Perturbation Techniques for Nonexpansive Mappings with Applications

Victoria Martín

victoriam@us.es

Departamento de Análisis Matemático, Universidad de Sevilla

• INTRODUCTION: NOTIONS AND RESULTS.

MAIN RESULT.

• APPLICATIONS TO CONVEX AND OPTIMIZATION PROBLEM.

Problem

Problem

X real Banach space $C \in X$ nonempty closed convex subset $T: C \to C$ nonexpansive mapping $Fix(T) = \{x \in C: x = Tx\} \neq \emptyset$

find
$$x \in Fix(T)$$

Problem

X real Banach space $C \in X$ nonempty closed convex subset $T: C \to C$ nonexpansive mapping $Fix(T) = \{x \in C: x = Tx\} \neq \emptyset$

find
$$x \in Fix(T)$$

The aim is to define an algorithm which generates

$$\{x_n\}$$
 converging to $x \in Fix(T)$.

• X Banach space, $T: C \rightarrow X$ is nonexpansive if

$$||Tx - Ty|| \le ||x - y||, \ \forall x, y \in C.$$

• X Banach space, $T: C \rightarrow X$ is nonexpansive if

$$||Tx - Ty|| \le ||x - y||, \ \forall x, y \in C.$$

 $S: C \rightarrow X$ is averaged if

$$(1-\lambda)I + \lambda T$$
,

where $\lambda \in (0,1)$ and T is nonexpansive.

• X Banach space,

 $T: C \rightarrow X$ is nonexpansive if

$$||Tx - Ty|| \le ||x - y||, \ \forall x, y \in C.$$

 $S: C \rightarrow X$ is averaged if

$$(1-\lambda)I + \lambda T$$
,

where $\lambda \in (0, 1)$ and T is nonexpansive.

• H Hilbert space,

 $T: C \rightarrow H$ is firmly nonexpansive if

$$||Tx - Ty||^2 \le (x - y, Tx - Ty), \forall x, y \in C.$$

Metric Projection

Metric Projection

H Hilbert space,
 C ⊂ H closed convex.
 The metric projection onto C:

$$P_C(x) = \{ y \in C : d(x,y) = d(x,C) \}.$$

Metric Projection

• H Hilbert space, $C \subset H$ closed convex. The metric projection onto C:

$$P_C(x) = \{ y \in C : d(x, y) = d(x, C) \}.$$

Theorem. H Hilbert space, $D \subset C \subset H$ closed convex, $P: C \to D$ retraction $(P(x) = x \ \forall x \in D)$. Equivalent:

- (a) P is the metric projection from C onto D.
- (b) $||Px Py||^2 \le \langle x y, Px Py \rangle, \forall x, y \in C.$
- (c) $\langle x Px, y Px \rangle \leq 0, \forall x \in C \text{ and } \forall y \in D.$

PROJECTION

FIRMLY NONEXPANSIVE

AVERAGED

NONEXPANSIVE

Sunny Nonexpansive Retraction

Sunny Nonexpansive Retraction

• X Banach space, $D \subset C \subset X$ closed convex subsets, $Q: C \to D$ retraction $(Q(x) = x \ \forall x \in D)$. Q is sunny if $\forall x \in C$ and $\forall t \in [0, 1]$

$$Q(tx + (1-t)Q(x)) = Q(x).$$

Sunny Nonexpansive Retraction

• X Banach space, $D \subset C \subset X$ closed convex subsets, $Q:C \to D$ retraction $(Q(x)=x \ \forall x \in D)$. Q is sunny if $\forall x \in C$ and $\forall t \in [0,1]$

$$Q(tx + (1-t)Q(x)) = Q(x).$$

Theorem. X smooth Banach space. Equivalent:

(a) Q is sunny and nonexpansive.

(b)
$$||Qx - Qy||^2 \le \langle x - y, J(Qx - Qy) \rangle, \forall x, y \in C.$$

(c)
$$\langle x - Qx, J(y - Qx) \rangle \le 0, \forall x \in C, y \in D.$$

There is at most one sunny nonexpansive retraction from C onto D.

• A *gauge* is a continuous strictly increasing function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$\phi(0) = 0$$
 and $\lim_{t \to \infty} \phi(t) = \infty$.

• A *gauge* is a continuous strictly increasing function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$\phi(0) = 0$$
 and $\lim_{t \to \infty} \phi(t) = \infty$.

