Perturbation Techniques for Nonexpansive Mappings with Applications

Victoria Martín
victoriam@us.es

Departamento de Análisis Matemático, Universidad de Sevilla

- INTRODUCTION: NOTIONS AND RESULTS.
- MAIN RESULT.
- APPLICATIONS TO CONVEX AND OPTIMIZATION PROBLEM.

Problem

Problem

X real Banach space
$C \in X$ nonempty closed convex subset $T: C \rightarrow C$ nonexpansive mapping $\operatorname{Fix}(T)=\{x \in C: x=T x\} \neq \emptyset$
find $x \in F i x(T)$

Problem

X real Banach space
$C \in X$ nonempty closed convex subset
$T: C \rightarrow C$ nonexpansive mapping
Fix $(T)=\{x \in C: x=T x\} \neq \emptyset$

$$
\text { find } x \in F i x(T)
$$

The aim is to define an algorithm which generates

$$
\left\{x_{n}\right\} \text { converging to } x \in \operatorname{Fix}(T) \text {. }
$$

Nonexpansive Type Mappings

Nonexpansive Type Mappings

- X Banach space, $T: C \rightarrow X$ is nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|, \forall x, y \in C .
$$

Nonexpansive Type Mappings

- X Banach space, $T: C \rightarrow X$ is nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|, \forall x, y \in C .
$$

$S: C \rightarrow X$ is averaged if

$$
(1-\lambda) I+\lambda T,
$$

where $\lambda \in(0,1)$ and T is nonexpansive.

Nonexpansive Type Mappings

- X Banach space, $T: C \rightarrow X$ is nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|, \forall x, y \in C .
$$

$S: C \rightarrow X$ is averaged if

$$
(1-\lambda) I+\lambda T,
$$

where $\lambda \in(0,1)$ and T is nonexpansive.

- H Hilbert space, $T: C \rightarrow H$ is firmly nonexpansive if

$$
\|T x-T y\|^{2} \leq(x-y, T x-T y), \forall x, y \in C .
$$

Metric Projection

Metric Projection

- H Hilbert space, $C \subset H$ closed convex. The metric projection onto C:

$$
P_{C}(x)=\{y \in C: d(x, y)=d(x, C)\} .
$$

Metric Projection

- H Hilbert space,
$C \subset H$ closed convex.
The metric projection onto C:

$$
P_{C}(x)=\{y \in C: d(x, y)=d(x, C)\} .
$$

Theorem. H Hilbert space,
$D \subset C \subset H$ closed convex,
$P: C \rightarrow D$ retraction $(P(x)=x \forall x \in D)$.
Equivalent:
(a) P is the metric projection from C onto D.
(b) $\|P x-P y\|^{2} \leq\langle x-y, P x-P y\rangle, \forall x, y \in C$.
(c) $\langle x-P x, y-P x\rangle \leq 0, \forall x \in C$ and $\forall y \in D$.

PROJECTION

घ
 FIRMLY NONEXPANSIVE

\Downarrow
AVERAGED

\Downarrow
NONEXPANSIVE

Sunny Nonexpansive Retraction

Sunny Nonexpansive Retraction

- X Banach space, $D \subset C \subset X$ closed convex subsets, $Q: C \rightarrow D$ retraction $(Q(x)=x \forall x \in D)$. Q is sunny if $\forall x \in C$ and $\forall t \in[0,1]$

$$
Q(t x+(1-t) Q(x))=Q(x) .
$$

Sunny Nonexpansive Retraction

- X Banach space,
$D \subset C \subset X$ closed convex subsets, $Q: C \rightarrow D$ retraction $(Q(x)=x \forall x \in D)$. Q is sunny if $\forall x \in C$ and $\forall t \in[0,1]$

$$
Q(t x+(1-t) Q(x))=Q(x) .
$$

Theorem. X smooth Banach space. Equivalent:
(a) Q is sunny and nonexpansive.
(b) $\|Q x-Q y\|^{2} \leq\langle x-y, J(Q x-Q y)\rangle, \forall x, y \in C$.
(c) $\langle x-Q x, J(y-Q x)\rangle \leq 0, \forall x \in C, y \in D$.

There is at most one sunny nonexpansive retraction from C onto D.

Duality Mapping

Duality Mapping

- A gauge is a continuous strictly increasing function $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
\phi(0)=0 \text { and } \lim _{t \rightarrow \infty} \phi(t)=\infty .
$$

Duality Mapping

- A gauge is a continuous strictly increasing function $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
\phi(0)=0 \text { and } \lim _{t \rightarrow \infty} \phi(t)=\infty .
$$

- X Banach space. The duality mapping is the mapping

$$
\begin{gathered}
J_{\phi}: X \rightarrow 2^{X^{*}} \\
J_{\phi}(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, x\right\rangle=\left\|x^{*}\right\|\|x\|, \phi(\|x\|)=\left\|x^{*}\right\|\right\} .
\end{gathered}
$$

Duality Mapping

- A gauge is a continuous strictly increasing function $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
\phi(0)=0 \text { and } \lim _{t \rightarrow \infty} \phi(t)=\infty .
$$

- X Banach space.

