T) be a compact space. K is a Gul'ko compactum if
and only if there exists 1,5, ... C T such that, Vy € T, Vk € K and
Ve > 0, 3m € N such that v € [, and #{v € T; |k(7)] > €} < oo.

A. L. Gonzdlez Compacta in Banach spaces



Gul’ko compacta

Gul’ko compacta

[0, 1" NE() :={f:T = [0,1]; #{y € T; f(7y)#0} <N}

Theorem (Sokolov)

Let K C [0,1]" N X(T) be a compact space. K is a Gul'ko compactum if
and only if there exists 1,5, ... C T such that, Vy € T, Vk € K and
Ve > 0, 3m € N such that v € [, and #{v € T; |k(7)] > €} < oo.

We take ' C R uncountable, and K4 := {xa; A€ A} C {0,1}7, where
A is adequate.
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Gul’ko compacta

Gul’ko compacta

[0, 1" NE() :={f:T = [0,1]; #{y € T; f(7y)#0} <N}

Theorem (Sokolov)

Let K C [0,1]" N X(T) be a compact space. K is a Gul'ko compactum if
and only if there exists 1,5, ... C T such that, Vy € T, Vk € K and
Ve > 0, 3m € N such that v € [, and #{v € T; |k(7)] > €} < oo.

We take ' C R uncountable, and K4 := {xa; A€ A} C {0,1}7, where
A is adequate.
Definition
A family A of subsets of I is called adequate if:
o Vyerl, {y} €A,
@ given A€ Aand B C A, then B € A,
@ given A C I such that VF C A finite, F € A then A€ A.
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Gul’ko compacta

Proposition
Let T C R uncountable and A an adequate family. TFAE:
(i) Every A€ A s closed in T.
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Gul’ko compacta

Proposition

Let T C R uncountable and A an adequate family. TFAE:
(i) Every A€ A s closed in T.

(i) VA€ A andVC C T compact, #AN C < Ng.
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Gul’ko compacta

Proposition

Let T C R uncountable and A an adequate family. TFAE:
(i) Every A€ A s closed in T.
(i) VA€ A andVC C T compact, #AN C < Ng.
(ili) The map ¢ : T — T 4 defined by ¢(y) = {~,*} is usco. Where
I4:=TU{x} being « ¢ I an extra element, T4 is the topology on
"4 given by: every v € I is isolated, and
S(x) ;== {{x} UT\A; A€ A} is a subbasis of x.
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Gul’ko compacta

Proposition

Let T C R uncountable and A an adequate family. TFAE:
(i) Every A€ A s closed in T.

(i) VA€ A andVC C T compact, #AN C < Ng.

(ili) The map ¢ : T — T 4 defined by ¢(y) = {~,*} is usco. Where
I4:=TU{x} being « ¢ I an extra element, T4 is the topology on
"4 given by: every v € I is isolated, and
S(x) :={{x} UT\A; A< A} is a subbasis of *.

(iv) If B is a basis of I then VA € A and Vv € ', 3B € B such that
v € B and #AN B < .
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Gul’ko compacta

Proposition

Let T C R uncountable and A an adequate family. TFAE:
(i) Every A€ A s closed in T.

(i) VA€ A andVC C T compact, #AN C < Ng.

(ili) The map ¢ : T — T 4 defined by ¢(y) = {~,*} is usco. Where
I4:=TU{x} being « ¢ I an extra element, T4 is the topology on
"4 given by: every v € I is isolated, and
S(x) :={{x} UT\A; A< A} is a subbasis of *.

(iv) If B is a basis of I then VA € A and Vv € ', 3B € B such that
v € B and #AN B < .

If some condition above holds, then K4 is Gul’ko compactum.
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Gul’ko compacta

Theorem

Let K be a compact space. K is a Gul’ko compactum if and only if K is
paired with a IC-countably determined topological space.
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Gul’ko compacta

Theorem

Let K be a compact space. K is a Gul’ko compactum if and only if K is
paired with a IC-countably determined topological space.