• X Banach space.
The duality mapping is the mapping

$$J_{\phi}:X\to 2^{X^*}$$

$$J_{\phi}(x) = \{x^* \in X^* : \langle x^*, x \rangle = ||x^*|| \, ||x||, \phi(||x||) = ||x^*|| \}.$$

• A *gauge* is a continuous strictly increasing function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$\phi(0) = 0$$
 and $\lim_{t \to \infty} \phi(t) = \infty$.

• X Banach space.
The duality mapping is the mapping

$$J_{\phi}:X\to 2^{X^*}$$

$$J_{\phi}(x) = \{x^* \in X^* : \langle x^*, x \rangle = ||x^*|| \, ||x||, \phi(||x||) = ||x^*|| \}.$$

• If $\phi(t) = t$, J_{ϕ} is the normalized duality map,

$$J(x) = \{x^* \in X^* : \langle x, x^* \rangle = ||x||^2 = ||x^*||^2\}.$$

Subdifferential

Subdifferential

• $f: X \to (-\infty, \infty]$ is subdifferentiable at $x \in X$ if there exists $x^* \in X^*$, subgradient of f at x, such that

$$f(y) - f(x) \ge (x^*, y - x), \forall y \in X.$$

Subdifferential

• $f: X \to (-\infty, \infty]$ is subdifferentiable at $x \in X$ if there exists $x^* \in X^*$, subgradient of f at x, such that

$$f(y) - f(x) \ge (x^*, y - x), \forall y \in X.$$

• The subdifferential of f is the mapping

$$\partial f: X \to 2^{X^*}$$

$$\partial f(x) = \{ x^* \in X^* : (x^*, y - x) \le f(y) - f(x), \forall y \in X \}.$$

• f proper convex lsc function $\Rightarrow f$ subdifferentiable on Int D(f).

- f proper convex lsc function $\Rightarrow f$ subdifferentiable on Int D(f).
- f proper convex continuous function, Gâteaux differentiable at $x \in IntD(f) \Leftrightarrow$ has a unique subgradient

$$\partial f(x) = \nabla f(x)$$
.

- f proper convex lsc function $\Rightarrow f$ subdifferentiable on Int D(f).
- f proper convex continuous function, Gâteaux differentiable at $x \in IntD(f) \Leftrightarrow$ has a unique subgradient

$$\partial f(x) = \nabla f(x).$$

• f has a minimum value at $x \Leftrightarrow 0 \in \partial \overline{f(x)}$.

If
$$\phi$$
 is a gauge and $\Phi(t)=\int_0^t \phi(s)ds,$
$$J_\phi(x)=\partial\Phi(\|x\|).$$

If ϕ is a gauge and $\Phi(t) = \int_0^t \phi(s) ds$,

$$J_{\phi}(x) = \partial \Phi(\|x\|).$$

Subdifferential inequality:

$$\Phi(\|x+y\|) \le \Phi(\|x\|) + \langle y, j_{\phi}(x+y) \rangle$$

where
$$j_{\phi}(x+y) \in J_{\phi}(x+y)$$
.

If ϕ is a gauge and $\Phi(t) = \int_0^t \phi(s) ds$,

$$J_{\phi}(x) = \partial \Phi(\|x\|).$$

Subdifferential inequality:

$$\Phi(\|x+y\|) \le \Phi(\|x\|) + \langle y, j_{\phi}(x+y) \rangle$$

where
$$j_{\phi}(x+y) \in J_{\phi}(x+y)$$
.

For the normalized duality map J:

$$\Phi(t) = t^2/2$$

$$J(x) = \partial f(x)$$
 where $f(x) = \frac{1}{2} ||x||^2$.

If ϕ is a gauge and $\Phi(t) = \int_0^t \phi(s) ds$,

$$J_{\phi}(x) = \partial \Phi(\|x\|).$$

Subdifferential inequality:

$$\Phi(\|x+y\|) \le \Phi(\|x\|) + \langle y, j_{\phi}(x+y) \rangle$$

where
$$j_{\phi}(x+y) \in J_{\phi}(x+y)$$
.

For the normalized duality map J:

$$||x+y||^2 \le ||x||^2 + 2\langle y, j(x+y)\rangle.$$

where
$$j(x+y) \in J(x+y)$$
.

lacksquare X is smooth $\Leftrightarrow J_{\phi}$ is single-valued .

- X is smooth $\Leftrightarrow J_{\phi}$ is single-valued.
- X is uniformly smooth $\Leftrightarrow J_{\phi}$ is single-valued and norm-to-norm uniformly continuous on bounded sets of X.

