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Gul’ko compacta

[0, 1]Γ ∩ Σ(Γ) := {f : Γ → [0, 1]; #{γ ∈ Γ; f (γ) 6= 0} ≤ ℵ0}.

Theorem (Sokolov)

Let K ⊂ [0, 1]Γ ∩ Σ(Γ) be a compact space. K is a Gul’ko compactum if
and only if there exists Γ1, Γ2, ... ⊂ Γ such that, ∀γ ∈ Γ, ∀k ∈ K and
∀ε > 0, ∃m ∈ N such that γ ∈ Γm and #{γ ∈ Γm; |k(γ)| ≥ ε} < ∞.

We take Γ ⊂ R uncountable, and KA := {χA; A ∈ A} ⊂ {0, 1}Γ, where
A is adequate.

Definition

A family A of subsets of Γ is called adequate if:

∀γ ∈ Γ, {γ} ∈ A,

given A ∈ A and B ⊂ A, then B ∈ A,

given A ⊂ Γ such that ∀F ⊂ A finite, F ∈ A then A ∈ A.
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Proposition

Let Γ ⊂ R uncountable and A an adequate family. TFAE:

(i) Every A ∈ A is closed in Γ.

(ii) ∀A ∈ A and ∀C ⊂ Γ compact, #A ∩ C < ℵ0.

(iii) The map φ : Γ → ΓA defined by φ(γ) = {γ, ∗} is usco. Where
ΓA := Γ ∪ {∗} being ∗ /∈ Γ an extra element, τA is the topology on
ΓA given by: every γ ∈ Γ is isolated, and
S(∗) := {{∗} ∪ Γ\A; A ∈ A} is a subbasis of ∗.

(iv) If B is a basis of Γ then ∀A ∈ A and ∀γ ∈ Γ, ∃B ∈ B such that
γ ∈ B and #A ∩ B < ℵ0.

If some condition above holds, then KA is Gul’ko compactum.
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Theorem

Let K be a compact space. K is a Gul’ko compactum if and only if K is
paired with a K-countably determined topological space.

Paired means that there exists a separately continuous mapping
f : K → K that separates points of K and K.

A. L. González Compacta in Banach spaces



logo

Gul’ko compacta
WCG Banach spaces and their relatives

A renorming result
Some remarks on Krein’s theorem

Flat sets, `p -generating and fixing c0 in nonseparable setting

Theorem

Let K be a compact space. K is a Gul’ko compactum if and only if K is
paired with a K-countably determined topological space.

Paired means that there exists a separately continuous mapping
f : K → K that separates points of K and K.
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Some tools

Definition

A PRI (Pα)ω0≤α≤µ is subordinated to a set Γ ⊂ X if Pαγ ∈ {0, γ}
∀γ ∈ Γ and ∀α ∈ [ω0, µ].

Theorem

Let X a B. s. with a full-PG, Γ ⊂ X countably supporting X ∗ and
∆ ⊂ X ∗ countably supporting X . Then ∃ a SPRI subordinated to Γ and
∆.

Where, Γ countably supports X ∗ means that for all x∗ ∈ X ∗,
#{γ ∈ Γ; 〈γ, x∗〉} ≤ ℵ0.
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Some tools

Definition

A set Γ ⊂ X has the Amir-Lindenstrauss property if ∀x∗ ∈ X ∗ and
∀c > 0, the set {γ ∈ Γ; |〈γ, x∗〉| > c} is finite.

Remark

In a fundamental b.o.s. {xi , fi}i∈I , {fi}i∈I countably supports X .

(Amir and Lindenstrauss) In a WCG B. s. X , ∃Γ ⊂ X linearly dense
with the AL-property.

If X is WCG, Γ ⊂ X has the AL-property and {xλ, fλ}λ∈Λ is a
fundamental b.o.s, then ∃ a SPRI subordinated to Γ and {fλ}λ∈Λ.

A. L. González Compacta in Banach spaces



logo

Gul’ko compacta
WCG Banach spaces and their relatives

A renorming result
Some remarks on Krein’s theorem

Flat sets, `p -generating and fixing c0 in nonseparable setting

Some tools
Biorthogonal systems in WCG Banach spaces
Full projectional generators

Some tools

Definition

A set Γ ⊂ X has the Amir-Lindenstrauss property if ∀x∗ ∈ X ∗ and
∀c > 0, the set {γ ∈ Γ; |〈γ, x∗〉| > c} is finite.

