La constante de isotropía de politopos

David Alonso Gutiérrez

Universidad de Zaragoza

Abril 2009

Introducción

- Introducción
- Isotropía

- Introducción
- Isotropía
- Politopos aleatorios

- Introducción
- Isotropía
- Politopos aleatorios
- Proyecciones de B_1^N

- Introducción
- Isotropía
- Politopos aleatorios
- Proyecciones de B_1^N
- Politopos aleatorios con vértices en la esfera.

 En la primera mitad del siglo XX el análisis funcional había desarrollado técnicas para el estudio de los espacios de dimensión infinita.

- En la primera mitad del siglo XX el análisis funcional había desarrollado técnicas para el estudio de los espacios de dimensión infinita.
- En los años 70 se intentaron estudiar los espacios de dimensión infinita a través del estudio de propiedades de espacios de dimensión n cuando n tiende a infinito (tipo, cotipo...) y se empezó a a utilizar la probabilidad para el estudio de los espacios de dimensión finita.

- En la primera mitad del siglo XX el análisis funcional había desarrollado técnicas para el estudio de los espacios de dimensión infinita.
- En los años 70 se intentaron estudiar los espacios de dimensión infinita a través del estudio de propiedades de espacios de dimensión n cuando n tiende a infinito (tipo, cotipo...) y se empezó a a utilizar la probabilidad para el estudio de los espacios de dimensión finita.
- La teoría local de los espacios normados estudia las propiedades de la estructura de los espacios de Banach de dimensión finita y sus propiedades asintóticas cuando la dimensión tiende a infinito.

Teorema de Dvoretzky

Teorema Dvoretzky

 l_2 es finitamente representable en todo espacio de Banach X.

Teorema de Dvoretzky

Teorema Dvoretzky

 I_2 es finitamente representable en todo espacio de Banach X.

Teorema Dvoretzky

Sea $(\mathbb{R}^N, \|\cdot\|)$. Para todo $\varepsilon \in (0,1)$ existe un subespacio E con $\dim E = n \ge c(\varepsilon) \log N$ tal que si $x \in E$

$$(1-\varepsilon)r|x| \leq ||x|| \leq (1+\varepsilon)r|x|$$

Teorema de Dvoretzky

Teorema Dvoretzky

 l_2 es finitamente representable en todo espacio de Banach X.

Teorema Dvoretzky

Sea $(\mathbb{R}^N, \|\cdot\|)$. Para todo $\varepsilon \in (0,1)$ existe un subespacio E con $\dim E = n \ge c(\varepsilon) \log N$ tal que si $x \in E$

$$(1-\varepsilon)r|x| \le ||x|| \le (1+\varepsilon)r|x|$$

Teorema Dvoretzky

Sea K la bola unidad de una norma en \mathbb{R}^N . Para todo $\varepsilon \in (0,1)$, la medida de probabilidad de los subespacios E de dimensión n que verifican

$$(1-\varepsilon)r(B_2^N\cap E)\subseteq K\cap E\subseteq (1+\epsilon)r(B_2^n\cap E)$$

es mayor o igual que $1 - \frac{c_1}{N^{c_2}}$ si $n \le c(\varepsilon) \log N$.

• Un subconjunto $K \subset \mathbb{R}^n$ es un cuerpo convexo si es convexo, compacto y tiene interior no vacío.

- Un subconjunto $K \subset \mathbb{R}^n$ es un cuerpo convexo si es convexo, compacto y tiene interior no vacío.
- La teoría local y la convexidad están estrechamente relacionadas:
 - La bola unidad de toda norma en \mathbb{R}^n es un cuerpo convexo simétrico.
 - Todo cuerpo convexo simétrico es la bola unidad de la norma dada por

$$\|x\|_K=\inf\{\lambda>0\,:\,x\in\lambda K\}$$

- Un subconjunto $K \subset \mathbb{R}^n$ es un cuerpo convexo si es convexo, compacto y tiene interior no vacío.
- La teoría local y la convexidad están estrechamente relacionadas:
 - La bola unidad de toda norma en \mathbb{R}^n es un cuerpo convexo simétrico.
 - Todo cuerpo convexo simétrico es la bola unidad de la norma dada por

$$||x||_{\mathcal{K}} = \inf\{\lambda > 0 : x \in \lambda \mathcal{K}\}$$

• La interacción entre los métodos utilizados en geometría convexa y la teoría local dio lugar a lo que se conoce como análisis geométrico asintótico.