- X is smooth $\Leftrightarrow J_{\phi}$ is single-valued.
- X is uniformly smooth $\Leftrightarrow J_{\phi}$ is single-valued and norm-to-norm uniformly continuous on bounded sets of X.
- J_{ϕ} is weakly continuous if single-valued and weak-to-weak* sequentially continuous

$$x_n \rightharpoonup x \Rightarrow J_{\phi}(x_n) \rightharpoonup^* J_{\phi}(x).$$

Fixed Point Algorithms

Fixed Point Algorithms

X Banach space,

 $C \subset X$ closed convex,

 $T: C \rightarrow C$ nonexpansive self-mapping.

X Banach space, $C \subset X$ closed convex, $T: C \to C$ nonexpansive self-mapping.

• Algorithms that generate $\{x_n\}$,

 x_n converging to $x \in Fix(T)$

X Banach space,

 $C \subset X$ closed convex,

 $T: C \rightarrow C$ nonexpansive self-mapping.

$$|x_{n+1} = Tx_n, \quad n \ge 0|$$

X Banach space,

 $C \subset X$ closed convex,

 $\overline{T:C\to C}$ nonexpansive self-mapping.

$$x_{n+1} = Tx_n, \quad n \ge 0$$

• T contraction: for some $\alpha \in (0,1)$,

$$||T(x) - T(y)|| \le \alpha ||x - y||, \ \forall x, y \in X,$$

Banach's Contraction Principle, 1922: There exists unique fixed point x of T and

$$x_n \to x \in Fix(T)$$
.

X Banach space,

 $C \subset X$ closed convex,

 $T: C \rightarrow C$ nonexpansive self-mapping.

Mann's iteration

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T x_n, \quad n \ge 0$$

X Banach space,

 $C \subset X$ closed convex,

 $T: C \rightarrow C$ nonexpansive self-mapping.

Mann's iteration

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T x_n, \quad n \ge 0$$

Halpern's iteration

$$x_{n+1} = \alpha_n u + (1 - \alpha_n) T x_n, \quad n \ge 0$$

where $u \in C$ arbitrary and $\{\alpha_n\} \subset [0, 1]$

Mann's Iteration

Mann's Iteration

Theorem (Reich, 1979)

X uniformly convex with Fréchet differentiable norm T nonexpansive self-mapping on C with $F(T) \neq \emptyset$,

(i)
$$\sum_{n=0}^{\infty} \alpha_n (1 - \alpha_n) = +\infty.$$

Then $x_n \rightharpoonup x \in F(T)$.

Variable Mann's Iteration

Variable Mann's Iteration

$$|x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T_n x_n, \quad n \ge 0$$

Variable Mann's Iteration

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T_n x_n, \quad n \ge 0$$

Theorem (Xu, 2006)

X uniformly convex with Fréchet differentiable norm T nonexpansive self-mapping on C with $F(T) \neq \emptyset$, $\{T_n\}$ sequence of nonexpansive self-mappings on C,

(i)
$$\sum_{n=0}^{\infty} \alpha_n (1 - \alpha_n) = +\infty,$$

(ii)
$$\sum_{n=0}^{\infty} \alpha_n D_{\rho}(T_n, T) < \infty, \quad \forall \rho > 0$$

$$D_{\rho}(T_n, T) = \sup\{\|T_n x - Tx\| : \|x\| \le \rho\}.$$

Then
$$x_n \rightharpoonup x \in F(T)$$
.

Halpern's Iteration

Halpern's Iteration

$$\left| x_{n+1} = \alpha_n u + (1 - \alpha_n) T x_n, \quad n \ge 0 \right|$$

Halpern's Iteration

$$x_{n+1} = \alpha_n u + (1 - \alpha_n) T x_n, \quad n \ge 0$$

Theorem (Halpern, Lions, Wittmann, Xu, 1967-2006). X either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ} ,

(H1)
$$\lim_{n\to\infty} \alpha_n = 0$$
,

$$(H2) \sum_{n=0}^{\infty} \alpha_n = \infty,$$

(H3) either
$$\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$$
 or $\lim_{n \to \infty} \frac{|\alpha_{n+1} - \alpha_n|}{\alpha_{n+1}} = 0$.

Then $x_n \to x \in F(T)$.

Halpern's Iteration - Averaged

Halpern's Iteration - Averaged

$$x_{n+1} = \alpha_n u + (1 - \alpha_n)(\lambda I + (1 - \lambda)T)x_n, \quad n \ge 0$$

for $\lambda \in (0, 1)$.