Remark

In a fundamental b.o.s. {xi , fi}i∈I , {fi}i∈I countably supports X .

(Amir and Lindenstrauss) In a WCG B. s. X , ∃Γ ⊂ X linearly dense
with the AL-property.

If X is WCG, Γ ⊂ X has the AL-property and {xλ, fλ}λ∈Λ is a
fundamental b.o.s, then ∃ a SPRI subordinated to Γ and {fλ}λ∈Λ.
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Biorthogonal systems in WCG Banach spaces

Theorem

Let X be a B.s., K ⊂ X w-compact and {xλ, fλ}λ∈Λ be a fundamental
b.o.s. Let Λ0 := {λ ∈ Λ; 〈k, fλ〉 6= 0, for some k ∈ K}. Then ∃(Λ0

m)m∈N
such that Λ0 = ∪∞m=1Λ

0
m and ‖

∑n
i=1 fλi‖ → +∞ for every (λi )

∞
i=1 ∈ Λ0

m

and ∀m ∈ N.

Corollaries

(Argyros and Mercourakis) For X a WCG B. s. and {xλ, fλ}λ∈Λ an
M-basis.

(Argyros and Farmaki) Let X be a B.s., K ⊂ X w-compact and
{xλ, fλ}λ∈Λ an unconditional basis. Then Λ0 = ∪∞m=1Λ

0
m such that

{xλ; λ ∈ Λ0
m} ∪ {0} is w-compact ∀m ∈ N.

(Jonhson) X a WCG B.s. with an unconditional basis {xλ}λ∈Λ. Then
∃Λ = ∪∞m=1Λm such that {xλ; λ ∈ Λm} ∪ {0} is w-compact ∀m ∈ N.

Argyros’ example of a WCG space C (K ) with a subspace not WCG.

A. L. González Compacta in Banach spaces
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Theorem (Pták)

Let X be a Banach space. TFAE:

(i) X is reflexive.

(ii) ∀ b.o.s {xn, fn}n∈N with {fn}n∈N bounded, ‖
∑k

n=1 xn‖ → +∞.

(iii) ∀ b.o.s {xn, fn}n∈N with {xn}n∈N bounded, ‖
∑k

n=1 fn‖ → +∞.

Proposition

Let {xλ; fλ}λ∈Λ be a total biorthogonal system. TFAE:

(i) {xλ}λ∈Λ has the AL-property.

(ii) {xλ}λ∈Λ ∪ {0} is weakly compact.

Proposition

Let X be a B.s. and {xλ; fλ}λ∈Λ a b.o.s. If {xλ}λ∈Λ has the AL-property,

then ‖
∑k

i=1 fλi‖ → +∞.
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Full projectional generators

Proposition

Let X be a WCG Banach space, then ∃ a full-PG such that Φ(x∗) ⊂ K,
∀x∗ ∈ X ∗

WCD Banach spaces

Let S be a family of all subsets of N, and LS := X ∩n∈s Kn
w∗

, for s ∈ S .
Let Φ : X ∗ → 2X defined by

sup
x∈Ls

|〈x , x∗〉| = sup
x∈Ls∩Φ(x∗)

|〈x , x∗〉|, ∀s ∈ S .

Proposition

The mapping Φ is a full-PG on a WCD Banach space.
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WLD Banach spaces

Proposition

Every subspace of a WLD Banach space is WLD.

Theorem

Let X be a Banach space. TFAE:

(i) X is WLD,

(ii) X has a full-PG,

(iii) ∃ an M-basis that countably supports X ∗.

(iv) ∃Γ ⊂ X linearly dense that countably supports X ∗.

Corollary

Every WLD Banach space is DENS, i. e., dens X = w∗ − dens X ∗.
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A strictly convex norm on c0(Γ)

Let Γ ⊂ R uncountable and (Γn)n∈N a countable basis of Γ. We
introduce the following norm on c0(Γ),

‖|x |‖ :=

( ∞∑
n=1

2−n‖x �Γn ‖2
∞

) 1
2

.

Theorem

‖| · |‖ is strictly convex.

Proof.