Un cuerpo convexo $K\subseteq\mathbb{R}^n$ es isotrópico si tiene volumen 1 y

- $\int_K x dx = 0$ (centrado en el origen)
- $\int_K \langle x, \theta \rangle^2 dx = L_K^2 \quad \forall \theta \in S^{n-1}$

Un cuerpo convexo $K\subseteq\mathbb{R}^n$ es isotrópico si tiene volumen 1 y

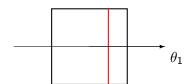
- $\int_K x dx = 0$ (centrado en el origen)
- $\int_K \langle x, \theta \rangle^2 dx = L_K^2 \quad \forall \theta \in S^{n-1}$

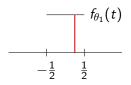
Un cuerpo convexo $K\subseteq\mathbb{R}^n$ es isotrópico si tiene volumen 1 y

- $\int_K x dx = 0$ (centrado en el origen)
- $\int_K \langle x, \theta \rangle^2 dx = L_K^2 \quad \forall \theta \in S^{n-1}$

Un cuerpo convexo $K\subseteq\mathbb{R}^n$ es isotrópico si tiene volumen 1 y

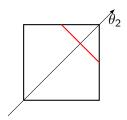
- $\int_K x dx = 0$ (centrado en el origen)
- $\int_{K} \langle x, \theta \rangle^2 dx = L_K^2 \quad \forall \theta \in S^{n-1}$

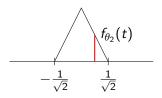




Un cuerpo convexo $K\subseteq\mathbb{R}^n$ es isotrópico si tiene volumen 1 y

- $\int_K x dx = 0$ (centrado en el origen)
- $\int_{K} \langle x, \theta \rangle^2 dx = L_K^2 \quad \forall \theta \in S^{n-1}$

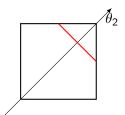


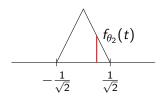


Un cuerpo convexo $K\subseteq\mathbb{R}^n$ es isotrópico si tiene volumen 1 y

- $\int_K x dx = 0$ (centrado en el origen)
- $\int_{K} \langle x, \theta \rangle^2 dx = L_K^2 \quad \forall \theta \in S^{n-1}$

Es decir, dado un cuerpo convexo K centrado en el origen, consideramos, para cada $\theta \in S^{n-1}$ la variable aleatoria real X_{θ} con densidad $f_{\theta}(t) = |K \cap \theta^{\perp} + t\theta|$.





K es isotrópico si todas las X_{θ} tienen la misma varianza.

• Si K es isotrópico, la constante $L_K = \left(\int_K \langle x, \theta \rangle^2 dx\right)^{\frac{1}{2}}$ se llama constante de isotropía de K.

- Si K es isotrópico, la constante $L_K = \left(\int_K \langle x, \theta \rangle^2 dx\right)^{\frac{1}{2}}$ se llama constante de isotropía de K.
- Si K es isotrópico y $U \in O(n)$, UK es isotrópico con $L_{UK} = L_K$.

- Si K es isotrópico, la constante $L_K = \left(\int_K \langle x, \theta \rangle^2 dx\right)^{\frac{1}{2}}$ se llama constante de isotropía de K.
- Si K es isotrópico y $U \in O(n)$, UK es isotrópico con $L_{UK} = L_K$.
- Si K es un cuerpo convexo simétrico, existe una transformación lineal T tal que TK es isotrópico. Si T_1K y T_2K son isotrópicos, entonces $T_1 = UT_2$ con $U \in O(n)$.

