Salobreña

Aurora Fernández León

MAIN TOOLS Geodesic spaces The three main model spaces The model spaces

M^a_k

SPACES OF BOUNDED CURVATURI

CAT(k) SPACES Some common

FIXED POINT

Fixed point Theorems in CAT(k) spaces

Teoremas de punto fijo en espacios métricos de curvatura acotada

Aurora Fernández León

Departamento de Análisis Matemático

Universidad de Sevilla Sevilla, Spain.

E-mail: aurorafl@us.es

23 de abril de 2009

《曰》《卽》《臣》《臣》

2

Aurora Fernández León Salobreña

CONTENTS

SALOBREÑA

MAIN TOOLS

- Geodesic spaces
- The three main model spaces
- The model spaces M_{ν}^{n}

- CAT(k) spaces
- Some common properties

• Fixed point Theorems in CAT(k) spaces

< 口 > < 同

Salobreña

Aurora Fernández León

Main tools

The three main model spaces

The model spaces M_k^{α}

METRIC SPACES OF BOUNDED CURVATURE

Some common properties

FIXED POINT

Fixed point Theorems in CAT(k) spaces

• (M, d) a metric space.

We say $\gamma : [a, b] \to M$ is a path in M if it is a continuos mappings.

《曰》《卽》《臣》《臣》

2

Salobreña

Aurora Fernández León

MAIN TOOLS Geodesic spaces The three main model spaces

The model spaces M^a_k

METRIC SPACES OF BOUNDED CURVATURE CAT(k) SPACES SOME COMMON PROPERTIES

Fixed point

Fixed point Theorems in CAT(k) spaces

• (*M*, *d*) a metric space.

We say $\gamma : [a, b] \rightarrow M$ is a path in M if it is a continuos mappings.

We call length of a path γ , $L(\gamma)$, to the supremum of the sums

$$\sum(Y) = \sum_{i=1}^{N} d(\gamma(y_{i-1}), \gamma(y_i)),$$

<ロト <四ト < 回

where Y is any partition of [a, b].

Salobreña

Aurora Fernández León

MAIN TOOLS

The three MAIN MODEL SPACES

The model spaces $M_k^{\prime\prime}$

Metric spaces of bounded curvaturi

SOME COMMON

Fixed point

Fixed point Theorems in CAT(k) spaces

GEODESIC

A geodesic path between $x \in y \in M$ is a path $c : [a, b] \rightarrow M$ such that

The geodesics are path which <u>minimize the distance</u> between its ends.

Geodesic segment

The image α of a geodesic *c* is said to be a *geodesic segment* which joins *x* and *y*.

イロト イ団ト イヨト イヨト

Salobreña

Aurora Fernández León

MAIN TOOLS Geodesic spaces The three main

The model spaces M_k^a

METRIC SPACES OF BOUNDED CURVATURE CAT(k) SPACES

Some common properties

FIXED POINT

Fixed point Theorems in CAT(k) spaces

CONVEXITY

A subset C of M is said to be convex (D-convex) if each pair of points $x, y \in C$ (such that d(x, y) < D) are joined by a geodesic which image is in C.

イロト イ団ト イヨト イヨト

2

Salobreña

Aurora Fernández León

MAIN TOOLS Geodesic spaces The three main model spaces

The model spaces M_k^n

Metric spaces of bounded curvature

Some common properties

Fixed point

Fixed point Theorems in CAT(k) spaces

CONVEXITY

A subset C of M is said to be convex (D-convex) if each pair of points $x, y \in C$ (such that d(x, y) < D) are joined by a geodesic which image is in C.

Geodesic spaces

A metric space M is said to be geodesic if there exists at least one geodesic joining any two points of the space. M will be said uniquely geodesic if each of these geodesics is unique (up to parametrization), i.e., each geodesic segment between each pair of points is unique.

《曰》《卽》《臣》《臣》

TRIANGLES IN GEODESIC SPACES

Salobreña

Aurora Fernández León

Main tools

Geodesic spaces

MODEL SPACES

The model spaces M_k^a

METRIC SPACES OF BOUNDED CURVATURE

Some common properties

FIXED POINT

Fixed point Theorems in CAT(k) spaces The main tool to develop the theory of metric spaces of bounded curvature.

