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 INTRODUCTION: NOTIONS AND RESULTS.

« MAIN RESULT.

* APPLICATIONS TO CONVEX AND
OPTIMIZATION PROBLEM.
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Problem
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Problem

X real Banach space
C € X nonempty closed convex subset
T : C' — C nonexpansive mapping

Fix(T)={ze€C:x=Tx} #0

find z € Fix(T)
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Problem

X real Banach space

C € X nonempty closed convex subset
T : C' — C nonexpansive mapping
Fix(T)={xe€C:x=Tx} #10

find z € Fix(T)

The aim 1s to define an algorithm which generates

{x,} converging to x € Fix(T).
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Nonexpansive Type Mappings



Nonexpansive Type Mappings

« X Banach space,
T:C— Xis if

[Tz —Ty| < |z —yll, Vz,y € C.
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Nonexpansive Type Mappings

« X Banach space,
T:C— Xis it

[Tz —Ty|| < |z -y, Vz,y € C.

S:(C — Xis if
(1 — X))+ \T,

where A € (0, 1) and 7" is nonexpansive.
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Nonexpansive Type Mappings

« X Banach space,
T:C— Xis it

[Tz —Ty|| < |z -y, Vz,y € C.
S:C — X 1s if
(1 — N1 + AT,

where A € (0, 1) and 7" is nonexpansive.

* H Hilbert space,
T:C — His if

T2z —Ty|? < (x—y,Te—Ty), Vz,y € C.
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Metric Projection
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Metric Projection

« [ Hilbert space,

C' C H closed convex.
The onto C:

Po(x) ={y e C:d(z,y) =d(z,C)}.
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Metric Projection

« [ Hilbert space,
C' C H closed convex.

The onto C:

Po(x) ={y e C:d(z,y) =d(z,C)}.

Theorem. H Hilbert space,

D C C C H closed convex,

P : C' — D retraction (P(z) = x Vx € D).
Equivalent:

(a) P is the metric projection from C onto D.
(b) ||Px — Pyl||* < (x —y, Px — Py),Vz,y € C.
(¢) (x— Px,y — Px) <0,Vx € CandVy € D.

—p.5/32



PROJECTION

|
FIRMLY NONEXPANSIVE

|
AVERAGED

|
NONEXPANSIVE
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Sunny Nonexpansive Retraction
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Sunny Nonexpansive Retraction

« X Banach space,
D C C C X closed convex subsets,
() : C' — D retraction (Q(z) = x Vx € D).
Q is if Vo € C'and Vt € |0, 1]

Qtz + (1 -1)Q(z)) = Q).
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Sunny Nonexpansive Retraction

« X Banach space,
D C C C X closed convex subsets,
() : C' — D retraction (Q(z) = x Vx € D).
Q is if Vo € C'and Vt € |0, 1]

Qtz + (1 -1)Q(z)) = Q).

Theorem. X smooth Banach space. Equivalent:

(a) () 1s sunny and nonexpansive.

(b) |Qz — Qyl|* < (z —y, J(Qr — Qy)), Vr,y € C.
©) (z—Qz,J(y—Qx)) <0,Vz e C,y € D.

There 1s at most one sunny nonexpansive retraction
from C onto D.
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Duality Mapping

* A gauge 1s a continuous strictly increasing
function ¢ : Rt — R™ such that

¢(0) = 0 and lim ¢(t) = oc.

t—00
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Duality Mapping

* A gauge 1s a continuous strictly increasing
function ¢ : Rt — R™ such that

¢(0) = 0 and lim ¢(t) = oc.

t—00
* X Banach space.
The 1s the mapping
J¢ . X — QX*

Jo(z) ={z" € X : (a",2) = [|z"|| ||, s(l|=]l) = [|=" 1}
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Duality Mapping

* A gauge 1s a continuous strictly increasing
function ¢ : Rt — R™ such that

¢(0) = 0and lim ¢(t) =

t—00
* X Banach space.
The 1s the mapping
J¢ . X — QX*

Js(x) = {z" € X" : {z",z) = ||z"|| ||z, o(ll=[l) = fl="[|}-
« If ¢(t) =1t, Jy is the :