- Si K es isotrópico, la constante $L_K = \left(\int_K \langle x, \theta \rangle^2 dx\right)^{\frac{1}{2}}$ se llama constante de isotropía de K.
- Si K es isotrópico y $U \in O(n)$, UK es isotrópico con $L_{UK} = L_K$.
- Si K es un cuerpo convexo simétrico, existe una transformación lineal T tal que TK es isotrópico. Si T_1K y T_2K son isotrópicos, entonces $T_1 = UT_2$ con $U \in O(n)$.
- Esto permite definir la constante de isotropía de un cuerpo convexo simétrico como $L_K = L_{TK}$ con TK isotrópico.

• Si K es isotrópico $nL_K^2 = \int_K |x|^2 dx$.

- Si K es isotrópico $nL_K^2 = \int_K |x|^2 dx$.
- Si $|K|^{-\frac{1}{n}}K$ es isotrópico $nL_K^2 = \frac{1}{|K|^{1+\frac{2}{n}}} \int_K |x|^2 dx$.

- Si K es isotrópico $nL_K^2 = \int_K |x|^2 dx$.
- Si $|K|^{-\frac{1}{n}}K$ es isotrópico $nL_K^2 = \frac{1}{|K|^{1+\frac{2}{n}}} \int_K |x|^2 dx$.
- $nL_K^2 = \min \left\{ \frac{1}{|TK|^{1+\frac{2}{n}}} \int_{TK} |x|^2 dx : T \in GL(n) \right\}.$

$$L_{\mathcal{K}} \geq L_{B_2^n} = \frac{1}{\sqrt{n+2}|B_2^n|^{\frac{1}{n}}} \geq c.$$

$$L_K \ge L_{B_2^n} = \frac{1}{\sqrt{n+2}|B_2^n|^{\frac{1}{n}}} \ge c.$$

CONJETURA

¿Existe una constante absoluta ${\it C}$ tal que para todo cuerpo convexo ${\it K}$ se tenga

$$L_K < C$$
?

$$L_{\mathcal{K}} \ge L_{B_2^n} = \frac{1}{\sqrt{n+2|B_2^n|^{\frac{1}{n}}}} \ge c.$$

CONJETURA

¿Existe una constante absoluta ${\it C}$ tal que para todo cuerpo convexo ${\it K}$ se tenga

$$L_K < C$$
?

Se sabe que es cierto para algunas clases de cuerpos convexos (incondicionales, duales de cuerpos con el volumen ratio acotado, 2 convexos,...)

CONJETURA

¿Existe una constante ${\it C}$ tal que para todo cuerpo convexo de volumen 1

$$\max_{\theta \in S^{n-1}} |K \cap \theta^{\perp}| > C?$$

CONJETURA

¿Existe una constante ${\it C}$ tal que para todo cuerpo convexo de volumen 1

$$\max_{\theta \in S^{n-1}} |K \cap \theta^{\perp}| > C?$$

Si
$$|K| = 1$$

• Existe $\theta \in S^{n-1}$ con $\int_K \langle x, \theta \rangle^2 dx \leq L_K^2$

CONJETURA

¿Existe una constante $\it C$ tal que para todo cuerpo convexo de volumen $\it 1$

$$\max_{\theta \in S^{n-1}} |K \cap \theta^{\perp}| > C?$$

Si
$$|K| = 1$$

- Existe $\theta \in S^{n-1}$ con $\int_K \langle x, \theta \rangle^2 dx \le L_K^2$
- $\forall \theta \in S^{n-1}$, $\int_K \langle x, \theta \rangle^2 dx \sim \frac{1}{|K \cap \theta^{\perp}|^2}$

• Del teorema de John se deduce que si K es un cuerpo convexo simétrico $L_K \leq C\sqrt{n}$.

- Del teorema de John se deduce que si K es un cuerpo convexo simétrico $L_K \leq C\sqrt{n}$.
- Bourgain probó en 1991 que si K es simétrico $L_K \leq C n^{\frac{1}{4}} \log n$.

Isotropía

- Del teorema de John se deduce que si K es un cuerpo convexo simétrico $L_K \leq C\sqrt{n}$.
- Bourgain probó en 1991 que si K es simétrico $L_K \leq C n^{\frac{1}{4}} \log n$.
- En 2006 Klartag demostró que la constante de isotropía de cualquier
 K verifica

$$L_K \leq Cn^{\frac{1}{4}}$$

.