크

イロト イ団ト イヨト イヨト

TRIANGLES IN GEODESIC SPACES

Salobreña

Aurora Fernández León

Main tools

GEODESIC SPACES

MODEL SPACES

THE MODEL SPACES M_k^a

Metric spaces of bounded curvaturi

CAT(k) spaces

Some common properties

FIXED POINT

Fixed point Theorems in CAT(k) spaces

The main tool to develop the theory of metric spaces of bounded curvature.

EODESIC TRIANGLE

A geodesic triangle riangle(p,q,r) in a metric space M consists of:

- Three points in M (the vertices of riangle) and
- Three geodesic segments which join each pair of vertices.

Image: A matrix and a matrix

-> < ≣ >

Contents

Salobreña

Aurora Fernández León

MAIN TOOLS

- Geodesic spaces
- The three main model spaces
- The model spaces M_k^n

METRIC SPACES OF BOUNDED CURVATURE

< 口 > < 同

- CAT(k) spaces
- Some common properties

3 Fixed point

• Fixed point Theorems in CAT(k) spaces

MODEL SPACES

Salobreña

Aurora Fernández León

Main tools

Geodesic spaces The three main

The model spaces M_{\cdot}^{n}

Metric spaces of bounded curvaturi

CAT(k) spaces

Some common properties

Fixed point

Fixed point Theorems in CAT(k) spaces

- ▶ The Euclidean space (curvature 0)
- ▶ The Spherical space (curvature 1)
- ▶ The Hyperbolic space (curvature −1)

Image: Image:

▶ ▲ 문 ▶

Salobreña

Aurora Fernández León

Main tools

Geodesic space

MODEL SPACES

The model spaces M_k^a

Metric spaces of bounded curvature

 $\operatorname{CAT}(k)$ spaces

Some common properties

FIXED POINT

Fixed point Theorems in CAT(k) spaces

N-DIMENSIONAL SPHERE

The n-dimensional sphere \mathbb{S}^n is the set of points $\{x = (x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} \mid (x|x) = 1\}$, where $(\cdot|\cdot)$ denote the Euclidean scalar product.

イロト イ部ト イミト イミト

1

Salobreña

Aurora Fernández León

Main tools

Geodesic space The three main

The model spaces M_{c}^{a}

Metric spaces of bounded curvaturi

 $\operatorname{CAT}(k)$ spaces

Some common properties

FIXED POINT

Fixed point Theorems in CAT(k) spaces

N-DIMENSIONAL SPHERE

The n-dimensional sphere \mathbb{S}^n is the set of points $\{x = (x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} \mid (x|x) = 1\}$, where $(\cdot|\cdot)$ denote the Euclidean scalar product.

DEFINITION OF THE SPHERICAL METRIC

Let $d : \mathbb{S}^n \times \mathbb{S}^n \to \mathbb{R}$ be the function that assigns to each pair of points A and B in the sphere the unique real number $d(A, B) \in [0, \pi]$ such that $\cos(d(\mathbf{A}, \mathbf{B})) = (\mathbf{A}|\mathbf{B})$.

• This new function, the Spherical distance, is a metric.

Spherical space

 (\mathbb{S}^n, d) is called Spherical space and is a geodesic metric space.

< ロ > < 部 > < き > < き > ...

Salobreña

Aurora Fernández León

Main tools

Geodesic space

MODEL SPACES

The model spaces M_k^a

Metric spaces of bounded curvature

CAT(k) spaces

Some common properties

FIXED POINT

Fixed point Theorems in CAT(k) spaces

SPHERICAL TRIANGLE

Spherical triangle \triangle in \mathbb{S}^n :

- Three different points p,q, and r in \mathbb{S}^n (vertices)
- Three Spherical segments joining them pairwise.

FIGURA: Spherical triangle \mathbb{P} , we have \mathbb{P} , \mathbb{P}

Aurora Fernández León SALOBREÑA

Salobreña

Aurora Fernández León

Main tools

Geodesic space

The three main model spaces

The model spaces M_k^a

Metric spaces of bounded curvatur

CAT(k) spaces

Some common properties

FIXED POINT

Fixed point Theorems in CAT(k) spaces

Characteristics:

 If A and B are two points in (Sⁿ, d) such that d(A, B) < π, then there exists a unique geodesic joining A to B.