J(@) ={z" € X :(z,2") = [lz]* = "]}
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Subdifferential



Subdifferential

e [:X — (—00,00]is atx € X
if there exists * € X7, of f at z,
such that

fly) — f(x) > (2", y —x),Vy € X.
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Subdifferential

e [:X — (—00,00]is atx € X
if there exists * € X7, of f at z,
such that

fly) — f(x) > (2", y —x),Vy € X.
* The of f 1s the mapping
Of : X — 2%
Of (x) = {2" € X*: (¢",y — =) < f(y) — f(a),Vy € X}.
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f proper convex Isc function = f
subdifferentiable on Int D( ).
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f proper convex Isc function = f
subdifferentiable on Int D(f).

f proper convex continuous function,
Gateaux differentiable at x € IntD(f) < has a
unique subgradient

0f(z) = V().
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f proper convex Isc function = f
subdifferentiable on Int D(f).

f proper convex continuous function,
Gateaux differentiable at x € IntD(f) < has a
unique subgradient

0f(z) = Vf(z).

f has a minimum value at z < 0 € df(x).
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Duality Mapping



Duality Mapping
If ¢ is a gauge and (¢ fo
Jo(x) = 0D(|z|).



Duality Mapping
If ¢ is a gauge and (¢ fo
Jyl) = 00(|)
Subdifferential inequality:

O(llz +yl) < @(l|]]) + (¥, Jolz +y))

where js(x +y) € Jp(x +y).
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Duality Mapping
If ¢ is a gauge and (¢ fo
Jyl) = 00(|)
Subdifferential inequality:

O(llz +yl) < @(l|]]) + (¥, Jolz +y))

where js(x +y) € Jp(x +y).
For the normalized duality map J:
O(t) =t°/2

J(z) = 0f (z) where f(z) = 3z|*
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Duality Mapping
If ¢ is a gauge and (¢ fo
Jyl) = 00(|)
Subdifferential inequality:

O(flz +yl) < S(llzll) + (v, Jo(z + y))
where  jyu(z +y) € Jy(x +y).
For the normalized duality map J:
|z +ylI* < ll=lI* +2{y, j(z + ).

where j(x+y) € J(x +vy).

—p. 11/32



X 18 smooth < J, 1s single-valued .
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X 18 smooth < J, 1s single-valued .

X 18 uniformly smooth <> J 1s single-valued and
norm-to-norm uniformly continuous on bounded
sets of X.
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X 18 smooth < J, 1s single-valued .

X 18 uniformly smooth <> J 1s single-valued and

norm-to-norm uniformly continuous on bounded
sets of X.

* Jy 18 if single-valued and
weak-to-weak™ sequentially continuous

T, = = Jy(z,) =" Ju(x).
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Fixed Point Algorithms



Fixed Point Algorithms

X Banach space,
C' C X closed convex,
T : C — C nonexpansive self-mapping.
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Fixed Point Algorithms

X Banach space,
C' C X closed convex,
T : C — C nonexpansive self-mapping.

e Algorithms that generate {z, },

r, converging to x € Fix(T)
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Fixed Point Algorithms

X Banach space,
C' C X closed convex,
T : C — C nonexpansive self-mapping.

Tnir = Ty, 1> 0
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Fixed Point Algorithms

X Banach space,
C' C X closed convex,
T : C — (C nonexpansive self-mapping.

Tns1 = 1wy, n >0

» T contraction: for some o € (0, 1),
IT(z) = T(y)ll < allz —yll, Yo,y € X,

Banach’s Contraction Principle, 1922:
There exists unique fixed point x of 1" and

T, — x € Fix(T).
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Fixed Point Algorithms

X Banach space,
C' C X closed convex,
T : C — C nonexpansive self-mapping.

Tpi1 = oy + (1 —ap)Tx,, n>0
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Fixed Point Algorithms

X Banach space,
C' C X closed convex,
T : C — C nonexpansive self-mapping.