Paired means that there exists a separately continuous mapping
f : K — K that separates points of K and K.
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© WCG Banach spaces and their relatives
@ Some tools
@ Biorthogonal systems in WCG Banach spaces
@ Full projectional generators
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WCG Banach spaces and their relatives Some
Biorth G Banach spaces
Full proje

Some tools

Definition
A PRI (Pa)wy<a<y is subordinated to a set I C X if Pyy € {0,7}
Vy €T and Yo € [wo, p].

A. L. Gonzdlez Compacta in Banach spaces



WCG Banach spaces and their relatives Some tools
Bic

Some tools

Definition
A PRI (Pa)wy<a<y is subordinated to a set I C X if Pyy € {0,7}
Vy €T and Yo € [wo, p].

Theorem

Let X a B. s. with a full-PG, T C X countably supporting X* and

A C X* countably supporting X. Then 3 a SPRI subordinated to I and
A.

Where, I countably supports X* means that for all x* € X*,
#{y e (v, x")} < No.
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WCG Banach spaces and their relatives Some tools
Banach spaces

Some tools

Definition
A set ' C X has the Amir-Lindenstrauss property if Vx* € X* and
Ve > 0, the set {y € [';|(y,x*)| > c} is finite.
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WCG Banach spaces and their relatives Some tools
3 Banach spaces

Some tools

Definition
A set ' C X has the Amir-Lindenstrauss property if Vx* € X* and
Ve > 0, the set {y € [';|(y,x*)| > c} is finite.

Remark
@ In a fundamental b.o.s. {x;, f;}ici, {fi}ic/ countably supports X.
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WCG Banach spaces and their relatives Some tools
3anach spaces

Some tools

Definition
A set ' C X has the Amir-Lindenstrauss property if Vx* € X* and
Ve > 0, the set {y € [';|(y,x*)| > c} is finite.

Remark
@ In a fundamental b.o.s. {x;, f;}ici, {fi}ic/ countably supports X.
o (Amir and Lindenstrauss) In a WCG B. s. X, 3I C X linearly dense
with the AL-property.
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WCG Banach spaces and their relatives Some tools
Bic

Some tools

Definition
A set ' C X has the Amir-Lindenstrauss property if Vx* € X* and
Ve > 0, the set {y € [';|(y,x*)| > c} is finite.

Remark
@ In a fundamental b.o.s. {x;, f;}ici, {fi}ic/ countably supports X.
o (Amir and Lindenstrauss) In a WCG B. s. X, 3I C X linearly dense
with the AL-property.

o If X is WCG, T C X has the AL-property and {xx, f\}xen is a
fundamental b.o.s, then 3 a SPRI subordinated to I' and {f\} xea-
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WCG Banach spaces and their relatives
WCG Banach spaces
ors

Biorthogonal systems in WCG Banach spaces

Theorem

Let X be a B.s.,, K C X w-compact and {xy, f\} xen be a fundamental
b.os. Let NO:={\€N; (k,f) #0, for some k € K}. Then 3(A%)men
such that A® = U2 ;A% and || Y7, £, || — +oo for every (A\;)22, € A9,
and Vm € N.
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WCG Banach spaces and their relatives
tems in WCG Banach spaces
Full projectional generators

Biorthogonal systems in WCG Banach spaces

Theorem

Let X be a B.s.,, K C X w-compact and {xy, f\} xen be a fundamental
b.os. Let NO:={\€N; (k,f) #0, for some k € K}. Then 3(A%)men
such that A® = U2 ;A% and || Y7, £, || — +oo for every (A\;)22, € A9,
and Vm € N.

Corollaries

o (Argyros and Mercourakis) For X a WCG B. s. and {xy, fA}rea an
M-basis.
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WCG Banach spaces and their relatives Some tools
tems in WCG Banach spaces
Full projectional generators

Biorthogonal systems in WCG Banach spaces

Theorem

Let X be a B.s.,, K C X w-compact and {xy, f\} xen be a fundamental
b.os. Let NO:={\€N; (k,f) #0, for some k € K}. Then 3(A%)men
such that A® = U2 ;A% and || Y7, £, || — +oo for every (A\;)22, € A9,
and Vm € N.