The duality mapping is the mapping

$$
\begin{gathered}
J_{\phi}: X \rightarrow 2^{X^{*}} \\
J_{\phi}(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, x\right\rangle=\left\|x^{*}\right\|\|x\|, \phi(\|x\|)=\left\|x^{*}\right\|\right\} .
\end{gathered}
$$

- If $\phi(t)=t, J_{\phi}$ is the normalized duality map,

$$
J(x)=\left\{x^{*} \in X^{*}:\left\langle x, x^{*}\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\} .
$$

Subdifferential

Subdifferential

- $f: X \rightarrow(-\infty, \infty]$ is subdifferentiable at $x \in X$ if there exists $x^{*} \in X^{*}$, subgradient of f at x, such that

$$
f(y)-f(x) \geq\left(x^{*}, y-x\right), \forall y \in X .
$$

Subdifferential

- $f: X \rightarrow(-\infty, \infty]$ is subdifferentiable at $x \in X$ if there exists $x^{*} \in X^{*}$, subgradient of f at x, such that

$$
f(y)-f(x) \geq\left(x^{*}, y-x\right), \forall y \in X
$$

- The subdifferential of f is the mapping

$$
\begin{gathered}
\partial f: X \rightarrow 2^{X^{*}} \\
\partial f(x)=\left\{x^{*} \in X^{*}:\left(x^{*}, y-x\right) \leq f(y)-f(x), \forall y \in X\right\} .
\end{gathered}
$$

f proper convex lsc function $\Rightarrow f$ subdifferentiable on Int $\mathbf{D}(f)$.
f proper convex lsc function $\Rightarrow f$ subdifferentiable on Int $\mathrm{D}(f)$.
f proper convex continuous function,
Gâteaux differentiable at $x \in \operatorname{Int} D(f) \Leftrightarrow$ has a unique subgradient

$$
\partial f(x)=\nabla f(x) .
$$

f proper convex lsc function $\Rightarrow f$ subdifferentiable on Int $\mathrm{D}(f)$.
f proper convex continuous function,
Gâteaux differentiable at $x \in \operatorname{Int} D(f) \Leftrightarrow$ has a unique subgradient

$$
\partial f(x)=\nabla f(x) .
$$

f has a minimum value at $x \Leftrightarrow 0 \in \partial f(x)$.

Duality Mapping

Duality Mapping

If ϕ is a gauge and $\Phi(t)=\int_{0}^{t} \phi(s) d s$,

$$
J_{\phi}(x)=\partial \Phi(\|x\|) .
$$

Duality Mapping

If ϕ is a gauge and $\Phi(t)=\int_{0}^{t} \phi(s) d s$,

$$
J_{\phi}(x)=\partial \Phi(\|x\|) .
$$

Subdifferential inequality:

$$
\begin{aligned}
\Phi(\|x+y\|) & \leq \Phi(\|x\|)+\left\langle y, j_{\phi}(x+y)\right\rangle \\
\text { where } \quad j_{\phi}(x+y) & \in J_{\phi}(x+y) .
\end{aligned}
$$

Duality Mapping

If ϕ is a gauge and $\Phi(t)=\int_{0}^{t} \phi(s) d s$,

$$
J_{\phi}(x)=\partial \Phi(\|x\|) .
$$

Subdifferential inequality:

$$
\Phi(\|x+y\|) \leq \Phi(\|x\|)+\left\langle y, j_{\phi}(x+y)\right\rangle
$$

where $\quad j_{\phi}(x+y) \in J_{\phi}(x+y)$.
For the normalized duality map J :

$$
\Phi(t)=t^{2} / 2
$$

$J(x)=\partial f(x)$ where $f(x)=\frac{1}{2}\|x\|^{2}$.

Duality Mapping

If ϕ is a gauge and $\Phi(t)=\int_{0}^{t} \phi(s) d s$,

$$
J_{\phi}(x)=\partial \Phi(\|x\|) .
$$

Subdifferential inequality:

$$
\Phi(\|x+y\|) \leq \Phi(\|x\|)+\left\langle y, j_{\phi}(x+y)\right\rangle
$$

where $\quad j_{\phi}(x+y) \in J_{\phi}(x+y)$.
For the normalized duality map J :

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle .
$$

where $\quad j(x+y) \in J(x+y)$.

X is smooth $\Leftrightarrow J_{\phi}$ is single-valued .

X is smooth $\Leftrightarrow J_{\phi}$ is single-valued .
X is uniformly smooth $\Leftrightarrow J_{\phi}$ is single-valued and norm-to-norm uniformly continuous on bounded sets of X.
X is smooth $\Leftrightarrow J_{\phi}$ is single-valued .
X is uniformly smooth $\Leftrightarrow J_{\phi}$ is single-valued and norm-to-norm uniformly continuous on bounded sets of X.