Halpern's Iteration - Averaged

$$x_{n+1} = \alpha_n u + (1 - \alpha_n)(\lambda I + (1 - \lambda)T)x_n, \quad n \ge 0$$

for $\lambda \in (0, 1)$.

Theorem (Suzuki, Chidume, 2006). X uniformly smooth Banach space.

(H1)
$$\lim_{n\to\infty} \alpha_n = 0$$
,

(H2)
$$\sum_{n=1}^{\infty} \alpha_n = \infty,$$

Then
$$x_n \to x \in F(T)$$
.

Algorithm

Algorithm

$$x_{n+1} = \alpha_{n+1}u + (1 - \alpha_{n+1})S_{n+1}x_n, \quad n \ge 0$$

$$u, x_0 \in C \text{ arbitrary (but fixed)}$$

$$\alpha_n \in [0, 1]$$

$$S_n = (1 - \lambda)I + \lambda T_n$$

$$\lambda \in (0, 1)$$

$$T_n : C \to C \text{ nonexpansive converging to } T \text{ in some sense.}$$

Algorithm

$$x_{n+1} = \alpha_{n+1}u + (1 - \alpha_{n+1})S_{n+1}x_n, \quad n \ge 0$$

 $\overline{u, x_0} \in C$ arbitrary (but fixed)

$$\alpha_n \in [0, 1]$$

$$S_n = (1 - \lambda)I + \lambda T_n$$

$$\lambda \in (0, 1)$$

 $T_n: C \to C$ nonexpansive converging to T in some sense.

• Under some conditions on X and $\{\alpha_n\}$

$$x_n \to x \in Fix(T)$$

where x is a specific fixed point.

 $D \subset C \subset X$ nonempty closed convex subsets

 $Q: C \to D$ retraction $(Q(x) = x \ \forall x \in D)$

 $Q ext{ is sunny if } \forall x \in C ext{ and } \forall t \in [0, 1]$

$$Q(tx + (1-t)Q(x)) = Q(x).$$

Theorem. X smooth Banach space. Equivalent:

(a) Q is sunny and nonexpansive.

(b)
$$||Qx - Qy||^2 \le \langle x - y, J(Qx - Qy) \rangle, \forall x, y \in C.$$

(c)
$$\langle x - Qx, J(y - Qx) \rangle \le 0, \forall x \in C, y \in D.$$

There is at most one sunny nonexpansive retraction from C onto D.

• $T_t = tu + (1-t)T$ contraction, for $t \in (0,1)$

• $T_t = tu + (1-t)T$ contraction, for $t \in (0,1)$ Banach's Contraction Principle: There exists unique fixed point of T_t

$$z_t = tu + (1-t)Tz_t$$

• $T_t = tu + (1-t)T$ contraction, for $t \in (0,1)$ Banach's Contraction Principle: There exists unique fixed point of T_t

$$z_t = tu + (1-t)Tz_t$$

Theorem (Reich, Xu).

If X is either uniformly smooth or has a weakly continuous duality map J_{ϕ}

$$Q(u) = \lim_{t \to 0^+} z_t = z \in Fix(T)$$

• $T_t = tu + (1-t)T$ contraction, for $t \in (0,1)$ Banach's Contraction Principle: There exists unique fixed point of T_t

$$z_t = tu + (1-t)Tz_t$$

Theorem (Reich, Xu). If X is either uniformly smooth

or has a weakly continuous duality map J_{ϕ}

$$Q(u) = \lim_{t \to 0^+} z_t = z \in Fix(T)$$

Moreover, $Q: C \to Fix(T)$ is the unique sunny nonexpansive retraction from C to Fix(T)

Theorem. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}

Theorem. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}

(H1)
$$\lim_{n\to\infty} \alpha_n = 0$$

(H2)
$$\sum_{n=0}^{\infty} \alpha_n = \infty$$

(i)
$$\lim_{n\to\infty} ||T_n y_n - T y_n|| = 0$$
, $\forall \{y_n\}$ bounded

(ii)
$$\sum_{n=0}^{\infty} ||T_n f - Tf|| < \infty, \ \forall f \in Fix(T)$$

Theorem. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}

(H1)
$$\lim_{n\to\infty} \alpha_n = 0$$

(H2)
$$\sum_{n=0}^{\infty} \alpha_n = \infty$$

(i)
$$\lim_{n\to\infty} ||T_n y_n - T y_n|| = 0$$
, $\forall \{y_n\}$ bounded

(ii)
$$\sum_{n=0}^{\infty} ||T_n f - Tf|| < \infty, \ \forall f \in Fix(T)$$

$$x_{n+1} = \alpha_{n+1}u + (1 - \alpha_{n+1})(\lambda I + (1 - \lambda)T_{n+1})x_n$$