Isotropía

Se empezó a estudiar la constante de isotropía de politopos aleatorios

Isotropía

Se empezó a estudiar la constante de isotropía de politopos aleatorios

Teorema [Klartag-Kozma]

Sean G_0, \ldots, G_N vectores aleatorios $\mathcal{N}(0,1)$ independientes en \mathbb{R}^n , $N \geq n$. Si

$$K=\operatorname{conv}\{\pm \textit{G}_0,\ldots,\pm \textit{G}_N\}$$

con probabilidad mayor que $1 - Ce^{-cn}$

$$L_K < C$$
.

√ volver

Probabilidad en $G_{N,n}$

• En $G_{N,n} = \{E \subseteq \mathbb{R}^N : E \text{ subespacio } n\text{-dimensional}\}$ existe una única medidad de probabilidad, $\mu_{N,n}$ (medida de Haar) invariante por transformaciones ortogonales.

Probabilidad en $G_{N,n}$

- En $G_{N,n} = \{E \subseteq \mathbb{R}^N : E \text{ subespacio } n\text{-dimensional}\}$ existe una única medidad de probabilidad, $\mu_{N,n}$ (medida de Haar) invariante por transformaciones ortogonales.
- Si $G \in \mathcal{M}(N \times n)$ es una matriz aleatoria cuyas entradas g_{ij} son variables aleatorias independientes $\mathcal{N}(0,1)$

$$\mu_{N,n}(A) = \mathbb{P}\{\text{Im } G \in A\}$$

para cualquier A Boreliano en $G_{N,n}$

• Si $G \in \mathcal{M}(N \times n)$ y $E = \operatorname{Im} G \in G_{N,n}$ se tiene que

$$G_{\mid E}^t P_E B_1^N = \operatorname{conv}\{\pm G_1, \dots, \pm G_N\}$$

donde G_i son las filas de G.

• Si $G \in \mathcal{M}(N \times n)$ y $E = \operatorname{Im} G \in G_{N,n}$ se tiene que

$$G_{\mid E}^t P_E B_1^N = \operatorname{conv}\{\pm G_1, \dots, \pm G_N\}$$

donde G_i son las filas de G.

El resultado de Klartag y Kozma ○KK se puede leer como

$$\mu_{N,n}\{E \in G_{N,n} : L_{P_E B_1^N} < C\} > 1 - Ce^{-cn}$$

• Si $G \in \mathcal{M}(N \times n)$ y $E = \operatorname{Im} G \in G_{N,n}$ se tiene que

$$G_{\mid E}^t P_E B_1^N = \operatorname{conv}\{\pm G_1, \dots, \pm G_N\}$$

donde G_i son las filas de G.

El resultado de Klartag y Kozma → KK se puede leer como

$$\mu_{N,n}\{E \in G_{N,n} : L_{P_E B_1^N} < C\} > 1 - Ce^{-cn}$$

• Si $n < c \log N$ el teorema de Dvoretzky \bigcirc nos dice que

$$c_1W(B_1^N)B_2^n\subseteq P_EB_1^N\subseteq c_2W(B_1^N)B_2^n$$

con probabilidad mayor que $1-rac{c_1}{N^{c_2}}$

Preguntas

Esto plantea las siguientes preguntas

Preguntas

Esto plantea las siguientes preguntas

• "Casi todas" las proyecciones de B_1^N tienen la constante de isotropía acotada, pero ¿se puede decir algo determinista?

Preguntas

Esto plantea las siguientes preguntas

- "Casi todas" las proyecciones de B_1^N tienen la constante de isotropía acotada, pero ¿se puede decir algo determinista?
- Si considero politopos aleatorios con los vertices con otra distribución de probabilidad, ¿cómo es su constante de isotropía?

Todo espacio de Banach separable es isométrico a un cociente de l
 (Banach-Mazur).