Corollaries
o (Argyros and Mercourakis) For X a WCG B. s. and {xy, fA}rea an
M-basis.
o (Argyros and Farmaki) Let X be a B.s., K C X w-compact and

{xx, fx}ren an unconditional basis. Then A = U A% such that
{xn; A€ A%} U {0} is w-compact Vm € N.
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WCG Banach spaces and their relatives Some tools
Biorthogonal systems in WCG Banach spaces
Full projectional generators

Biorthogonal systems in WCG Banach spaces

Theorem

Let X be a B.s.,, K C X w-compact and {xy, f\} xen be a fundamental
b.os. Let NO:={\€N; (k,f) #0, for some k € K}. Then 3(A%)men
such that A® = U2 ;A% and || Y7, £, || — +oo for every (A\;)22, € A9,
and Vm € N.

Corollaries

o (Argyros and Mercourakis) For X a WCG B. s. and {xy, fA}rea an
M-basis.

o (Argyros and Farmaki) Let X be a B.s., K C X w-compact and
{xx, fx}ren an unconditional basis. Then A = U A% such that
{xn; A€ A%} U {0} is w-compact Vm € N.

@ (Jonhson) X a WCG B.s. with an unconditional basis {x}xea. Then
IN = U, A, such that {x\; A € A} U {0} is w-compact Vm € N.
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WCG Banach spaces and their relatives Some tools
Biorthogonal systems in WCG Banach spaces
Full projectional generators

Biorthogonal systems in WCG Banach spaces

Theorem

Let X be a B.s.,, K C X w-compact and {xy, f\} xen be a fundamental
b.os. Let NO:={\€N; (k,f) #0, for some k € K}. Then 3(A%)men
such that A® = U2 ;A% and || Y7, £, || — +oo for every (A\;)22, € A9,
and Vm € N.

Corollaries

o (Argyros and Mercourakis) For X a WCG B. s. and {xy, fA}rea an
M-basis.

o (Argyros and Farmaki) Let X be a B.s., K C X w-compact and
{xx, fx}ren an unconditional basis. Then A = U A% such that
{xn; A€ A%} U {0} is w-compact Vm € N.

@ (Jonhson) X a WCG B.s. with an unconditional basis {x}xea. Then
IN = U, A, such that {x\; A € A} U {0} is w-compact Vm € N.

@ Argyros' example of a WCG space C(K) with a subspace not WCG.




WCG Banach spaces and their relatives

G Banach spaces

Theorem (Ptak)
Let X be a Banach space. TFAE:
(i) X is reflexive.

(i) V b.o.s {xp, fntnen with {f,}nen bounded,
(i) V b.o.s {xn, fo}neny with {x,}nen bounded,

Skl = 400

Sk fall = oo
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WCG Banach spaces and their relatives

WCG Banach spaces
ors

Theorem (Ptak)
Let X be a Banach space. TFAE:
(i) X is reflexive.

(i) V b.o.s {xp, fntnen with {f,}nen bounded,
(i) V b.o.s {xn, fo}neny with {x,}nen bounded,

Sk Xall — oo
Sk fall = oo

Proposition

Let {xx; fx}ren be a total biorthogonal system. TFAE:
(i) {x»}xen has the AL-property.

(i) {xx}ren U {0} is weakly compact.

Proposition

Let X be a B.s. and {xy; fA}xen a b.o.s. If {xa}ren has the AL-property,
then || Y, Al — +o0.
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WCG Banach spaces and their relatives
B ystems in WC 3anach spaces
Full projectional generators

Full projectional generators

Proposition

Let X be a WCG Banach space, then 3 a full-PG such that ®(x*) C K,
Vx* e X*
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WCG Banach spaces and their relatives S
Bio
Full projectional generators

Full projectional generators

Proposition

Let X be a WCG Banach space, then 3 a full-PG such that ®(x*) C K,
Vx* e X*

WCD Banach spaces

Let S be a family of all subsets of N, and Ls := X Npes an ,fors e S.
Let ® : X* — 2X defined by

sup [(x,x™)| = sup  |{x,x™)], Vs e S.
x€Lg XEL;NP(x*)
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WCG Banach spaces and their relatives

generators

Full projectional generators

Proposition

Let X be a WCG Banach space, then 3 a full-PG such that ®(x*) C K,
Vx* e X*

WCD Banach spaces

*

Let S be a family of all subsets of N, and Ls := X Npes an ,fors e S.
Let ® : X* — 2X defined by

sup [(x,x™)| = sup  |{x,x™)], Vs e S.
x€Lg XEL;NP(x*)