Tpi1 = oy + (1 —ap)Tx,, n>0

Tpi1 = opu+ (1 —ap)Tx,, n>0

where u € C' arbitrary and {«,} C [0, 1]
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Mann’s Iteration

—p. 14/32



Mann’s Iteration

Theorem (Reich, 1979)
X uniformly convex with Fréchet differentiable norm

T nonexpansive self-mapping on C' with F'(T") # (),

1) Y. gan(l —ay) = +oo.
Then 2, — = € F(T).
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Variable Mann’s Iteration
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Variable Mann’s Iteration

Tptl = QpTy T (1 — Oén)Tnxna n >0
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Variable Mann’s Iteration

Tptl = QpTy T (1 — &n)Tnxny n >0

Theorem (Xu, 2006)

X uniformly convex with Fréchet differentiable norm
T nonexpansive self-mapping on C' with F(T') = ),
{T,,} sequence of nonexpansive self-mappings on C,

(1) Z?O@n( — Oén) = 100,
(i) Y.~ qanD(T,,T) <oo, Vp>0

Dy(T, T) = sup{ | T — T | : 2] < p}-
Then x, — =z € F(T).
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Halpern’s Iteration
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Halpern’s Iteration

Tpi1 = opu+ (1 —ap)Tx,, n>0
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Halpern’s Iteration

Tpi1 = opu+ (1 —ap)Tx,, n>0

Theorem (Halpern, Lions, Wittmann, Xu, 1967-2006).
X either uniformly smooth
or reflexive with a weakly continuous duality map J,

(H1) lim,,_. o, = 0,
(Hz) ZZO:O Qp — OO,
(H3) either > >~ | |1 — ay| < 00 or

‘Oén—i—l _an’ — O
On+1 )

lim,, oo

Then x,, — x € F(T).
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Halpern’s Iteration - Averaged



Halpern’s Iteration - Averaged

Tpi1 = apu+ (1 —ap) A+ (1 —=NT)x,, n>0
for A € (0,1).
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Halpern’s Iteration - Averaged

Tpi1 = apu+ (1 —ap) A+ (1 —=NT)x,, n>0
for A € (0,1).

Theorem (Suzuki, Chidume, 2006).
X uniformly smooth Banach space.

(H1) lim, .. v, = 0,
(HQ’) Zzozl O‘n — OO)
Then z, — x € F(T).
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Algorithm



Algorithm

Tpi1 = Qpitt+ (1 — api1)Spa1T,, n >0

u, xg € C arbitrary (but fixed)
o, € (0, 1]
S, =(1—=X1I+\T,
A e (0,1)
T, : C' — (C nonexpansive
converging to 7' in some sense.

—p. 18/32



Algorithm

Tpi1 = Qpitt+ (1 — api1)Spa1T,, n >0

u, xg € C arbitrary (but fixed)
a, € 10,1
S, =(1—=X1I+\T,
A e (0,1)
T, : C' — (C nonexpansive
converging to 7' in some sense.

 Under some conditions on X and {a, }
T, — v € Fix(T)

where x 1s a specific fixed point.
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Sunny Nonexpansive Retraction
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Sunny Nonexpansive Retraction

D C C' C X nonempty closed convex subsets
Q) : C' — D retraction (Q(x) = x Vz € D)
Q is if Vo € C and Vt € [0, 1]

Qtz + (1 —1)Q(z)) = Q).
Theorem. X smooth Banach space. Equivalent:

(a) () 1s sunny and nonexpansive.
®) |Qz — Qyl* < (z -y, J(Qz — Qy)), Vz,y € C.
) (z—Qx,J(y—Qz)) <0,Vre C,y e D.