• Todo cuerpo convexo simétrico $K \subseteq \mathbb{R}^n$ verifica que $\forall \varepsilon > 0$ existe $N \ge n$ y $E \in G_{N,n}$ tal que

$$(1-\varepsilon)P_{\mathsf{E}}B_1^{\mathsf{N}}\subseteq \mathsf{K}\subseteq (1+\varepsilon)P_{\mathsf{E}}B_1^{\mathsf{N}}$$

• Todo cuerpo convexo simétrico $K \subseteq \mathbb{R}^n$ verifica que $\forall \varepsilon > 0$ existe $N \ge n$ y $E \in G_{N,n}$ tal que

$$(1-\varepsilon)P_{\mathsf{E}}B_1^{\mathsf{N}}\subseteq \mathsf{K}\subseteq (1+\varepsilon)P_{\mathsf{E}}B_1^{\mathsf{N}}$$

• Si existiese C > 0 tal que $\forall n \leq N, \forall E \in G_{N,n}$

$$L_{P_EB_1^N} < C$$

• Todo cuerpo convexo simétrico $K \subseteq \mathbb{R}^n$ verifica que $\forall \varepsilon > 0$ existe $N \ge n$ y $E \in G_{N,n}$ tal que

$$(1-\varepsilon)P_{\mathsf{E}}B_1^{\mathsf{N}}\subseteq \mathsf{K}\subseteq (1+\varepsilon)P_{\mathsf{E}}B_1^{\mathsf{N}}$$

• Si existiese C>0 tal que $\forall n\leq N\,,\, \forall E\in \mathcal{G}_{N,n}$

$$L_{P_EB_1^N} < C$$

para cualquier $K \subseteq \mathbb{R}^n$ simétrico $\forall \varepsilon > 0$

$$L_K^2 \leq C^2 \frac{(1+\varepsilon)^n}{(1-\varepsilon)^{n+2}}$$

Teorema (Alonso, Bastero, Bernués, Wolff

Existe una constante C tal que para todo $E \in \mathcal{G}_{N,n}$

$$L_{P_E B_1^N} < C \sqrt{\frac{N}{n}}$$

Teorema (Alonso, Bastero, Bernués, Wolff

Existe una constante C tal que para todo $E \in G_{N,n}$

$$L_{P_E B_1^N} < C \sqrt{\frac{N}{n}}$$

Demostración:

$$nL_{P_EB_1^N}^2 \le \frac{1}{|P_EB_1^N|^{\frac{2}{n}}} \frac{1}{|P_EB_1^N|} \int_{P_EB_1^N} |x|^2 dx$$

$$\bullet \ \frac{1}{\sqrt{N}} B_2^N \subseteq B_1^N \qquad \Rightarrow \qquad \frac{1}{\sqrt{N}} P_E B_2^N \subseteq P_E B_1^N \qquad \Rightarrow \\ |P_E B_1^N|^{\frac{1}{n}} \ge \frac{c}{\sqrt{Nn}}$$

$$\bullet \ \, \frac{1}{\sqrt{N}}B_2^N \subseteq B_1^N \qquad \Rightarrow \qquad \frac{1}{\sqrt{N}}P_EB_2^N \subseteq P_EB_1^N \qquad \Rightarrow \\
|P_EB_1^N|^{\frac{1}{n}} \ge \frac{c}{\sqrt{Nn}}$$

Proposición

Sea $K \subseteq \mathbb{R}^N$ Un politopo convexo, $E \in G_{N,n}$. Existe un subconjunto $\tilde{\mathcal{F}}$ de $\mathcal{F}_n(K)$ tal que para cualquier función integrable $f: E \to \mathbb{R}$,

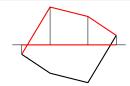
$$\int_{P_EK} f(x)dx = \sum_{F \in \tilde{\mathcal{F}}} \frac{|P_EF|}{|F|} \int_F f(P_Ey)dy.$$

$$\bullet \ \, \frac{1}{\sqrt{N}}B_2^N \subseteq B_1^N \qquad \Rightarrow \qquad \frac{1}{\sqrt{N}}P_EB_2^N \subseteq P_EB_1^N \qquad \Rightarrow \\ |P_EB_1^N|^{\frac{1}{n}} \ge \frac{c}{\sqrt{Nn}}$$