Proposition

The mapping ¢ is a full-PG on a WCD Banach space.
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WCG Banach spaces and their relatives Some
G Banach spaces
Full projectional generators

WLD Banach spaces

Proposition
Every subspace of a WLD Banach space is WLD. J
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WCG Banach spaces and their relatives S
Bic systems in WCG Banach spaces
Full projectional generators

WLD Banach spaces

Proposition

Every subspace of a WLD Banach space is WLD.

Theorem
Let X be a Banach space. TFAE:
(i) X is WLD,
(i) X has a full-PG,
(iii) 3 an M-basis that countably supports X*.
)

(iv) 3Ar C X linearly dense that countably supports X*.
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WCG Banach spaces and their relatives S
Bio
Full projectional generators

WLD Banach spaces

Proposition

Every subspace of a WLD Banach space is WLD.

Theorem
Let X be a Banach space. TFAE:
(i) X is WLD,
(i) X has a full-PG,
(iii) 3 an M-basis that countably supports X*.
(iv) 3Ar C X linearly dense that countably supports X*.

Corollary
Every WLD Banach space is DENS, i. e., dens X = w* — dens X*.
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© A renorming result
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A renorming result

A strictly convex norm on co(I")

Let I C R uncountable and (I',)sen a countable basis of . We
introduce the following norm on ¢y (),

[l == (Z 27"|x Ir, II§O>
n=1

2
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A renorming result

A strictly convex norm on co(I")

Let I C R uncountable and (I',)sen a countable basis of . We
introduce the following norm on ¢y (),
1
2
: ) '

[l == (Z 27" Ir,
n=1

Theorem

I - ||| is strictly convex.
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A renorming result

A strictly convex norm on co(I")

Let I' C R uncountable and (I';),en a countable basis of . We
introduce the following norm on ¢y (),
1
2
) ) '

[l == (Z 27" Ir,
n=1

Theorem

| - ||| is strictly convex.

Proof.
Let x,y € co(T) with [[x][| = [Ilylll = L and x # .
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A renorming result

A strictly convex norm on co(I")

Let I' C R uncountable and (I';),en a countable basis of . We
introduce the following norm on ¢y (),
1
2
) ) '

[l == (Z 27" Ir,
n=1

Theorem

| - ||| is strictly convex.

Proof.

Let x,y € (") with |||x]]| = ||ly|]| =1 and x # y. It is possible to find
keN, st [Ix Iry [loo 7 Ily Iry [loo or
1O+ ) Tri lloo < [1X Tr [loo + [1y Tr [loo-
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A renorming result

A strictly convex norm on co(I")

Let I' C R uncountable and (I';),en a countable basis of . We
introduce the following norm on ¢y (),
1
2
) ) '

[l == (Z 27" Ir,
n=1

Theorem

| - ||| is strictly convex.

Proof.

Let x,y € (") with |||x]]| = ||ly|]| =1 and x # y. It is possible to find
keN, st [Ix Iry [loo 7 Ily Iry [loo or

l(x+y) Ire lloo < IIX Try lloo + |¥ Ity lloo- Then in both cases we have
[+ Il < Ml + iy Il O
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@ Some remarks on Krein's theorem
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Some remarks on Krein's theorem

Some remarks on Krein's theorem

We consider a result on quantification of Krein's theorem:
Theorem (Fabian, Hajek, Montesinos and Zizler)

Let X a B.s. and M C X bounded. If M" € X + eBx-- (M is e-WK),
for some € > 0. Then conv(l\/l)W C X + 2eBx=.
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Some remarks on Krein's theorem

Some remarks on Krein's theorem

We consider a result on quantification of Krein's theorem:
Theorem (Fabian, Hajek, Montesinos and Zizler)

Let X a B.s. and M C X bounded. If M" € X + eBx-- (M is e-WK),
for some € > 0. Then conv(M)W C X + 2eBx=.