Image: Image:

▶ < ≣ ▶

 Any open (resp. closed) ball of radius r ≤ π/2 (resp. r < π/2) in (Sⁿ, d) is convex.

Salobreña

Aurora Fernández León

MAIN TOOLS

Geodesic space

THE THREE MAIN MODEL SPACES

The model spaces M_k^a

Metric spaces of bounded

CAT(k) SPACES

Some common properties

Fixed point

Fixed point Theorems in CAT(k) spaces • $E^{n,1}$: vector space \mathbb{R}^{n+1} endowed with the symmetric bilinear form that associates to vector u and v the real number

$$\langle u|v\rangle = -u_{n+1}v_{n+1} + \sum_{i=1}^n u_iv_i.$$

◆□▶ ◆聞▶ ◆理▶ ◆理▶ -

1

The upper sheet of the real hyperboloid

The upper sheet of the real hyperboloid, denoted by $\mathbb{H}^n,$ is the set of points

$$\{u = (u_1, \ldots, u_{n+1}) \in E^{n,1} | \langle u | u \rangle = -1 \text{ and } u_{n+1} > 0 \}.$$

Salobreña

Aurora Fernández León

Main tools

Geodesic spaces The three main

The model spaces M_k^a

Metric spaces of bounded curvature

SOME COMMON

FIXED POINT

Fixed point Theorems in CAT(k) spaces

- ► Hyperbolic metric.
- unique non-negative number d(A, B) ≥ 0 such that cosh d(A, B) = -⟨A|B⟩.
- (\mathbb{H}^n, d) will be called the hyperbolic space.

PROPOSITION

The Hyperbolic space (\mathbb{H}^n, d) is a geodesic metric space.

《曰》《卽》《臣》《臣》

2

Salobreña

Aurora Fernández León

Main tools

Geodesic space

MODEL SPACES

The model spaces M_k^a

Metric spaces of bounded curvature

CAT(k) SPACES

PROPERTIES

Fixed point

Fixed point Theorems in CAT(k) spaces

HYPERBOLIC TRIANGLE

Hyperbolic triangle \triangle in \mathbb{H}^n :

- Three different points p,q, and r in \mathbb{H}^n (vertices)
- Three Hyperbolic segments joining them pairwise.

FIGURA: Hyperbolic triangle

Aurora Fernández León SALOBREÑA

Salobreña

Aurora Fernández León

MAIN TOOLS

Geodesic space The three main

MODEL SPACES

Metric spaces of

CURVATURE

CAT(k) spaces

Some common properties

Fixed point

Fixed point Theorems in CAT(k) spaces

Characteristics:

• \mathbb{H}^n is a uniquely geodesic metric space .

イロト イ団ト イヨト イヨト

2

• All balls in \mathbb{H}^n are convex.

Contents

Salobreña

Aurora Fernández León

MAIN TOOLS

- Geodesic spaces
- The three main model spaces
- The model spaces M_k^n

METRIC SPACES OF BOUNDED CURVATURE

< 口 > < 同

- CAT(k) spaces
- Some common properties

3) FIXED POINT

• Fixed point Theorems in CAT(k) spaces

The model spaces M_k^n

Salobreña

Aurora Fernández León

MAIN TOOLS Geodesic spaces The three main model spaces

The model spaces M_{ν}^{a}

METRIC SPACES OF BOUNDED CURVATURE CAT(k) spaces Some common properties

FIXED POINT

Fixed point Theorems in CAT(k) spaces

Let k be a real number.

MODEL SPACES M_{k}^{n}

- (1) If k = 0, M_0^n is the Euclidean space \mathbb{E}^n ;
- (2) If k > 0, M_k^n is obtained from the Spherical space \mathbb{S}^n by multiplying the distance function by $1/\sqrt{k}$;

(3) If k < 0, M_k^n is obtained from the Hyperbolic space \mathbb{H}^n by multiplying the distance function by $1/\sqrt{-k}$.