Theorem. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}

(H1)
$$\lim_{n\to\infty} \alpha_n = 0$$

(H2)
$$\sum_{n=0}^{\infty} \alpha_n = \infty$$

(i)
$$\lim_{n\to\infty} ||T_n y_n - T y_n|| = 0$$
, $\forall \{y_n\}$ bounded

(ii)
$$\sum_{n=0}^{\infty} ||T_n f - Tf|| < \infty, \ \forall f \in Fix(T)$$

$$|x_{n+1} = \alpha_{n+1}u + (1 - \alpha_{n+1})(\lambda I + (1 - \lambda)T_{n+1})x_n|$$

Then

$$x_n \to Q(u)$$

 $Q: C \to Fix(T)$ unique sunny nonexpansive retraction

Corollary 1. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}

Corollary 1. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}

(H1)
$$\lim_{n\to\infty} \alpha_n = 0$$

$$(H2) \sum_{n=0}^{\infty} \alpha_n = \infty$$

(iii)
$$\sum_{n=0}^{\infty} D_{\rho}(T_n, T) < \infty \ \forall \rho > 0$$

 $D_{\rho}(T_n, T) = \sup\{\|T_n x - Tx\| : \|x\| \le 0\}$

Corollary 1. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}

(H1)
$$\lim_{n\to\infty} \alpha_n = 0$$

(H2)
$$\sum_{n=0}^{\infty} \alpha_n = \infty$$

(iii)
$$\sum_{n=0}^{\infty} D_{\rho}(T_n, T) < \infty \ \forall \rho > 0$$

 $D_{\rho}(T_n, T) = \sup\{\|T_n x - Tx\| : \|x\| \le 0\}$

$$(iii) \Rightarrow \begin{cases} (i) \lim_{n \to \infty} ||T_n y_n - T y_n|| = 0, & \{y_n\} bounded \\ (ii) \sum_{n=0}^{\infty} ||T_n f - T f|| < \infty, & f \in Fix(T) \end{cases}$$

Corollary 1. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}

(H1)
$$\lim_{n\to\infty} \alpha_n = 0$$

$$(H2) \sum_{n=0}^{\infty} \alpha_n = \infty$$

(iii)
$$\sum_{n=0}^{\infty} D_{\rho}(T_n, T) < \infty \ \forall \rho > 0$$

 $D_{\rho}(T_n, T) = \sup\{\|T_n x - Tx\| : \|x\| \le 0\}$

Then

$$x_n \to Q(u)$$

 $\overline{Q}: C \to Fix(T)$ unique sunny nonexpansive retraction

Corollary 2. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}

Corollary 2. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}

(H1)
$$\lim_{n\to\infty} \alpha_n = 0$$

(H2)
$$\sum_{n=0}^{\infty} \alpha_n = \infty$$

(i)
$$\lim_{n\to\infty} ||T_n y_n - T y_n|| = 0, \forall \{y_n\}$$
 bounded

(iii)
$$\bigcap_{n=0}^{\infty} Fix(T_n) = Fix(T)$$

Corollary 2. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}

(H1)
$$\lim_{n\to\infty} \alpha_n = 0$$

(H2)
$$\sum_{n=0}^{\infty} \alpha_n = \infty$$

(i)
$$\lim_{n\to\infty} ||T_n y_n - T y_n|| = 0, \forall \{y_n\}$$
 bounded

(iii)
$$\bigcap_{n=0}^{\infty} Fix(T_n) = Fix(T)$$

$$(iii) \Rightarrow (ii) \sum_{n=0}^{\infty} ||T_n f - T f|| < \infty, \quad f \in Fix(T)$$