There 1s at most one sunny nonexpansive retraction
from C onto D.
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Sunny Nonexpansive Retraction
o Ty = tu+ (1 — t)T contraction, for t € (0, 1)
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Sunny Nonexpansive Retraction

o Ty = tu+ (1 — t)T contraction, for t € (0, 1)
Banach’s Contraction Principle:
There exists unique fixed point of 7}
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Sunny Nonexpansive Retraction

o Ty =tu+ (1 — t)T contraction, for ¢t € (0, 1)
Banach’s Contraction Principle:
There exists unique fixed point of 7}

z=tu+ (1 —1t)Tz

Theorem (Reich, Xu).
If X 1s either uniformly smooth
or has a weakly continuous duality map J

Q(u) = lim 2z = z € Fix(T)

t—0t+
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Sunny Nonexpansive Retraction

o Ty =tu+ (1 — t)T contraction, for ¢t € (0, 1)
Banach’s Contraction Principle:
There exists unique fixed point of 7}

z=1tu+ (1 —1t)Tz

Theorem (Reich, Xu).
If X 1s either uniformly smooth
or has a weakly continuous duality map J

Q(u) = lim 2z = z € Fix(T)

t—0t+

Moreover, () : C' — Fix(T) is the unique
sunny nonexpansive retraction from C'to Fix(T)
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Main result
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Main result

Theorem. If X 1is either uniformly smooth
or reflexive with a weakly continuous duality map J;
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Main result

Theorem. If X 1is either uniformly smooth
or reflexive with a weakly continuous duality map J;

(H1) lim,, ., a,, =0

(H2) > >~ a, = o0
(1) limy, oo [|[Tyn — Tyn|| = 0, V{y,} bounded
i) X5 | Tof — Tf| < o0, Vf € Fia(T)
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Main result

Theorem. If X 1is either uniformly smooth
or reflexive with a weakly continuous duality map J;

(H1) lim,, ., a,, =0

(H2) > >~ a, = o0
(1) limy, oo [|[Tyn — Tyn|| = 0, V{y,} bounded
i) X5 | Tof — Tf| < o0, Vf € Fia(T)

Tpi1 = Oyt + (1 — ozn+1)()\l + (1 — )\)Tn+1)aﬁn
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Main result

Theorem. If X 1is either uniformly smooth
or reflexive with a weakly continuous duality map J;

(H1) lim,, ., a,, =0

(H2) > >~ a, = o0
(1) limy, oo [|[Tyn — Tyn|| = 0, V{y,} bounded
i) X5 | Tof — Tf| < o0, Vf € Fia(T)

Tpi1 = Oyt + (1 — ozn+1)()\l + (1 — )\)Tn+1)a;n

Then
T, — Q(u)

Q) : C — Fiz(T) unique sunny nonexpansive retraction
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Corollaries
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Corollaries

Corollary 1. It X 1s either uniformly smooth
or reflexive with a weakly continuous duality map J;
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Corollaries

Corollary 1. It X 1s either uniformly smooth
or reflexive with a weakly continuous duality map J;

(H1) lim, .. a,, = 0
(H2) > >~ a, =0
(i) >~ D,(T,,T) < 0o Vp >0
D,(T,, T) = sup{| T — T : || < 0}
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Corollaries

Corollary 1. It X 1s either uniformly smooth
or reflexive with a weakly continuous duality map J;

(H1) lim, .. a,, = 0
(H2) > >~ a, =0
(i) >~ D,(T,,T) < 0o Vp >0
D,(T,, T) = sup{| T — T : || < 0}

/

(2) limy, oo | Ty — Ty, || = 0, {y,tbounded

(i) = " |
(20) > o | Tnf —Tf] <oo, fe€ Fix(T)

N
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Corollaries

Corollary 1. It X 1s either uniformly smooth
or reflexive with a weakly continuous duality map J;

(H1) lim, .- «, =0
(H2) > >~ a, =0
(i) >~ D,(T,,T) < 0o Vp >0
Dy(Ty, T) = sup{ || Tz — Tx| : [[z| < 0}
Then
Tn — Q(u)

Q) : C' — Fix(T) unique sunny nonexpansive
retraction
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Corollaries
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Corollaries

Corollary 2. It X 1s either uniformly smooth
or reflexive with a weakly continuous duality map J;
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Corollaries

Corollary 2. It X 1s either uniformly smooth
or reflexive with a weakly continuous duality map J;

(H1) lim, .., = 0
(H2) > >~ a, =0

(1)
(iii)

limy, o0 [|[T0yn — Tyn|| = 0, Y{y,} bounded

N, Fiz(T,) = Fiz(T)
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Corollaries

Corollary 2. It X 1s either uniformly smooth
or reflexive with a weakly continuous duality map J;