◆□▶ ◆聞▶ ◆理▶ ◆理▶ -

- $\mathbb{E}^n = M_0^n$,
- $\mathbb{S}^n = M_1^n$,
- $\mathbb{H}^n = M_{-1}^n$.

Model spaces M_k^n

Salobreña

Aurora Fernández León

Main tools

Geodesic space The three main model spaces

The model spaces $M_k^{''}$

METRIC SPACES OF BOUNDED CURVATURI CAT(k) SPACE SOME COMMON

Fixed point

Fixed point Theorems in CAT(k) spaces

PROPERTIES

• M_k^n is a geodesic metric space.

(1) If $k \le 0$

- M_k^n is uniquely geodesic.
- All balls in M_k^n are convex.

(2) If k > 0

- M_k^n is π/\sqrt{k} -uniquely geodesic.
- Closed balls in M_k^n of radius $r < \pi/(2\sqrt{k})$ are convex.

(3) If D_k denote the diameter of M_k^n :

$$D_k = \pi/\sqrt{k}$$
 if $k > 0$.
 $D_k = \infty$ if $k \le 0$.

CONTENTS

Salobreña

Aurora Fernández León

Main tools

Geodesic spaces The three main model spaces

The model spaces M_k^a

Metric spaces of bounded curvatur

CAT(k) SPACES

Some common properties

FIXED POINT

Fixed point Theorems in CAT(k) spaces

MAIN TOOLS

- Geodesic spaces
- The three main model spaces
- The model spaces M_k^n
- METRIC SPACES OF BOUNDED CURVATURE
 - CAT(k) spaces
 - Some common properties

FIXED POINT

• Fixed point Theorems in CAT(k) spaces

< 口 > < 同

▶ < ≣ ▶

How to compare?

SALOBREÑA

Aurora Fernández León

MAIN TOOLS GEODESIC SPACES THE THREE MAIN MODEL SPACES

The model spaces $M_k^{''}$

Metric spaces of bounded curvaturi

CAT(k) spaces

Some common properties

Fixed point

Fixed point Theorems in CAT(k) spaces

TRIANGLE OF COMPARISON IN M_k^2

A comparison triangle in M_k^2 of a geodesic triangle \triangle in (M, d) is a triangle in M_k^2 with vertices $\bar{p}, \bar{q}, \bar{r}$ such that $d(p,q) = d(\bar{p}, \bar{q}), d(q,r) = d(\bar{q}, \bar{r}) \ y \ d(p,r) = d(\bar{p}, \bar{r}).$

► This triangle always exits (if k > 0 we have to assume that d(p,q) + d(q,r) + d(r,p) < 2D_k).

イロト イ部ト イミト イミト

- ▶ It is unique up to an isometry in M_k^2 .
- We will denote it as $\overline{\bigtriangleup}(p,q,r)$ or $\bigtriangleup(\bar{p},\bar{q},\bar{r})$.

Salobreña

Aurora Fernández León

CAT(k) inequality. Comparison axiom

Main tools

Geodesic spaces The three main model spaces

The model spaces M_k^a

Metric spaces of bounded curvatur

 $\operatorname{CAT}(k)$ spaces

Some common properties

FIXED POINT

Fixed point Theorems in CAT(k) spaces

Aurora Fernández León SALOBREÑA

イロト イポト イヨト イヨト 二日

Salobreña

Aurora Fernández León

Main tools

Geodesic spaces The three main model spaces

The model spaces M_k^{α}

METRIC SPACES OF BOUNDED

CAT(k) spaces

Some common properties

FIXED POINT

Fixed point Theorems in CAT(k) spaces

CAT(k) INEQUALITY. COMPARISON AXIOM

- (M, d) metric space.
- k real number.
- \triangle geodesic triangle in *M* which perimeter is less than $2D_k$.

《曰》《卽》《臣》《臣》

2

• $\overline{\bigtriangleup} \subseteq M_k^2$ a comparison triangle for \bigtriangleup .