- J_{ϕ} is weakly continuous if single-valued and weak-to-weak* sequentially continuous

$$
x_{n} \rightharpoonup x \Rightarrow J_{\phi}\left(x_{n}\right) \rightharpoonup^{*} J_{\phi}(x) .
$$

Fixed Point Algorithms

Fixed Point Algorithms

X Banach space,
$C \subset X$ closed convex,
$T: C \rightarrow C$ nonexpansive self-mapping.

Fixed Point Algorithms

X Banach space,
$C \subset X$ closed convex,
$T: C \rightarrow C$ nonexpansive self-mapping.

- Algorithms that generate $\left\{x_{n}\right\}$,

$$
x_{n} \text { converging to } x \in F i x(T)
$$

Fixed Point Algorithms

X Banach space,
$C \subset X$ closed convex, $T: C \rightarrow C$ nonexpansive self-mapping.

$$
x_{n+1}=T x_{n}, \quad n \geq 0
$$

Fixed Point Algorithms

X Banach space,
$C \subset X$ closed convex,
$T: C \rightarrow C$ nonexpansive self-mapping.

$$
x_{n+1}=T x_{n}, \quad n \geq 0
$$

- T contraction: for some $\alpha \in(0,1)$,

$$
\|T(x)-T(y)\| \leq \alpha\|x-y\|, \forall x, y \in X
$$

Banach's Contraction Principle, 1922: There exists unique fixed point x of T and

$$
x_{n} \rightarrow x \in \operatorname{Fix}(T) .
$$

Fixed Point Algorithms

X Banach space,
$C \subset X$ closed convex, $T: C \rightarrow C$ nonexpansive self-mapping.

Mann's iteration

$$
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T x_{n}, \quad n \geq 0
$$

Fixed Point Algorithms

X Banach space,
$C \subset X$ closed convex,
$T: C \rightarrow C$ nonexpansive self-mapping.
Mann's iteration

$$
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T x_{n}, \quad n \geq 0
$$

Halpern's iteration

$$
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) T x_{n}, \quad n \geq 0
$$

where $u \in C$ arbitrary and $\left\{\alpha_{n}\right\} \subset[0,1]$

Mann's Iteration

Mann's Iteration

Theorem (Reich, 1979)
X uniformly convex with Fréchet differentiable norm T nonexpansive self-mapping on C with $F(T) \neq \emptyset$,
(i) $\sum_{n=0}^{\infty} \alpha_{n}\left(1-\alpha_{n}\right)=+\infty$.

Then $x_{n} \rightharpoonup x \in F(T)$.

Variable Mann's Iteration

Variable Mann's Iteration

$$
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T_{n} x_{n}, \quad n \geq 0
$$

Variable Mann's Iteration

$$
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T_{n} x_{n}, \quad n \geq 0
$$

Theorem (Xu, 2006)
X uniformly convex with Fréchet differentiable norm T nonexpansive self-mapping on C with $F(T) \neq \emptyset$, $\left\{T_{n}\right\}$ sequence of nonexpansive self-mappings on C ,
(i) $\sum_{n=0}^{\infty} \alpha_{n}\left(1-\alpha_{n}\right)=+\infty$,
(ii) $\sum_{n=0}^{\infty} \alpha_{n} D_{\rho}\left(T_{n}, T\right)<\infty, \quad \forall \rho>0$

$$
D_{\rho}\left(T_{n}, T\right)=\sup \left\{\left\|T_{n} x-T x\right\|:\|x\| \leq \rho\right\} .
$$

Then $x_{n} \rightharpoonup x \in F(T)$.

Halpern's Iteration

Halpern's Iteration

$$
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) T x_{n}, \quad n \geq 0
$$

Halpern's Iteration

$$
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) T x_{n}, \quad n \geq 0
$$

Theorem (Halpern, Lions, Wittmann, Xu, 1967-2006). X either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ},
(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$,
(H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$,
(H3) either $\sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ or $\lim _{n \rightarrow \infty} \frac{\left|\alpha_{n+1}-\alpha_{n}\right|}{\alpha_{n+1}}=0$.
Then $x_{n} \rightarrow x \in F(T)$.

Halpern's Iteration - Averaged

Halpern's Iteration - Averaged

$$
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right)(\lambda I+(1-\lambda) T) x_{n}, \quad n \geq 0
$$

for $\lambda \in(0,1)$.

Halpern's Iteration - Averaged

$$
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right)(\lambda I+(1-\lambda) T) x_{n}, \quad n \geq 0
$$

for $\lambda \in(0,1)$.
Theorem (Suzuki, Chidume, 2006). X uniformly smooth Banach space.
(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$,
(H2) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$,
Then $x_{n} \rightarrow x \in F(T)$.