(H1) lim, .., = 0
(H2) > >~ a, =0

(1)
(iii)

limy, o0 [|[T0yn — Tyn|| = 0, Y{y,} bounded

N, Fiz(T,) = Fiz(T)

(@) = (i) 3020 1Tnf — Tf|| < oo, f € Fiz(T)
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Corollaries

Corollary 2. It X 1s either uniformly smooth
or reflexive with a weakly continuous duality map J;

(H1) lim, .., = 0
(H2) > >~ a, =0

(1) limy, o [|[Tyn — Tyn|| = 0, Y{y,} bounded
(i) (°, Fiz(T,) = Fiz(T)
Then

T, — Q(u)

Q) : C' — Fix(T) unique sunny nonexpansive
retraction
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Split Feasibility Problem



Split Feasibility Problem

Hy, Hy Hilbert spaces
C C Hy, () C Hy nonempty convex subsets
A : Hi — H, linear bounded operator

find * € C such that Az* € ()

—p.24/32



Split Feasibility Problem

Hy, Hy Hilbert spaces
C C Hy, () C Hy nonempty convex subsets
A : Hi — H, linear bounded operator

find * € C such that Az* € ()

0
minec f(z), f(z) = ;|| PoAr — Az
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Split Feasibility Problem

Hy, Hy Hilbert spaces
C C Hy, () C Hy nonempty convex subsets
A : Hi — H, linear bounded operator

find * € C such that Az* € ()

0
minec f(z), f(z) = ;|| PoAr — Az

0

"= Po(I —vA* (I — Pp)A)x"
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Split Feasibility Problem

Hy, Hy Hilbert spaces
C C Hy, () C Hy nonempty convex subsets
A : Hi — H, linear bounded operator

find * € C such that Az* € ()

0
minec f(z), f(z) = ;|| PoAr — Az

0

"= Po(I —vA* (I — Pp)A)x"
If v € (0,2/6) with § the spectral radius of A*A:
* T'= Po(I —vA*(I — Pg)A) nonexpansive.

—p.24/32



Split Feasibility Problem

To avoid difficulties with the implementation of the
projections (Zhao, Yang, 2006)

¢ Tn — Pcn(] — ”}/A*(] — PQn)A),
where C,, € H; and (),, € H> closed convex.
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Split Feasibility Problem

To avoid difficulties with the implementation of the
projections (Zhao, Yang, 2006)

¢ Tn — Pcn(] — ”}/A*(] — PQn)A),
where C,, € H; and (),, € H> closed convex.

T,, is nonexpansive if v € (0,2/9).
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Split Feasibility Problem
Theorem. Fixz(T') # ()

Ln+1 — Op1U e (1 — Odn_|_1) ((1 — )\)ZEn + )\Tn+1$n)

(H1) l{m, . ct = 0

(H2) % ay, = oo

(i) 3%, d,)(Ch, C) < 00 ¥p > 0
D e Bp(Qn, Q) < 00



Split Feasibility Problem

Theorem. Fixz(T') # ()
Ln+1 = Cp1U + (1 i O"n—|—1) ((1 I )‘):En + >\Tn—|—1xn)

(H1) lim, .. a, = 0

(H2) ZZO:() ay, = 00

(iii) >~ d,(Cp, C) < 00 Vp >0
ZZO:O dp(Qn, Q) < 00

dﬂ(Cla 02) — Sup HPCH:E N PszH

lzll<p

—p.26/32



Split Feasibility Problem
Theorem. Fixz(T') # ()

Ln+1 — Op1U e (1 — Oén_|_1) ((1 — )\)ZEn + )\Tn+1$n)

(H1) lim,, ..o o, = 0

(H2) ZZO:() o, = OO

(iii) >~ d,(Cp, C) < 00 Vp >0
D> om0 @p(@n, Q) < 00

(iit) = Y Dy(T,,T) < 00 ¥p > 0

n=0



Split Feasibility Problem

Theorem. Fixz(T') # ()
Ln+1 = Cp1U + (1 i O"n—|—1) ((1 I )‘):En + >\Tn—|—1xn)