We make a variation on the concept of e-WK.
Definition

Let X a B.s. and M C X bounded, we say that M is e-weakly self
compact (e-WSK) if for some € > 0,

WW Cc M+ EBX**.
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Some remarks on Krein's theorem

Some remarks on Krein's theorem

We consider a result on quantification of Krein's theorem:
Theorem (Fabian, Hajek, Montesinos and Zizler)

Let X a B.s. and M C X bounded. If M" € X + eBx-- (M is e-WK),
for some € > 0. Then conv(M)W C X + 2eBx=.

We make a variation on the concept of e-WK.
Definition

Let X a B.s. and M C X bounded, we say that M is e-weakly self
compact (e-WSK) if for some € > 0,

WW Cc M+ EBX**.

We deal with a version of Krein's Theorem considering M e-WSK.
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Some remarks on Krein's theorem

Upper envelopes

Let x** € X**, we introduce the concept of the w(X*, M)-usc envelope
of x** as follows

i =inf{f; f: Bx- — R, f is w(X*, M)—continous and f > x™|g,. }.
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Some remarks on Krein's theorem

Upper envelopes

Let x** € X**, we introduce the concept of the w(X*, M)-usc envelope
of x** as follows

i =inf{f; f: Bx- — R, f is w(X*, M)—continous and f > x™|g,. }.

We prove that

hgraph(%y,) = hgTh(x**)W(X ,M)><R.

Proposition

Let x** € X** and M C X bounded, then

) = inf{{(x,x*)+X; x € M, X € R with x+ X > x** on Bx~}.
) = limyenn, () SUp(x™*, N), ¥x* € Bx~.

Q X/ (x*) =inf{(x,x*) + [|x** — x|; x € M}, Vx* € Bx-.

oA**(*
Q Xy (x*

Ok
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Some remarks on Krein's theorem

Quantitative Krein's Theorem

Theorem
Let X a B.f. and M C X bounded. If M is e-WSK, for some € > 0, then
conv (/\/I)W C conv (M) + (2€ + ) Bx»=.
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© Flat sets, {p-generating and fixing cp in nonseparable setting
o Asymptotically p-flat sets
@ Innerly asymptotically p-flat sets
@ The general setting
@ Fixing ¢o(I') by operators
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Flat sets, £p-generating and fixing cp in nonseparable setting

Flat sets and /,-generating

The original idea comes from:

Proposition (Godefroy, Kalton and Lancien)

A separable B. s. X is isomorphic to a subspace of ¢y if and only if it has
an equivalent C-LKK* norm for some C € (0, 1].
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Flat sets, £p-generating and fixing cp in nonseparable setting

Flat sets and /,-generating

The original idea comes from:

Proposition (Godefroy, Kalton and Lancien)

A separable B. s. X is isomorphic to a subspace of ¢y if and only if it has
an equivalent C-LKK* norm for some C € (0,1].

Where,
Definition

||l onaB.s. Xis C-LKK* for some C € (0, 1] if

limsup [[x* + x¥[| > ||x*|| + Climsup ||x}]],
n—oo

for every x* € X* and every w*-null sequence (x;)en in X*.
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Flat sets, £p-generating and fixing cp in nonseparable setting

Asymptotically p-flat set

We deal with £,(w1)-generation by introducing the following concept:
Definition

Let (X,||-|[) bea Bs., p€ (1,+o0] and g = 25 M C X'is
|| - ||-asymptotically p-flat if M is bounded and 3C > 0 such that

Vf € X* and every w*-null sequence (f,)neny C X*, it holds

limsup [|f + £, |7 = [|£]|? + Clim sup [|£,]|3;.

n—oo n—oo
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Flat sets, £p-generating and fixing cp in nonseparable setting

Asymptotically p-flat set

We deal with £,(w1)-generation by introducing the following concept:
Definition

Let (X,||-|[) bea Bs., p€ (1,+o0] and g = 25 M C X'is

|| - ||-asymptotically p-flat if M is bounded and 3C > 0 such that

Vf € X* and every w*-null sequence (f,)neny C X*, it holds

limsup [|f + £, |7 = [|£]|? + Clim sup [|£,]|3;.