Algorithm

Algorithm

$$
x_{n+1}=\alpha_{n+1} u+\left(1-\alpha_{n+1}\right) S_{n+1} x_{n}, \quad n \geq 0
$$

$u, x_{0} \in C$ arbitrary (but fixed)
$\alpha_{n} \in[0,1]$
$S_{n}=(1-\lambda) I+\lambda T_{n}$
$\lambda \in(0,1)$
$T_{n}: C \rightarrow C$ nonexpansive converging to T in some sense.

Algorithm

$$
x_{n+1}=\alpha_{n+1} u+\left(1-\alpha_{n+1}\right) S_{n+1} x_{n}, \quad n \geq 0
$$

$u, x_{0} \in C$ arbitrary (but fixed)
$\alpha_{n} \in[0,1]$
$S_{n}=(1-\lambda) I+\lambda T_{n}$
$\lambda \in(0,1)$
$T_{n}: C \rightarrow C$ nonexpansive converging to T in some sense.

- Under some conditions on X and $\left\{\alpha_{n}\right\}$

$$
x_{n} \rightarrow x \in \operatorname{Fix}(T)
$$

where x is a specific fixed point.

Sunny Nonexpansive Retraction

Sunny Nonexpansive Retraction

$D \subset C \subset X$ nonempty closed convex subsets
$Q: C \rightarrow D$ retraction $(Q(x)=x \forall x \in D)$
Q is sunny if $\forall x \in C$ and $\forall t \in[0,1]$

$$
Q(t x+(1-t) Q(x))=Q(x) .
$$

Theorem. X smooth Banach space. Equivalent:
(a) Q is sunny and nonexpansive.
(b) $\|Q x-Q y\|^{2} \leq\langle x-y, J(Q x-Q y)\rangle, \forall x, y \in C$.
(c) $\langle x-Q x, J(y-Q x)\rangle \leq 0, \forall x \in C, y \in D$.

There is at most one sunny nonexpansive retraction from C onto D.

Sunny Nonexpansive Retraction

- $T_{t}=t u+(1-t) T$ contraction, for $t \in(0,1)$

Sunny Nonexpansive Retraction

- $T_{t}=t u+(1-t) T$ contraction, for $t \in(0,1)$ Banach's Contraction Principle: There exists unique fixed point of T_{t}

$$
z_{t}=t u+(1-t) T z_{t}
$$

Sunny Nonexpansive Retraction

- $T_{t}=t u+(1-t) T$ contraction, for $t \in(0,1)$ Banach's Contraction Principle: There exists unique fixed point of T_{t}

$$
z_{t}=t u+(1-t) T z_{t}
$$

Theorem (Reich, Xu).
If X is either uniformly smooth or has a weakly continuous duality map J_{ϕ}

$$
Q(u)=\lim _{t \rightarrow 0^{+}} z_{t}=z \in \operatorname{Fix}(T)
$$

Sunny Nonexpansive Retraction

- $T_{t}=t u+(1-t) T$ contraction, for $t \in(0,1)$ Banach's Contraction Principle: There exists unique fixed point of T_{t}

$$
z_{t}=t u+(1-t) T z_{t}
$$

Theorem (Reich, Xu).
If X is either uniformly smooth or has a weakly continuous duality map J_{ϕ}

$$
Q(u)=\lim _{t \rightarrow 0^{+}} z_{t}=z \in \operatorname{Fix}(T)
$$

Moreover, $Q: C \rightarrow F i x(T)$ is the unique sunny nonexpansive retraction from C to $\operatorname{Fix}(T)$

Main result

Main result

Theorem. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}

Main result

Theorem. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}
(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$
(H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$
(i) $\lim _{n \rightarrow \infty}\left\|T_{n} y_{n}-T y_{n}\right\|=0, \forall\left\{y_{n}\right\}$ bounded
(ii) $\sum_{n=0}^{\infty}\left\|T_{n} f-T f\right\|<\infty, \forall f \in \operatorname{Fix}(T)$

Main result

Theorem. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}
(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$
(H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$
(i) $\lim _{n \rightarrow \infty}\left\|T_{n} y_{n}-T y_{n}\right\|=0, \forall\left\{y_{n}\right\}$ bounded
(ii) $\sum_{n=0}^{\infty}\left\|T_{n} f-T f\right\|<\infty, \forall f \in \operatorname{Fix}(T)$

$$
x_{n+1}=\alpha_{n+1} u+\left(1-\alpha_{n+1}\right)\left(\lambda I+(1-\lambda) T_{n+1}\right) x_{n}
$$

Main result

Theorem. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}
(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$
(H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$
(i) $\lim _{n \rightarrow \infty}\left\|T_{n} y_{n}-T y_{n}\right\|=0, \forall\left\{y_{n}\right\}$ bounded
(ii) $\sum_{n=0}^{\infty}\left\|T_{n} f-T f\right\|<\infty, \forall f \in \operatorname{Fix}(T)$

$$
x_{n+1}=\alpha_{n+1} u+\left(1-\alpha_{n+1}\right)\left(\lambda I+(1-\lambda) T_{n+1}\right) x_{n}
$$