Corollary 2. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}

(H1)
$$\lim_{n\to\infty} \alpha_n = 0$$

$$(H2) \sum_{n=0}^{\infty} \alpha_n = \infty$$

(i)
$$\lim_{n\to\infty} ||T_n y_n - T y_n|| = 0, \forall \{y_n\}$$
 bounded

(iii)
$$\bigcap_{n=0}^{\infty} Fix(T_n) = Fix(T)$$

Then

$$x_n \to Q(u)$$

 $Q:C \to Fix(T)$ unique sunny nonexpansive retraction

 H_1 , H_2 Hilbert spaces $C \subset H_1$, $Q \subset H_2$ nonempty convex subsets $A: H_1 \to H_2$ linear bounded operator

find $x^* \in C$ such that $Ax^* \in Q$

 H_1 , H_2 Hilbert spaces $C \subset H_1$, $Q \subset H_2$ nonempty convex subsets $A: H_1 \to H_2$ linear bounded operator

find
$$x^* \in C$$
 such that $Ax^* \in Q$
$$\updownarrow$$

$$\min_{x \in C} f(x), \quad f(x) = \frac{1}{2} ||P_Q Ax - Ax||^2$$

 H_1 , H_2 Hilbert spaces $C \subset H_1$, $Q \subset H_2$ nonempty convex subsets $A: H_1 \to H_2$ linear bounded operator

find
$$x^* \in C$$
 such that $Ax^* \in Q$

$$\updownarrow$$

$$\min_{x \in C} f(x), \quad f(x) = \frac{1}{2} ||P_Q Ax - Ax||^2$$

$$\updownarrow$$

$$x^* = P_C (I - \gamma A^* (I - P_Q)A)x^*$$

 H_1 , H_2 Hilbert spaces $C \subset H_1$, $Q \subset H_2$ nonempty convex subsets $A: H_1 \to H_2$ linear bounded operator

find
$$x^* \in C$$
 such that $Ax^* \in Q$

$$\updownarrow$$

$$\min_{x \in C} f(x), \quad f(x) = \frac{1}{2} ||P_Q Ax - Ax||^2$$

$$\updownarrow$$

$$x^* = P_C (I - \gamma A^* (I - P_Q)A) x^*$$

If $\gamma \in (0, 2/\delta)$ with δ the spectral radius of A^*A :

• $T = P_C(I - \gamma A^*(I - P_Q)A)$ nonexpansive.

To avoid difficulties with the implementation of the projections (Zhao, Yang, 2006)

• $T_n = P_{C_n}(I - \gamma A^*(I - P_{Q_n})A)$, where $C_n \in H_1$ and $Q_n \in H_2$ closed convex.

To avoid difficulties with the implementation of the projections (Zhao, Yang, 2006)

• $T_n = P_{C_n}(I - \gamma A^*(I - P_{Q_n})A)$, where $C_n \in H_1$ and $Q_n \in H_2$ closed convex.

 T_n is nonexpansive if $\gamma \in (0, 2/\delta)$.

Theorem. $Fix(T) \neq \emptyset$

$$x_{n+1} = \alpha_{n+1}u + (1 - \alpha_{n+1})((1 - \lambda)x_n + \lambda T_{n+1}x_n)$$

(H1)
$$\lim_{n\to\infty} \alpha_n = 0$$

$$(H2) \sum_{n=0}^{\infty} \alpha_n = \infty$$

(iii)
$$\sum_{n=0}^{\infty} d_{\rho}(C_n, C) < \infty \ \forall \rho > 0$$
$$\sum_{n=0}^{\infty} d_{\rho}(Q_n, Q) < \infty$$

Theorem. $Fix(T) \neq \emptyset$

$$x_{n+1} = \alpha_{n+1}u + (1 - \alpha_{n+1})((1 - \lambda)x_n + \lambda T_{n+1}x_n)$$

(H1)
$$\lim_{n\to\infty} \alpha_n = 0$$

$$(H2) \sum_{n=0}^{\infty} \alpha_n = \infty$$

(iii)
$$\sum_{n=0}^{\infty} d_{\rho}(C_n, C) < \infty \,\forall \rho > 0$$
$$\sum_{n=0}^{\infty} d_{\rho}(Q_n, Q) < \infty$$

$$d_{\rho}(C_1, C_2) = \sup_{\|x\| \le \rho} \|P_{C_1}x - P_{C_2}x\|$$

Theorem. $Fix(T) \neq \emptyset$

$$x_{n+1} = \alpha_{n+1}u + (1 - \alpha_{n+1})((1 - \lambda)x_n + \lambda T_{n+1}x_n)$$

(H1)
$$\lim_{n\to\infty} \alpha_n = 0$$

$$(H2) \sum_{n=0}^{\infty} \alpha_n = \infty$$

(iii)
$$\sum_{n=0}^{\infty} d_{\rho}(C_n, C) < \infty \,\forall \rho > 0$$
$$\sum_{n=0}^{\infty} d_{\rho}(Q_n, Q) < \infty$$

$$(iii) \Rightarrow \sum_{n=0}^{\infty} D_{\rho}(T_n, T) < \infty \,\forall \rho > 0$$