n—oo n—oo
Where
[Iflm = sup{[{x, F); x € M}
We say that M is asymptotically p-flat if 3 an equivalent ||| - ||| such that
M is ||| - ||[-asymptotically p-flat.
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Flat sets, £p-generating and fixing cp in nonseparable setting

Asymptotically p-flat set

We deal with £,(w1)-generation by introducing the following concept:
Definition

Let (X,||-|[) bea Bs., p€ (1,+o0] and g = 25 M C X'is

|| - ||-asymptotically p-flat if M is bounded and 3C > 0 such that

Vf € X* and every w*-null sequence (f,)neny C X*, it holds

limsup [|f + £, |7 = [|£]|? + Clim sup [|£,]|3;.

Where
Illm = sup{|{x, )]; x € M}.
We say that M is asymptotically p-flat if 3 an equivalent ||| - ||| such that
M is ||| - ||[-asymptotically p-flat.
Observe that if || - || is C-LKK*, then Bx is || - ||-asymptotically co-flat.
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mptotically p-flat sets

Flat sets, £p-generating and fixing cp in nonseparable setting

Examples

o Every limited set M C X (i.e., limy— o || fallm = 0 V(f,) C X*
w*-null sequence) is asymptotically p-flat Vp € (1, +o0].
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Asymptotically p-flat sets
Innef symptotically p-flat sets

Flat sets, £p-generating and fixing cp in nonseparable setting

Examples

o Every limited set M C X (i.e., limy— o || fallm = 0 V(f,) C X*
w*-null sequence) is asymptotically p-flat Vp € (1, +o0].

o In o(I"), Beyry is || - [|oc-asymptotically oco-flat with C = 1.

A. L. Gonzdlez Compacta in Banach spaces



Flat sets, £p-generating and fixing cp in nonseparable setting

Examples
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Flat sets, £p-generating and fixing cp in nonseparable setting

Examples
o Every limited set M C X (i.e., limy— o || fallm = 0 V(f,) C X*
w*-null sequence) is asymptotically p-flat Vp € (1, +o0].
o In o(I"), Beyry is || - [|oc-asymptotically oco-flat with C = 1.
© In £,(), Byyry is || - [|,-asymptotically p-flat with C = 1.

@ Mis || - ||-asymptotically p-flat iff 3C > 0 such that Ve € (0, C9)
and Y(gn)neny C Sx~ with g, —~ f and ||f — gnllm > € Vn €N,
then [|f]|9 <1 — Ceq.
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Flat sets, £p-generating and fixing cp in nonseparable setting

Examples

o Every limited set M C X (i.e., limy— o || fallm = 0 V(f,) C X*
w*-null sequence) is asymptotically p-flat Vp € (1, +o0].

o In o(I"), Beyry is || - [|oc-asymptotically oco-flat with C = 1.
© In £,(), Byyry is || - [|,-asymptotically p-flat with C = 1.

@ Mis || - ||-asymptotically p-flat iff 3C > 0 such that Ve € (0, C9)
and Y(gn)neny C Sx~ with g, —~ f and ||f — gnllm > € Vn €N,
then [|f]|9 <1 — Ceq.

o If (X, |- ]) has modulus of smoothness of power type p, then By is
|| - |[-asymptotically p-flat.
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Examples

o Every limited set M C X (i.e., limy— o || fallm = 0 V(f,) C X*
w*-null sequence) is asymptotically p-flat Vp € (1, +o0].

o In o(I"), Beyry is || - [|oc-asymptotically oco-flat with C = 1.
© In £,(), Byyry is || - [|,-asymptotically p-flat with C = 1.