Proposición

Sea $K \subseteq \mathbb{R}^N$ Un politopo convexo, $E \in G_{N,n}$. Existe un subconjunto $\tilde{\mathcal{F}}$ de $\mathcal{F}_n(K)$ tal que para cualquier función integrable $f: E \to \mathbb{R}$,

$$\int_{P_EK} f(x)dx = \sum_{F \in \tilde{\mathcal{F}}} \frac{|P_EF|}{|F|} \int_F f(P_E y) dy.$$



$$\bullet |P_E B_1^N| = \sum_{F \in \tilde{\mathcal{F}}} |P_E F|$$

$$\bullet |P_E B_1^N| = \sum_{F \in \tilde{\mathcal{F}}} |P_E F|$$

$$\begin{array}{l} \bullet \ \, \frac{1}{|P_E B_1^N|} \int_{P_E B_1^N} |x|^2 dx = \sum_{F \in \tilde{\mathcal{F}}} \frac{|P_E F|}{|P_E B_1^N|} \frac{1}{|F|} \int_F |P_E y|^2 dy \leq \\ \max_{F \in \tilde{\mathcal{F}}} \frac{1}{|F|} \int_F |y|^2 dy \end{array}$$

$$\bullet |P_E B_1^N| = \sum_{F \in \tilde{\mathcal{F}}} |P_E F|$$

$$\frac{1}{|P_E B_1^N|} \int_{P_E B_1^N} |x|^2 dx = \sum_{F \in \tilde{\mathcal{F}}} \frac{|P_E F|}{|P_E B_1^N|} \frac{1}{|F|} \int_F |P_E y|^2 dy \le \max_{F \in \tilde{\mathcal{F}}} \frac{1}{|F|} \int_F |y|^2 dy$$

•
$$\frac{1}{|F|} \int_{F} |y|^2 dy = \frac{2}{n+2}$$

$$\bullet \ L^2_{P_E B_1^N} \leq C \frac{N}{n}$$

$$\bullet \ L^2_{P_E B_1^N} \le C \frac{N}{n}$$

Corolario

Sea K un politopo simétrico n-dimensional de 2N vértices. Entonces

$$L_{K} \leq C\sqrt{\frac{N}{n}}$$

Teorema

Sea $K = \text{conv}\{\pm P_1, \dots, \pm P_N\} \subseteq \mathbb{R}^n$ donde P_i son puntos aleatorios independientes distribuidos uniformemente sobre S^{n-1} . Entonces

$$L_K < C$$

Teorema

Sea $K = \text{conv}\{\pm P_1, \dots, \pm P_N\} \subseteq \mathbb{R}^n$ donde P_i son puntos aleatorios independientes distribuidos uniformemente sobre S^{n-1} . Entonces

$$L_K < C$$

con probabilidad mayor que $1 - c_1 e^{-c_2 n}$.

Demostración:

$$nL_K^2 \le \frac{1}{|K|^{\frac{2}{n}}} \frac{1}{|K|} \int_K |x|^2 dx$$

Lemma

Existe una constante C tal que si $Cn < N < ne^{\frac{n}{2}}$

$$\frac{1}{2\sqrt{2}}\sqrt{\frac{\log\frac{N}{n}}{n}}B_2^n\subseteq K$$

Lemma

Existe una constante C tal que si $Cn < N < ne^{\frac{n}{2}}$

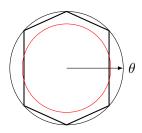
$$\frac{1}{2\sqrt{2}}\sqrt{\frac{\log\frac{N}{n}}{n}}B_2^n\subseteq K$$

con probabilidad mayor que $1 - e^{-n}$.

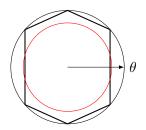
Demostración:

Con probabilidad 1 las caras de K son $\operatorname{conv}\{\varepsilon_1 P_{i_1}, \dots, \varepsilon_n P_{i_n}\}$ con $\varepsilon_i = \pm 1$.

Si $\alpha B_2^n \nsubseteq K$ entonces existe vector $\theta \in S^{n-1}$ ortogonal a una cara tal que $|\langle P_i, \theta \rangle| \leq \alpha$ para todo i.