Theorem. $Fix(T) \neq \emptyset$

$$x_{n+1} = \alpha_{n+1}u + (1 - \alpha_{n+1})((1 - \lambda)x_n + \lambda T_{n+1}x_n)$$

(H1)
$$\lim_{n\to\infty} \alpha_n = 0$$

$$(H2) \sum_{n=0}^{\infty} \alpha_n = \infty$$

(iii)
$$\sum_{n=0}^{\infty} d_{\rho}(C_n, C) < \infty \ \forall \rho > 0$$
$$\sum_{n=0}^{\infty} d_{\rho}(Q_n, Q) < \infty$$

Then $x_n \to x^*$ solution of SFP

X real Banach space

 $A: X \to 2^X$ multivalued *m-accretive* operator

X real Banach space

 $A: X \to 2^X$ multivalued *m-accretive* operator

•
$$\langle y_1 - y_2, j(x_1 - x_2) \rangle \ge 0$$

 $y_i \in Ax_i, j(x_1 - x_2) \in J(x_1 - x_2)$

•
$$R(I + \lambda A) = X$$
, $\forall \lambda > 0$.

X real Banach space

 $A: X \to 2^X$ multivalued m-accretive operator

find $z \in D(A)$ such that $0 \in Az$

X real Banach space

 $A: X \to 2^X$ multivalued *m-accretive* operator

find
$$z \in D(A)$$
 such that $0 \in Az$

• The resolvent of A:

$$J_r = (I + rA)^{-1}.$$

- J_r is single-valued and nonexpansive $\forall r > 0$.
- $Fix(J_r) = A^{-1}(0), \ \forall r > 0.$

X real Banach space

 $A: X \to 2^X$ multivalued *m-accretive* operator

find $z \in D(A)$ such that $0 \in Az$

$$\updownarrow \\ z = J_r z$$

- $J_r = (I + rA)^{-1}$.
 - J_r is single-valued and nonexpansive $\forall r > 0$.

X real Banach space

 $A: X \to 2^X$ multivalued *m-accretive* operator

find $z \in D(A)$ such that $0 \in Az$

$$\updownarrow z = J_r z$$

- $J_r = (I + rA)^{-1}$.
 - J_r is single-valued and nonexpansive $\forall r > 0$.
- $T = J_r$ and $T_n = J_{r_n}$ where $\{r_n\} \in (0, +\infty)$.

$$\bigcap_{n>0}^{\infty} Fix(T_n) = Fix(T).$$

Theorem 1.

If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}

$$C = \overline{D(A)}$$
 convex, $A^{-1} \neq \emptyset$

$$x_{n+1} = \alpha_{n+1}u + (1 - \alpha_{n+1})((1 - \lambda)x_n + \lambda J_{r_{n+1}}x_n)$$

(H1)
$$\lim_{n\to\infty} \alpha_n = 0$$

$$(H2) \sum_{n=0}^{\infty} \alpha_n = \infty$$

(iii)
$$\lim_{n\to\infty} r_n = r \in \mathbb{R}^+$$

Theorem 1.

If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}

$$C = \overline{D(A)}$$
 convex, $A^{-1} \neq \emptyset$

$$|x_{n+1} = \alpha_{n+1}u + (1 - \alpha_{n+1})((1 - \lambda)x_n + \lambda J_{r_{n+1}}x_n) |$$

(H1)
$$\lim_{n\to\infty} \alpha_n = 0$$

$$(H2) \sum_{n=0}^{\infty} \alpha_n = \infty$$

(iii)
$$\lim_{n\to\infty} r_n = r \in \mathbb{R}^+$$

$$(iii) \Rightarrow (i) \lim_{n\to\infty} ||T_n x_n - T x_n|| = 0, \{x_n\} bounded$$

Theorem 1.

If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}

$$C = \overline{D(A)}$$
 convex, $A^{-1} \neq \emptyset$

$$x_{n+1} = \alpha_{n+1}u + (1 - \alpha_{n+1})((1 - \lambda)x_n + \lambda J_{r_{n+1}}x_n)$$

(H1)
$$\lim_{n\to\infty} \alpha_n = 0$$

$$(H2) \sum_{n=0}^{\infty} \alpha_n = \infty$$

(iii)
$$\lim_{n\to\infty} r_n = r \in \mathbb{R}^+$$

Then
$$x_n \to z \in A^{-1}(0)$$

Theorem 2.