Then

$$
x_{n} \rightarrow Q(u)
$$

$Q: C \rightarrow F i x(T)$ unique sunny nonexpansive retraction

Corollaries

Corollaries

Corollary 1. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}

Corollaries

Corollary 1. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}
(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$
(H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$
(iii) $\sum_{n=0}^{\infty} D_{\rho}\left(T_{n}, T\right)<\infty \forall \rho>0$

$$
D_{\rho}\left(T_{n}, T\right)=\sup \left\{\left\|T_{n} x-T x\right\|:\|x\| \leq 0\right\}
$$

Corollaries

Corollary 1. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}
(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$
(H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$
(iii) $\sum_{n=0}^{\infty} D_{\rho}\left(T_{n}, T\right)<\infty \forall \rho>0$

$$
D_{\rho}\left(T_{n}, T\right)=\sup \left\{\left\|T_{n} x-T x\right\|:\|x\| \leq 0\right\}
$$

$$
(i i i) \Rightarrow \begin{cases}(i) \lim _{n \rightarrow \infty}\left\|T_{n} y_{n}-T y_{n}\right\|=0, & \left\{y_{n}\right\} \text { bounded } \\ (i i) \sum_{n=0}^{\infty}\left\|T_{n} f-T f\right\|<\infty, & f \in \text { Fix }(T)\end{cases}
$$

Corollaries

Corollary 1. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}
(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$
(H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$
(iii) $\sum_{n=0}^{\infty} D_{\rho}\left(T_{n}, T\right)<\infty \forall \rho>0$

$$
D_{\rho}\left(T_{n}, T\right)=\sup \left\{\left\|T_{n} x-T x\right\|:\|x\| \leq 0\right\}
$$

Then

$$
x_{n} \rightarrow Q(u)
$$

$Q: C \rightarrow F i x(T)$ unique sunny nonexpansive retraction

Corollaries

Corollaries

Corollary 2. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}

Corollaries

Corollary 2. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}
(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$
(H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$
(i) $\lim _{n \rightarrow \infty}\left\|T_{n} y_{n}-T y_{n}\right\|=0, \forall\left\{y_{n}\right\}$ bounded
(iii) $\bigcap_{n=0}^{\infty} F i x\left(T_{n}\right)=F i x(T)$

Corollaries

Corollary 2. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}
(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$
(H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$
(i) $\lim _{n \rightarrow \infty}\left\|T_{n} y_{n}-T y_{n}\right\|=0, \forall\left\{y_{n}\right\}$ bounded
(iii) $\bigcap_{n=0}^{\infty} F i x\left(T_{n}\right)=F i x(T)$

$$
(i i i) \Rightarrow(i i) \sum_{n=0}^{\infty}\left\|T_{n} f-T f\right\|<\infty, \quad f \in \operatorname{Fix}(T)
$$

Corollaries

Corollary 2. If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ}
(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$
(H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$
(i) $\lim _{n \rightarrow \infty}\left\|T_{n} y_{n}-T y_{n}\right\|=0, \forall\left\{y_{n}\right\}$ bounded
(iii) $\bigcap_{n=0}^{\infty} F i x\left(T_{n}\right)=F i x(T)$

Then

$$
x_{n} \rightarrow Q(u)
$$

$Q: C \rightarrow F i x(T)$ unique sunny nonexpansive retraction

Split Feasibility Problem

Split Feasibility Problem

H_{1}, H_{2} Hilbert spaces
$C \subset H_{1}, Q \subset H_{2}$ nonempty convex subsets $A: H_{1} \rightarrow H_{2}$ linear bounded operator find $x^{*} \in C$ such that $A x^{*} \in Q$

Split Feasibility Problem

H_{1}, H_{2} Hilbert spaces
$C \subset H_{1}, Q \subset H_{2}$ nonempty convex subsets $A: H_{1} \rightarrow H_{2}$ linear bounded operator find $x^{*} \in C$ such that $A x^{*} \in Q$
§ $\min _{x \in C} f(x), \quad f(x)=\frac{1}{2}\left\|P_{Q} A x-A x\right\|^{2}$