Salobreña

Aurora Fernández León

Main tools

Geodesic spaces The three main model spaces

The model spaces M_k^a

Metric spaces of bounded curvatur

CAT(k) SPACES

Some common properties

Fixed point

Fixed point Theorems in CAT(k) spaces

CAT(k) INEQUALITY. COMPARISON AXIOM

- (M, d) metric space.
- k real number.
- \triangle geodesic triangle in *M* which perimeter is less than $2D_k$.

◆□▶ ◆聞▶ ◆理▶ ◆理▶ -

2

• $\overline{\bigtriangleup} \subseteq M_k^2$ a comparison triangle for \bigtriangleup .

► \triangle satisfy the CAT(k) inequality if: $x, y \in \triangle$ $\overline{x}, \overline{y} \in \overline{\triangle}$ $d(x, y) \leq d(\overline{x}, \overline{y}).$

FIGURA: CAT(k) inequality

イロト イヨト イヨト イヨト

크

Salobreña

Aurora Fernández León

Main tools

Geodesic spaces The three main model spaces

The model spaces M_k^a

Metric spaces of bounded curvaturi

CAT(k) spaces

Some common properties

FIXED POINT

Fixed point Theorems in CAT(k) spaces

CAT(k) SPACE

メロト メポト メオト メオト

크

Salobreña

Aurora Fernández León

Main tools

Geodesic spaces The three main model spaces

The model spaces M_k^{σ}

Metric spaces of bounded curvatur

CAT(k) spaces

Some common properties

FIXED POINT

Fixed point Theorems in CAT(k) spaces

CAT(k) SPACE

- *M* is a CAT(*k*) space for $k \leq 0$ if:
 - *M* is a geodesic space.
 - All its geodesic triangles satisfy the CAT(k) inequality.
- *M* is a CAT(k) space for k > 0 if:
 - *M* is *D_k*-geodesic.
 - All geodesic triangles in *M* of perimeter less than 2D_k satisfy the CAT(k) inequality.

Image: A matrix and a matrix

Salobreña

Aurora Fernández León

MAIN TOOLS Geodesic spaces The three main model spaces

The model spaces M_k^a

Metric spaces of bounded curvature

 $\operatorname{CAT}(k)$ spaces

Some common properties

FIXED POINT

Fixed point Theorems in CAT(k) spaces

METRIC SPACES OF CURVATURE BOUNDED ABOVE

(M, d) is said to be of curvature $\leq k$ (or M is of curvature bounded above by k) if it is locally a CAT(k) space , i.e., if $\forall x \in M, \exists r_x > 0 / B(x, r_x)$ is a CAT(k).

イロト イ部ト イミト イミト

1

Salobreña

Aurora Fernández León

MAIN TOOLS Geodesic spaces The three main model spaces

The model spaces M_k^a

Metric spaces of bounded curvature

CAT(k) SPACES

Some common properties

Fixed point

Fixed point Theorems in CAT(k) spaces

Metric spaces of curvature bounded above

(M, d) is said to be of curvature $\leq k$ (or M is of curvature bounded above by k) if it is locally a CAT(k) space , i.e., if $\forall x \in M, \exists r_x > 0 / B(x, r_x)$ is a CAT(k).

イロト イ部ト イミト イミト

1

THEOREM

 $CAT(k) \Rightarrow CAT(k') \forall k' \geq k.$

Salobreña

Aurora Fernández León

MAIN TOOLS

Geodesic spaces The three main model spaces

The model spaces M_k^{n}

Metric spaces of bounded curvatur

CAT(k) SPACES

Some common properties

FIXED POINT

Fixed point Theorems in CAT(k) spaces

INHERITED PROPERTIES

In a CAT(k) space,

 there exists just one geodesic segment between each pair of points (each pair of points with d(x, y) < D_k when k > 0).

《曰》《卽》《臣》《臣》

2

• the balls with radio $r < D_k/2$ are convex.