 $X, A, \{\alpha_n\}, \{r_n\}$ as in Theorem 1

$$x_{n+1} = \alpha_{n+1}u + (1 - \alpha_{n+1})((1 - \lambda)x_n + \lambda T_{n+1}x_n)$$

$$T_n = J_{r_n} + e_n \text{ and } \sum_{n=0}^{\infty} ||e_n|| < \infty$$

Theorem 2.

 $X, A, \{\alpha_n\}, \{r_n\}$ as in Theorem 1

$$x_{n+1} = \alpha_{n+1}u + (1 - \alpha_{n+1})((1 - \lambda)x_n + \lambda T_{n+1}x_n)$$

$$T_n = J_{r_n} + e_n$$
 and $\sum_{n=0}^{\infty} ||e_n|| < \infty$

$$\sum_{n=0}^{\infty} \|e_n\| < \infty \Rightarrow (ii) \sum_{n=0}^{\infty} \|T_n f - Tf\| < \infty, \ f \in Fix(T)$$

Theorem 2.

 $X, A, \{\alpha_n\}, \{r_n\}$ as in Theorem 1

$$x_{n+1} = \alpha_{n+1}u + (1 - \alpha_{n+1})((1 - \lambda)x_n + \lambda T_{n+1}x_n)$$

$$T_n = J_{r_n} + e_n$$
 and $\sum_{n=0}^{\infty} ||e_n|| < \infty$

Then $x_n \to z \in A^{-1}(0)$

X Banach space

• $A: X \to 2^{X^*}$ is monotone if $\forall x, y \in X$

$$(x^* - y^*, x - y) \ge 0, \quad x^* \in A(x), y^* \in A(y).$$

X Banach space

• $A: X \to 2^{X^*}$ is monotone if $\forall x, y \in X$

$$(x^* - y^*, x - y) \ge 0, \quad x^* \in A(x), y^* \in A(y).$$

$$G(A) = \{(x, y) \in X \times X^* : y \in A(x)\}$$

X Banach space

• $A: X \to 2^{X^*}$ is monotone if $\forall x, y \in X$

$$(x^* - y^*, x - y) \ge 0, \quad x^* \in A(x), y^* \in A(y).$$

$$G(A) = \{(x, y) \in X \times X^* : y \in A(x)\}$$

• A is maximal monotone if it is monotone and

$$(x,u) \in X \times X^*$$

$$(u-v,x-y) \ge 0 \quad \forall (y,v) \in G(A)$$

$$\Rightarrow (x,u) \in G(A)$$

X Banach space

• $A: X \to 2^{X^*}$ is monotone if $\forall x, y \in X$

$$(x^* - y^*, x - y) \ge 0, \quad x^* \in A(x), y^* \in A(y).$$

$$G(A) = \{(x, y) \in X \times X^* : y \in A(x)\}$$

• A is maximal monotone if it is monotone and

$$(x,u) \in X \times X^*$$

$$(u-v,x-y) \ge 0 \quad \forall (y,v) \in G(A)$$

$$\Rightarrow (x,u) \in G(A)$$

H Hilbert

maximal monotone = m-accretive

H Hilbert $C \subset H$ closed convex $f: C \to \mathbb{R}$ convex lower semicontinuous

$$\min_{x \in C} f(x)$$

H Hilbert $C \subset H$ closed convex $f: C \to \mathbb{R}$ convex lower semicontinuous

$$\min_{x \in C} f(x)$$

$$\updownarrow$$

$$0 \in \partial f(x) + N_C(x)$$

 N_C the normal cone over C.

H Hilbert

 $C \subset H$ closed convex

 $f: C \to \mathbb{R}$ convex lower semicontinuous

$$\min_{x \in C} f(x)$$

$$\updownarrow$$

$$0 \in \partial f(x) + N_C(x)$$

 N_C the normal cone over C.

• $\partial f(x) + N_C(x)$ is maximal monotone.

FIXED POINT PROBLEM

FIXED POINT PROBLEM

ZEROS OF M-ACCRETIVE OPERATORS

FIXED POINT PROBLEM

ZEROS OF M-ACCRETIVE OPERATORS

MINIMIZER PROBLEM

FIXED POINT PROBLEM

ZEROS OF M-ACCRETIVE OPERATORS

MINIMIZER PROBLEM

"Perturbation Techniques for Nonexpansive Mappings with Applications" G. López, V. Martín and H-K Xu, preprinted.