Split Feasibility Problem

H_{1}, H_{2} Hilbert spaces
$C \subset H_{1}, Q \subset H_{2}$ nonempty convex subsets $A: H_{1} \rightarrow H_{2}$ linear bounded operator find $x^{*} \in C$ such that $A x^{*} \in Q$
§ $\min _{x \in C} f(x), \quad f(x)=\frac{1}{2}\left\|P_{Q} A x-A x\right\|^{2}$

$$
x^{*}=P_{C}\left(I-\gamma A^{*}\left(I-P_{Q}\right) A\right) x^{*}
$$

Split Feasibility Problem

H_{1}, H_{2} Hilbert spaces
$C \subset H_{1}, Q \subset H_{2}$ nonempty convex subsets $A: H_{1} \rightarrow H_{2}$ linear bounded operator find $x^{*} \in C$ such that $A x^{*} \in Q$
§ $\min _{x \in C} f(x), \quad f(x)=\frac{1}{2}\left\|P_{Q} A x-A x\right\|^{2}$

$$
x^{*}=P_{C}\left(I-\gamma A^{*}\left(I-P_{Q}\right) A\right) x^{*}
$$

If $\gamma \in(0,2 / \delta)$ with δ the spectral radius of $A^{*} A$:

- $T=P_{C}\left(I-\gamma A^{*}\left(I-P_{Q}\right) A\right)$ nonexpansive.

Split Feasibility Problem

To avoid difficulties with the implementation of the projections (Zhao, Yang, 2006)

- $T_{n}=P_{C_{n}}\left(I-\gamma A^{*}\left(I-P_{Q_{n}}\right) A\right)$, where $C_{n} \in H_{1}$ and $Q_{n} \in H_{2}$ closed convex.

Split Feasibility Problem

To avoid difficulties with the implementation of the projections (Zhao, Yang, 2006)

- $T_{n}=P_{C_{n}}\left(I-\gamma A^{*}\left(I-P_{Q_{n}}\right) A\right)$, where $C_{n} \in H_{1}$ and $Q_{n} \in H_{2}$ closed convex.
T_{n} is nonexpansive if $\gamma \in(0,2 / \delta)$.

Split Feasibility Problem

Theorem. $\operatorname{Fix}(T) \neq \emptyset$

$$
x_{n+1}=\alpha_{n+1} u+\left(1-\alpha_{n+1}\right)\left((1-\lambda) x_{n}+\lambda T_{n+1} x_{n}\right)
$$

(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$
(H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$
(iii) $\sum_{n=0}^{\infty} d_{\rho}\left(C_{n}, C\right)<\infty \forall \rho>0$

$$
\sum_{n=0}^{\infty} d_{\rho}\left(Q_{n}, Q\right)<\infty
$$

Split Feasibility Problem

Theorem. $\operatorname{Fix}(T) \neq \emptyset$

$$
x_{n+1}=\alpha_{n+1} u+\left(1-\alpha_{n+1}\right)\left((1-\lambda) x_{n}+\lambda T_{n+1} x_{n}\right)
$$

(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$
(H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$
(iii) $\sum_{n=0}^{\infty} d_{\rho}\left(C_{n}, C\right)<\infty \forall \rho>0$

$$
\sum_{n=0}^{\infty} d_{\rho}\left(Q_{n}, Q\right)<\infty
$$

$$
d_{\rho}\left(C_{1}, C_{2}\right)=\sup _{\|x\| \leq \rho}\left\|P_{C_{1}} x-P_{C_{2}} x\right\|
$$

Split Feasibility Problem

Theorem. $\operatorname{Fix}(T) \neq \emptyset$

$$
x_{n+1}=\alpha_{n+1} u+\left(1-\alpha_{n+1}\right)\left((1-\lambda) x_{n}+\lambda T_{n+1} x_{n}\right)
$$

(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$
(H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$
(iii) $\sum_{n=0}^{\infty} d_{\rho}\left(C_{n}, C\right)<\infty \forall \rho>0$

$$
\sum_{n=0}^{\infty} d_{\rho}\left(Q_{n}, Q\right)<\infty
$$

$$
(i i i) \Rightarrow \sum_{n=0}^{\infty} D_{\rho}\left(T_{n}, T\right)<\infty \forall \rho>0
$$

Split Feasibility Problem

Theorem. $\operatorname{Fix}(T) \neq \emptyset$

$$
x_{n+1}=\alpha_{n+1} u+\left(1-\alpha_{n+1}\right)\left((1-\lambda) x_{n}+\lambda T_{n+1} x_{n}\right)
$$

(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$
(H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$
(iii) $\sum_{n=0}^{\infty} d_{\rho}\left(C_{n}, C\right)<\infty \forall \rho>0$

$$
\sum_{n=0}^{\infty} d_{\rho}\left(Q_{n}, Q\right)<\infty
$$

Then $x_{n} \rightarrow x^{*}$ solution of SFP

Zeros of m-accretive operator

Zeros of m-accretive operator

X real Banach space
$A: X \rightarrow 2^{X}$ multivalued m-accretive operator

Zeros of m-accretive operator

X real Banach space
$A: X \rightarrow 2^{X}$ multivalued m-accretive operator

- $\left\langle y_{1}-y_{2}, j\left(x_{1}-x_{2}\right)\right\rangle \geq 0$
$y_{i} \in A x_{i}, j\left(x_{1}-x_{2}\right) \in J\left(x_{1}-x_{2}\right)$
- $R(I+\lambda A)=X, \quad \forall \lambda>0$.