Let x , y ∈ c0(Γ) with ‖|x |‖ = ‖|y |‖ = 1 and x 6= y . It is possible to find
k ∈ N, s. t. ‖x �Γk

‖∞ 6= ‖y �Γk
‖∞ or

‖(x + y) �Γk
‖∞ < ‖x �Γk

‖∞ + ‖y �Γk
‖∞. Then in both cases we have

|‖x + y |‖ < |‖x |‖+ |‖y |‖.
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Some remarks on Krein’s theorem

We consider a result on quantification of Krein’s theorem:

Theorem (Fabian, Hájek, Montesinos and Zizler)

Let X a B.s. and M ⊂ X bounded. If M
w∗

⊂ X + εBX∗∗ (M is ε-WK),

for some ε > 0. Then conv(M)
w∗

⊂ X + 2εBX∗∗ .

We make a variation on the concept of ε-WK.

Definition

Let X a B.s. and M ⊂ X bounded, we say that M is ε-weakly self
compact (ε-WSK) if for some ε > 0,

M
w∗

⊂ M + εBX∗∗ .

We deal with a version of Krein’s Theorem considering M ε-WSK.
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Theorem (Fabian, Hájek, Montesinos and Zizler)

Let X a B.s. and M ⊂ X bounded. If M
w∗

⊂ X + εBX∗∗ (M is ε-WK),

for some ε > 0. Then conv(M)
w∗

⊂ X + 2εBX∗∗ .

We make a variation on the concept of ε-WK.

Definition

Let X a B.s. and M ⊂ X bounded, we say that M is ε-weakly self
compact (ε-WSK) if for some ε > 0,

M
w∗

⊂ M + εBX∗∗ .

We deal with a version of Krein’s Theorem considering M ε-WSK.

A. L. González Compacta in Banach spaces



logo

Gul’ko compacta
WCG Banach spaces and their relatives

A renorming result
Some remarks on Krein’s theorem

Flat sets, `p -generating and fixing c0 in nonseparable setting

Upper envelopes

Let x∗∗ ∈ X ∗∗, we introduce the concept of the w(X ∗,M)-usc envelope
of x∗∗ as follows

x̂∗∗M := inf{f ; f : BX∗ → R, f is w(X ∗,M)−continous and f ≥ x∗∗|BX∗ }.

We prove that

hgraph(x̂∗∗M ) = hgraph(x∗∗)
w(X∗,M)×R

.

Proposition

Let x∗∗ ∈ X ∗∗ and M ⊂ X bounded, then

1 x̂∗∗M (x∗) = inf{〈x , x∗〉+λ; x ∈ M, λ ∈ R with x +λ ≥ x∗∗ on BX∗}.
2 x̂∗∗M (x∗) = limN∈NM (x∗) sup〈x∗∗,N〉, ∀x∗ ∈ BX∗ .

3 x̂∗∗M (x∗) = inf{〈x , x∗〉+ ‖x∗∗ − x‖; x ∈ M}, ∀x∗ ∈ BX∗ .
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Quantitative Krein’s Theorem

Theorem

Let X a B.s. and M ⊂ X bounded. If M is ε-WSK, for some ε ≥ 0, then

conv (M)
w∗

⊂ conv (M) + (2ε + δ)BX∗∗ .
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Flat sets and `p-generating

The original idea comes from:

Proposition (Godefroy, Kalton and Lancien)

A separable B. s. X is isomorphic to a subspace of c0 if and only if it has
an equivalent C-LKK∗ norm for some C ∈ (0, 1].

Where,

Definition

‖ · ‖ on a B. s. X is C -LKK∗ for some C ∈ (0, 1] if

lim sup
n→∞

‖x∗ + x∗n ‖ ≥ ‖x∗‖+ C lim sup ‖x∗n ‖,

for every x∗ ∈ X ∗ and every w∗-null sequence (x∗n )n∈N in X ∗.
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Asymptotically p-flat set

We deal with `p(ω1)-generation by introducing the following concept:

Definition

Let (X , ‖ · ‖) be a B.s., p ∈ (1,+∞] and q = p
p−1 . M ⊂ X is

‖ · ‖-asymptotically p-flat if M is bounded and ∃C > 0 such that
∀f ∈ X ∗ and every w∗-null sequence (fn)n∈N ⊂ X ∗, it holds

lim sup
n→∞

‖f + fn‖q ≥ ‖f ‖q + C lim sup
n→∞

‖fn‖q
M .

Where
‖f ‖M = sup{|〈x , f 〉|; x ∈ M}.

We say that M is asymptotically p-flat if ∃ an equivalent ‖| · |‖ such that
M is ‖| · |‖-asymptotically p-flat.