CONTENTS

Salobreña

Aurora Fernández León

Main tools

Geodesic spaces The three main model spaces

The model spaces $M_k^{\prime\prime}$

Metric spaces of bounded curvatur

CAT(k) spaces

Some common properties

Fixed point

Fixed point Theorems in CAT(k) spaces

MAIN TOOLS

- Geodesic spaces
- The three main model spaces
- The model spaces M_k^n
- METRIC SPACES OF BOUNDED CURVATURE
 - CAT(k) spaces
 - Some common properties

FIXED POINT

• Fixed point Theorems in CAT(k) spaces

< 口 > < 同

▶ ∢ ≣ ▶

Let a Hadamard space be a complete CAT(0) space. SALOBREÑA

イロト イヨト イヨト イヨト

3

COMMON PROPERTIES

Salobreña

Aurora Fernández León

Main tools

Geodesic spaces The three main model spaces

The model spaces M_k^{n}

Metric spaces of bounded curvaturi

 $\operatorname{CAT}(k)$ spaces

Some common properties

FIXED POINT

Fixed point Theorems in CAT(k) spaces

Hadamard and uniformly convex Banach spaces

Aurora Fernández León SALOBREÑA

크

COMMON PROPERTIES

Salobreña

Aurora Fernández León

MAIN TOOLS Geodesic spaces The three main model spaces

The model space M_k^a

Metric spaces of bounded curvatur

 $\operatorname{CAT}(k)$ spaces

Some common properties

Fixed point

Fixed point Theorems in CAT(k) spaces

Hadamard and uniformly convex Banach spaces

- Closed and convex subsets are uniquely proximal,
- Decreasing sequences of bounded closed and convex subsets have nonempty intersection, and
- The spaces have normal structure (in fact, uniform normal structure).

 $\begin{cases} & \text{Normal structure } : rad(K) < diam(K) \\ & \text{Uniform normal structure } : rad(K) \le cdiam(K), c < 1. \\ & \text{Hadamard and Hilbert spaces} \end{cases}$

COMMON PROPERTIES

Salobreña

Aurora Fernández León

MAIN TOOLS Geodesic spaces The three main model spaces

The model spaces M_k^a

Metric spaces of bounded curvaturi

CAT(k) SPACES SOME COMMON

Fixed point

Fixed point Theorems in CAT(k) spaces

Hadamard and uniformly convex Banach spaces

- Closed and convex subsets are uniquely proximal,
- Decreasing sequences of bounded closed and convex subsets have nonempty intersection, and
- The spaces have normal structure (in fact, uniform normal structure).

 $\begin{cases} & \text{Normal structure } : rad(K) < diam(K) \\ & \text{Uniform normal structure } : rad(K) \le cdiam(K), c < 1. \\ & \text{Hadamard and Hilbert spaces} \end{cases}$

• Orthogonal projection of points onto closed and convex subsets are nonexpansive.

CONTENTS

Salobreña

Aurora Fernández León

Main tools

Geodesic spaces The three main model spaces

The model spaces M_k^a

Metric spaces of bounded curvaturi

CAT(k) Space

Some common properties

Fixed point

Fixed point Theorems in CAT(k) spaces

MAIN TOOLS

- Geodesic spaces
- The three main model spaces
- The model spaces M_k^n

METRIC SPACES OF BOUNDED CURVATURE

- CAT(k) spaces
- Some common properties

3 Fixed point

• Fixed point Theorems in CAT(k) spaces

< 口 > < 同

▶ < ≣ ▶

MAPPINGS

Salobreña

Aurora Fernández León

MAIN TOOLS Geodesic spaces The three main model spaces

The model spaces M_k^a

Metric spaces of bounded curvature

CAT(k) spaces

Some common properties

Fixed point

Fixed point Theorems in CAT(k) spaces

DEFINITION (NONEXPANSIVE MAPPING)

A mapping $T : X \to X$ is said to be nonexpansive if $d(T(x), T(y)) \le d(x, y)$ for all $x, y \in X$.

DEFINITION (UNIFORMLY L-LIPSCHITZIAN MAPPING)

A mapping $T : X \to X$ is said to be uniformly L-lipschitzian if there exists a constant L such that $d(T^nx, T^ny) \leq Ld(x, y)$ for all $x, y \in X$ and $n \in \mathbb{N}$.

《曰》《卽》《臣》《臣》

CAT(0) and CAT(1)

Salobreña

Aurora Fernández León

Main tools

Geodesic spaces The three main model spaces

The model spaces M_k^{α}

Metric spaces of bounded curvature

Some common PROPERTIES

Fixed point

Fixed point Theorems in CAT(k) spaces

Theorem (W.A. Kirk (2002))

- M a Hadamard space.
- K a nonempty bounded closed and convex subset of M.
- $f: K \rightarrow K$ a nonexpansive mapping.
- ▶ f has a fixed point in K.