Zeros of m-accretive operator

X real Banach space
$A: X \rightarrow 2^{X}$ multivalued m-accretive operator

$$
\text { find } z \in D(A) \text { such that } 0 \in A z
$$

Zeros of m-accretive operator

X real Banach space
$A: X \rightarrow 2^{X}$ multivalued m-accretive operator

$$
\text { find } z \in D(A) \text { such that } 0 \in A z
$$

- The resolvent of A :

$$
J_{r}=(I+r A)^{-1} .
$$

- J_{r} is single-valued and nonexpansive $\forall r>0$.
- Fix $\left(J_{r}\right)=A^{-1}(0), \forall r>0$.

Zeros of m-accretive operator

X real Banach space
$A: X \rightarrow 2^{X}$ multivalued m-accretive operator

$$
\text { find } z \in D(A) \text { such that } 0 \in A z
$$

$$
\begin{gathered}
\Uparrow \\
z=J_{r} z
\end{gathered}
$$

- $J_{r}=(I+r A)^{-1}$.
- J_{r} is single-valued and nonexpansive $\forall r>0$.

Zeros of m-accretive operator

X real Banach space
$A: X \rightarrow 2^{X}$ multivalued m-accretive operator

$$
\text { find } z \in D(A) \text { such that } 0 \in A z
$$

$$
\begin{gathered}
\Uparrow \\
z=J_{r} z
\end{gathered}
$$

- $J_{r}=(I+r A)^{-1}$.
- J_{r} is single-valued and nonexpansive $\forall r>0$.
- $T=J_{r}$ and $T_{n}=J_{r_{n}}$ where $\left\{r_{n}\right\} \in(0,+\infty)$.

$$
\bigcap_{n \geq 0}^{\infty} F i x\left(T_{n}\right)=F i x(T)
$$

Zeros of m-accretive operator

Theorem 1.
If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ} $C=\overline{D(A)}$ convex, $A^{-1} \neq \emptyset$

$$
x_{n+1}=\alpha_{n+1} u+\left(1-\alpha_{n+1}\right)\left((1-\lambda) x_{n}+\lambda J_{r_{n+1}} x_{n}\right)
$$

(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$
(H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$
(iii) $\lim _{n \rightarrow \infty} r_{n}=r \in \mathbb{R}^{+}$

Zeros of m-accretive operator

Theorem 1.
If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ} $C=\overline{D(A)}$ convex, $A^{-1} \neq \emptyset$

$$
x_{n+1}=\alpha_{n+1} u+\left(1-\alpha_{n+1}\right)\left((1-\lambda) x_{n}+\lambda J_{r_{n+1}} x_{n}\right)
$$

(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$
(H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$
(iii) $\lim _{n \rightarrow \infty} r_{n}=r \in \mathbb{R}^{+}$

$$
(i i i) \Rightarrow(i) \lim _{n \rightarrow \infty}\left\|T_{n} x_{n}-T x_{n}\right\|=0, \quad\left\{x_{n}\right\} \text { bounded }
$$

Zeros of m-accretive operator

Theorem 1.
If X is either uniformly smooth or reflexive with a weakly continuous duality map J_{ϕ} $C=\overline{D(A)}$ convex, $A^{-1} \neq \emptyset$

$$
x_{n+1}=\alpha_{n+1} u+\left(1-\alpha_{n+1}\right)\left((1-\lambda) x_{n}+\lambda J_{r_{n+1}} x_{n}\right)
$$

(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$
(H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$
(iii) $\lim _{n \rightarrow \infty} r_{n}=r \in \mathbb{R}^{+}$

Then $x_{n} \rightarrow z \in A^{-1}(0)$

Zeros of m-accretive operator

Theorem 2.
$X, A,\left\{\alpha_{n}\right\},\left\{r_{n}\right\}$ as in Theorem 1

$$
\begin{gathered}
x_{n+1}=\alpha_{n+1} u+\left(1-\alpha_{n+1}\right)\left((1-\lambda) x_{n}+\lambda T_{n+1} x_{n}\right) \\
T_{n}=J_{r_{n}}+e_{n} \text { and } \sum_{n=0}^{\infty}\left\|e_{n}\right\|<\infty
\end{gathered}
$$

Zeros of m-accretive operator

Theorem 2.
$X, A,\left\{\alpha_{n}\right\},\left\{r_{n}\right\}$ as in Theorem 1

$$
\begin{gathered}
x_{n+1}=\alpha_{n+1} u+\left(1-\alpha_{n+1}\right)\left((1-\lambda) x_{n}+\lambda T_{n+1} x_{n}\right) \\
T_{n}=J_{r_{n}}+e_{n} \text { and } \sum_{n=0}^{\infty}\left\|e_{n}\right\|<\infty \\
\sum_{n=0}^{\infty}\left\|e_{n}\right\|<\infty \Rightarrow(i i) \sum_{n=0}^{\infty}\left\|T_{n} f-T f\right\|<\infty, f \in \operatorname{Fix}(T)
\end{gathered}
$$