Si $\alpha B_2^n \nsubseteq K$ entonces existe vector $\theta \in S^{n-1}$ ortogonal a una cara tal que $|\langle P_i, \theta \rangle| \leq \alpha$ para todo i.



$$\mathbb{P}\{\alpha B_2^n \nsubseteq K\} \le \binom{2N}{n} \mathbb{P}\{P \in S^{n-1} : |\langle P, \theta \rangle| \le \alpha\}^{N-n} \le e^{-n}$$

$$\text{si }\alpha = \tfrac{1}{2\sqrt{2}}\sqrt{\tfrac{\log \frac{N}{n}}{n}}$$

Lema

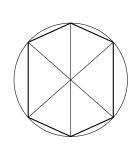
Existen constante c, C_1 , C_2 tal que si cn < N

$$\frac{1}{|K|} \int_K |x|^2 dx \le C_1 \frac{\log \frac{N}{n}}{n}$$

Lema

Existen constante c, C_1 , C_2 tal que si cn < N

$$\frac{1}{|K|} \int_K |x|^2 dx \le C_1 \frac{\log \frac{N}{n}}{n}$$

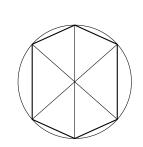


$$|n|K| = \sum_{i=1}^{l} d(0, F_i)|F_i|$$

Lema

Existen constante c, C_1 , C_2 tal que si cn < N

$$\frac{1}{|K|} \int_K |x|^2 dx \le C_1 \frac{\log \frac{N}{n}}{n}$$



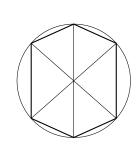
$$|n|K| = \sum_{i=1}^{l} d(0, F_i)|F_i|$$

$$\frac{1}{|K|} \int_{K} |x|^{2} = \frac{1}{|K|} \sum_{i=1}^{I} \frac{d(0, F_{i})}{n+2} \int_{F_{i}} |y|^{2} dy$$

Lema

Existen constante c, C_1 , C_2 tal que si cn < N

$$\frac{1}{|K|} \int_{K} |x|^2 dx \le C_1 \frac{\log \frac{N}{n}}{n}$$



$$|n|K| = \sum_{i=1}^{l} d(0, F_i)|F_i|$$

$$\frac{1}{|K|} \int_{K} |x|^{2} = \frac{1}{|K|} \sum_{i=1}^{I} \frac{d(0, F_{i})}{n+2} \int_{F_{i}} |y|^{2} dy$$

$$\frac{1}{|K|} \int_{K} |x|^2 \le \frac{n}{n+2} \max_{i=1,\dots,l} \frac{1}{|F_i|} \int_{F_i} |y|^2 dy$$

Si $cn < N < ne^{\frac{n}{2}}$

$$\bullet \ \frac{1}{|K|} \int_K |x|^2 dx \le C \frac{\log \frac{N}{n}}{n}$$

$$\bullet |K|^{\frac{1}{n}} \geq C \frac{\sqrt{\frac{N}{n}}}{n}$$

y en consecuencia $L_K < C$ con probabilidad mayor que $1 - c_1 e^{-c_2 n}$.

Si $cn < N < ne^{\frac{n}{2}}$

$$\bullet \ \frac{1}{|K|} \int_K |x|^2 dx \le C \frac{\log \frac{N}{n}}{n}$$

$$\bullet |K|^{\frac{1}{n}} \geq C \frac{\sqrt{\frac{N}{n}}}{n}$$

y en consecuencia $L_K < C$ con probabilidad mayor que $1 - c_1 e^{-c_2 n}$.

Si
$$N \leq cn$$

$$L_K < C$$

Si $cn < N < ne^{\frac{n}{2}}$

$$\bullet \ \frac{1}{|K|} \int_K |x|^2 dx \le C \frac{\log \frac{N}{n}}{n}$$

$$\bullet |K|^{\frac{1}{n}} \geq C \frac{\sqrt{\frac{N}{n}}}{n}$$

y en consecuencia $L_K < C$ con probabilidad mayor que $1 - c_1 e^{-c_2 n}$.

Si N < cn

$$L_K < C$$

Si $N > ne^{\frac{n}{2}}$

$$cB_2^n \subseteq K \subseteq B_2^n$$

con probabilidad mayor que $1 - e^{-n}$ para n suficientemente grande.