@ Mis || - ||-asymptotically p-flat iff 3C > 0 such that Ve € (0, C9)
and Y(gn)neny C Sx~ with g, —~ f and ||f — gnllm > € Vn €N,
then [|f]|9 <1 — Ceq.

o If (X, |- ]) has modulus of smoothness of power type p, then By is
|| - |[-asymptotically p-flat.

o Let L,(Q, X, u) with positive measure pu. By, is || - || ,-asymptotically
p-flat for p € (1,2), and || - || p-asymptotically 2-flat for p € [2, +00).
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Examples
o Every limited set M C X (i.e., limy— o || fallm = 0 V(f,) C X*
w*-null sequence) is asymptotically p-flat Vp € (1, +o0].
o In o(I"), Beyry is || - [|oc-asymptotically oco-flat with C = 1.
© In £,(), Byyry is || - [|,-asymptotically p-flat with C = 1.

@ Mis || - ||-asymptotically p-flat iff 3C > 0 such that Ve € (0, C9)
and Y(gn)neny C Sx~ with g, —~ f and ||f — gnllm > € Vn €N,
then [|f]|9 <1 — Ceq.

o If (X, |- ]) has modulus of smoothness of power type p, then By is
|| - |[-asymptotically p-flat.

o Let L,(Q, X, u) with positive measure pu. By, is || - || ,-asymptotically
p-flat for p € (1,2), and || - || p-asymptotically 2-flat for p € [2, +00).

o If X is superreflexive, Bx is asymptotically p-flat, for some p < 2.
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The Asplund setting

Theorem

Let X be an Asplund B.s. with dens (X) = #w; and let p € (1, +00).
TFAE:

(i) X is WCG and M C X linearly dense and asymptotically p-flat set,
(asymptotically co-flat).
(ii) X is generated by {p(w1), (by co(wi)).
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The Asplund setting

Theorem

Let X be an Asplund B.s. with dens (X) = #w; and let p € (1, +00).
TFAE:

(i) X is WCG and M C X linearly dense and asymptotically p-flat set,
(asymptotically co-flat).

(ii) X is generated by {p(w1), (by co(wi)).

As a consequece, we have

Corollary

For p € (1,400), any subspace of £p(w1) is £p(w1)-generated. Every
subspace of co(w1) is cp(w1)-generated.
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Innerly asymptotically p-flat sets

In order to deal with the non Asplund setting is necessary to introduce a
more restrictive concept:

Definition

Let X be a Bis., p € (1,+o¢] and g = p—fl. M C X is innerly
asymptotically p-flat if M is bounded and 3C > 0 such that Vf € X* and
every w*-null sequence (f,)neny C X*, it holds

limsup || + f,ll%, > [If]li, + Climsup||f]|3,.
n—oo n—oo
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Innerly asymptotically p-flat sets

In order to deal with the non Asplund setting is necessary to introduce a
more restrictive concept:

Definition

Let X be a B:s., p € (1,+00] and g = -E5. M C X is innerly

—il°
asymptotically p-flat if M is bounded anpd JC > 0 such that Vf € X* and

every w*-null sequence (f,),en C X*, it holds

limsup || + f,ll%, > [If]li, + Climsup||f]|3,.
n—oo n—oo

An innerly asymptotically p-flat set has a certain Asplund behavior.

Proposition

Let X be a B.s. with (Bx~,w*) angelic. Then, for all p € (1,+00], every
asymptotically p-flat set M C X is an Asplund set.
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The general setting

Theorem
Let X be a B.s. with dens(X) = #wy and p € (1,+00). TFAE:
(i) X is WLD and 3M C X bounded, linearly dense and innerly
asymptotically p-flat (co-flat).
(ii) X is generated by {p(w1), (by co(wi)).
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Fixing co(I") by operators

We provide alternative proofs for the following results:

Theorem (Dunford, Pettis and Pelczynski)

Let X be a B.s., T : ¢o(N) — X bounded, linear and non-weakly
compact. Then T fixes a copy of co(N).
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Fixing co(I") by operators

We provide alternative proofs for the following results:

Theorem (Dunford, Pettis and Pelczynski)

Let X be a B.s., T : ¢o(N) — X bounded, linear and non-weakly
compact. Then T fixes a copy of co(N).

Theorem (Rosenthal'70)

Let X be a B.s. and let T : ¢o(I') — X bounded and linear such that for
some e >0, || T(ey)|| > ¢ VyeTl. Then 3r" C T such that #I" = #I
and T |cr+y s an isomorphism.
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