THEOREM (W.A. KIRK(2002); ESPÍNOLA, F-L(2009))

- *M* a complete *CAT*(1) space such that $diam(M) \le \pi$
- K a nonempty closed and convex subset of M such that rad_X(K) < π/2.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- $T: K \to K$ a nonexpansive mapping
- T has at least one fixed point in K.

THE LIFŠIC CHARACTERISTIC

Salobreña

Aurora Fernández León

B

MAIN TOOLS Geodesic spaces

MODEL SPACES THE MODEL SPACES M^n

METRIC SPACES OF BOUNDED CURVATURE CAT(k) SPACE

Some common properties

Fixed point

Fixed point Theorems in CAT(k) spaces

alls in X are said to be
$$c - regular$$
 if
 $\forall s < c \exists \mu, \alpha \in (0, 1)$ such that
• if $x, y \in X$ and $r > 0$ with $d(x, y) \ge (1 - \mu)r$,
• $\exists z \in X$ such that

$$B(x;(1+\mu)r)\bigcap B(y;s(1+\mu)r)\subset B(z;\alpha r).$$

DEFINITION

c – regular BALLS

The Lifšic characteristic $\kappa(X)$ of X is defined as:

$$\kappa(X) = \sup\{c \ge 1 : \text{ balls in } X \text{ are } c\text{-regular}\}.$$

イロト イヨト イヨト イヨト

臣

FIXED POINT IN uniformly L-lipschitzian mappings

Salobreña

Aurora Fernández León

MAIN TOOLS Geodesic spaces The three main model spaces The model spaces

METRIC SPACES OF BOUNDED CURVATURE CAT(k) spaces Some common

Fixed point

Fixed point Theorems in CAT(k) spaces

THEOREM (E.A. LIFŠIC (1975))

Let (X, d) be a bounded complete metric space. Then every uniformly L-lipschitzian mapping $T : X \to X$ with $L < \kappa(X)$ has a fixed point.

- Previous conjeture of "S. Dhompongsa, W.A. Kirk, Brailey Sims - Fixed points of uniformly lipschitzian mappings":
- Lifšic characteristic of a CAT(k) with constant curvature k for k < 0 is a continuous decreasing function which takes values in (√2, 2).

イロト イヨト イヨト イヨト

FIXED POINT IN uniformly L-lipschitzian mappings

Salobreña

Aurora Fernández León

MAIN TOOLS GEODESIC SPACES THE THREE MAIN MODEL SPACES THE MODEL SPACES

The model spaces M_k^a

METRIC SPACES OF BOUNDED CURVATURI CAT(k) space

Some common properties

Fixed point

Fixed point Theorems in CAT(k) spaces

Proposition (Espínola, F-L(2009))

$$f \ k < 0$$
, $\kappa(M_k^2) = rac{\operatorname{arccosh}(\cosh^2 \sqrt{-k})}{\sqrt{-k}}.$

Proposition (Espínola, F-L(2009))

Let k < 0. If (X, d) is a complete CAT(k) space, then $\kappa(X) \ge \kappa(M_k^2)$.

THEOREM (ESPÍNOLA, F-L(2009))

Let k < 0. If (X, d) is a bounded complete CAT(k), then every uniformly L-lipschitzian mapping $T : X \to X$ with $L < \kappa(M_k^2)$ has a fixed point.

イロト イヨト イヨト イヨト

크

Salobreña

Aurora Fernández León

Main tools

Geodesic spaces The three main model spaces

The model spaces M_k^a

Metric spaces of bounded curvatur:

Some common

FIXED POINT

Fixed point Theorems in CAT(k) spaces

THANKS FOR YOUR ATTENTION.

• For more details :

R. Espínola and A. Fernández–León, *CAT(k)–spaces, weak* convergence and fixed points, J. Math. Anal. Appl. (1) **353** (2009), 410–427.

《曰》《卽》《臣》《臣》

2