Zeros of m-accretive operator

Theorem 2.
$X, A,\left\{\alpha_{n}\right\},\left\{r_{n}\right\}$ as in Theorem 1

$$
\begin{gathered}
x_{n+1}=\alpha_{n+1} u+\left(1-\alpha_{n+1}\right)\left((1-\lambda) x_{n}+\lambda T_{n+1} x_{n}\right) \\
T_{n}=J_{r_{n}}+e_{n} \text { and } \sum_{n=0}^{\infty}\left\|e_{n}\right\|<\infty
\end{gathered}
$$

Then $x_{n} \rightarrow z \in A^{-1}(0)$

Minimizer Problem

Minimizer Problem

X Banach space

- $A: X \rightarrow 2^{X^{*}}$ is monotone if $\forall x, y \in X$

$$
\left(x^{*}-y^{*}, x-y\right) \geq 0, \quad x^{*} \in A(x), y^{*} \in A(y) .
$$

Minimizer Problem

X Banach space

- $A: X \rightarrow 2^{X^{*}}$ is monotone if $\forall x, y \in X$

$$
\begin{aligned}
& \left(x^{*}-y^{*}, x-y\right) \geq 0, \quad x^{*} \in A(x), y^{*} \in A(y) . \\
G(A)= & \left\{(x, y) \in X \times X^{*}: y \in A(x)\right\}
\end{aligned}
$$

Minimizer Problem

X Banach space

- $A: X \rightarrow 2^{X^{*}}$ is monotone if $\forall x, y \in X$

$$
\left(x^{*}-y^{*}, x-y\right) \geq 0, \quad x^{*} \in A(x), y^{*} \in A(y) .
$$

$$
G(A)=\left\{(x, y) \in X \times X^{*}: y \in A(x)\right\}
$$

- A is maximal monotone if it is monotone and

$$
\left.\begin{array}{l}
(x, u) \in X \times X^{*} \\
(u-v, x-y) \geq 0 \quad \forall(y, v) \in G(A)
\end{array}\right\} \Rightarrow(x, u) \in G(A)
$$

Minimizer Problem

X Banach space

- $A: X \rightarrow 2^{X^{*}}$ is monotone if $\forall x, y \in X$

$$
\left(x^{*}-y^{*}, x-y\right) \geq 0, \quad x^{*} \in A(x), y^{*} \in A(y) .
$$

$G(A)=\left\{(x, y) \in X \times X^{*}: y \in A(x)\right\}$

- A is maximal monotone if it is monotone and

$$
\left.\begin{array}{l}
(x, u) \in X \times X^{*} \\
(u-v, x-y) \geq 0 \quad \forall(y, v) \in G(A)
\end{array}\right\} \Rightarrow(x, u) \in G(A)
$$

H Hilbert
maximal monotone $=m$-accretive

Minimizer Problem

H Hilbert

$C \subset H$ closed convex $f: C \rightarrow \mathbb{R}$ convex lower semicontinuous

$$
\min _{x \in C} f(x)
$$

Minimizer Problem

H Hilbert

$C \subset H$ closed convex $f: C \rightarrow \mathbb{R}$ convex lower semicontinuous

$$
\begin{gathered}
\min _{x \in C} f(x) \\
0 \in \partial f(x)+N_{C}(x)
\end{gathered}
$$

N_{C} the normal cone over C.

Minimizer Problem

H Hilbert

$C \subset H$ closed convex $f: C \rightarrow \mathbb{R}$ convex lower semicontinuous

$$
\begin{gathered}
\min _{x \in C} f(x) \\
0 \in \partial f(x)+N_{C}(x)
\end{gathered}
$$

N_{C} the normal cone over C.

- $\partial f(x)+N_{C}(x)$ is maximal monotone.

SPLIT FEASIBILITY PROBLEM

介
 FIXED POINT PROBLEM

SPLIT FEASIBILITY PROBLEM

\Uparrow
 FIXED POINT PROBLEM

\Downarrow
ZEROS OF M-ACCRETIVE OPERATORS

SPLIT FEASIBILITY PROBLEM

介
 FIXED POINT PROBLEM

\Downarrow
 ZEROS OF M-ACCRETIVE OPERATORS

\Downarrow
MINIMIZER PROBLEM

SPLIT FEASIBILITY PROBLEM

介
 FIXED POINT PROBLEM

\Downarrow
 ZEROS OF M-ACCRETIVE OPERATORS

\Downarrow

MINIMIZER PROBLEM

"Perturbation Techniques for Nonexpansive Mappings with
Applications" G. López, V. Martín and H-K Xu, preprinted.