Observe that if ‖ · ‖ is C-LKK∗, then BX is ‖ · ‖-asymptotically ∞-flat.
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A. L. González Compacta in Banach spaces



logo

Gul’ko compacta
WCG Banach spaces and their relatives

A renorming result
Some remarks on Krein’s theorem

Flat sets, `p -generating and fixing c0 in nonseparable setting

Asymptotically p-flat sets
Innerly asymptotically p-flat sets
The general setting
Fixing c0(Γ) by operators

Examples

Every limited set M ⊂ X (i.e., limn→∞ ‖fn‖M = 0 ∀(fn) ⊂ X ∗

w∗-null sequence) is asymptotically p-flat ∀p ∈ (1,+∞].

In c0(Γ), Bc0(Γ) is ‖ · ‖∞-asymptotically ∞-flat with C = 1.

In `p(Γ), B`p(Γ) is ‖ · ‖p-asymptotically p-flat with C = 1.

M is ‖ · ‖-asymptotically p-flat iff ∃C > 0 such that ∀ε ∈ (0,C−q)
and ∀(gn)n∈N ⊂ SX∗ with gn →w∗ f and ‖f − gn‖M ≥ ε ∀n ∈ N,
then ‖f ‖q ≤ 1− Cεq.

If (X , ‖ · ‖) has modulus of smoothness of power type p, then BX is
‖ · ‖-asymptotically p-flat.

Let Lp(Ω,Σ, µ) with positive measure µ. BLp is ‖ · ‖p-asymptotically
p-flat for p ∈ (1, 2), and ‖ · ‖p-asymptotically 2-flat for p ∈ [2,+∞).

If X is superreflexive, BX is asymptotically p-flat, for some p ≤ 2.
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The Asplund setting

Theorem

Let X be an Asplund B.s. with dens (X ) = #ω1 and let p ∈ (1,+∞).
TFAE:

(i) X is WCG and ∃M ⊂ X linearly dense and asymptotically p-flat set,
(asymptotically ∞-flat).

(ii) X is generated by `p(ω1), (by c0(ω1)).

As a consequece, we have

Corollary

For p ∈ (1,+∞), any subspace of `p(ω1) is `p(ω1)-generated. Every
subspace of c0(ω1) is c0(ω1)-generated.
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Innerly asymptotically p-flat sets

In order to deal with the non Asplund setting is necessary to introduce a
more restrictive concept:

Definition

Let X be a B.s., p ∈ (1,+∞] and q = p
p−1 . M ⊂ X is innerly

asymptotically p-flat if M is bounded and ∃C > 0 such that ∀f ∈ X ∗ and
every w∗-null sequence (fn)n∈N ⊂ X ∗, it holds

lim sup
n→∞

‖f + fn‖q
M ≥ ‖f ‖q

M + C lim sup
n→∞

‖fn‖q
M .

An innerly asymptotically p-flat set has a certain Asplund behavior.

Proposition

Let X be a B.s. with (BX∗ ,w∗) angelic. Then, for all p ∈ (1,+∞], every
asymptotically p-flat set M ⊂ X is an Asplund set.
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The general setting

Theorem

Let X be a B.s. with dens (X ) = #ω1 and p ∈ (1,+∞). TFAE:

(i) X is WLD and ∃M ⊂ X bounded, linearly dense and innerly
asymptotically p-flat (∞-flat).

(ii) X is generated by `p(ω1), (by c0(ω1)).

A. L. González Compacta in Banach spaces



logo

Gul’ko compacta
WCG Banach spaces and their relatives

A renorming result
Some remarks on Krein’s theorem

Flat sets, `p -generating and fixing c0 in nonseparable setting

Asymptotically p-flat sets
Innerly asymptotically p-flat sets
The general setting
Fixing c0(Γ) by operators

Fixing c0(Γ) by operators

We provide alternative proofs for the following results:

Theorem (Dunford, Pettis and Pelczýnski)

Let X be a B.s., T : c0(N) → X bounded, linear and non-weakly
compact. Then T fixes a copy of c0(N).

Theorem (Rosenthal’70)

Let X be a B.s. and let T : c0(Γ) → X bounded and linear such that for
some ε > 0, ‖T (eγ)‖ > ε, ∀γ ∈ Γ. Then ∃Γ′ ⊂ Γ such that #Γ′ = #Γ
and T |c0(Γ′) is an isomorphism.
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