(H1) lim, .. a, = 0
(H2) 3% ay, = o0
(iii) >~ d,(Cp, C) < 00 Vp >0

Z:LO:O dﬂ(Qna Q) < 0

Then x,, — 2™ solution of SFP
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Z.eros of m-accretive operator
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Z.eros of m-accretive operator

X real Banach space
A : X — 2% multivalued operator
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Z.eros of m-accretive operator

X real Banach space
A : X — 2% multivalued operator

* (Y1 — Y2, J(x1 —x2)) >0
y; € Azy, j(z1 — 22) € J(71 — T2)

« RUI+MA) =X, YA>0.
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Z.eros of m-accretive operator

X real Banach space
A : X — 2% multivalued operator

find 2 € D(A) such that 0 € Az
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Z.eros of m-accretive operator

X real Banach space
A : X — 2% multivalued operator

find 2 € D(A) such that 0 € Az
* The of A:

J,=(I+rA)""

. J,- 1s single-valued and nonexpansive Vr > 0.
. Fiz(J,) = A~1(0), Vr > 0.

—p.27/32



Z.eros of m-accretive operator

X real Banach space
A : X — 2% multivalued operator

find 2 € D(A) such that 0 € Az

0

z=J.z

o J,={U+rA)L
. J,- 1s single-valued and nonexpansive Vr > 0.
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Z.eros of m-accretive operator

X real Banach space
A : X — 2% multivalued operator

find 2 € D(A) such that 0 € Az

0
z=J.z
e J,={I+rA)"
. J,- 1s single-valued and nonexpansive Vr > 0.
e T'=J,and T}, = J,. where {r,} € (0,400).

() Fiz(T,) = Fiz(T).

n>0
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Z.eros of m-accretive operator

Theorem 1.
If X 1s either uniformly smooth
or reflexive with a weakly continuous duality map J;

C = D(A) convex, A~ £ ()
Tpi1 = Qi+ (1 — appt) ((1 — N)x, + )\Jrnﬂxn)

(H1) lim,, .., a,, =0
(H2) > >~ a, =0

(iii) lfm, o7, = r € RT
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Z.eros of m-accretive operator

Theorem 1.
If X 1s either uniformly smooth
or reflexive with a weakly continuous duality map J;

C = D(A) convex, A~ £ ()
Tpi1 = Qi+ (1 — appt) ((1 — N)x, + )\Jrnﬂxn)

(H1) lim,, .., a,, =0
(H2) > >~ a, =0

(iii) lfm, o7, = r € RT

(41) = (i) Umy—oo | Thxn — Tan]| = 0, {x,}bounded
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Z.eros of m-accretive operator

Theorem 1.
If X 1s either uniformly smooth
or reflexive with a weakly continuous duality map J;

C = D(A) convex, A~ £ ()
Tpi1 = Qi+ (1 — appt) ((1 — N)x, + )\Jrnﬂxn)

(H1) lim,, .., a,, =0
(H2) > >~ a, =0

(iii) lfm, o7, = r € RT

Then z,, — z € A~1(0)
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Z.eros of m-accretive operator

Theorem 2.
X, A, {a,}, {r,} as in Theorem 1

Ln+1 = Op+1U + (1 e O‘?H—l) ((1 I )‘)xn + >\Tn+1xn)

®.0
T, =J. + e, and Z len|| < oo

n=0
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Z.eros of m-accretive operator

Theorem 2.
X, A, {a,}, {r,} as in Theorem 1

Ln+1 = Op+1U + (1 e CV?H—l) ((1 I )‘)xn + >\Tn+1xn)

®.0
T, =J. + e, and Z len|| < oo

n=0

Y llenll <00 = (@) Y _|ITnf = TSIl < o0, f € Fia(T)
n=0 n=0
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Z.eros of m-accretive operator

Theorem 2.
X, A, {a,}, {r,} as in Theorem 1

Ln+1 = Op+1U + (1 e Cun%—l) ((1 I )‘)xn + >\Tn+1xn)

®.0
T, =J. + e, and Z len|| < oo

n=0

Then z, — z € A~(0)
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Minimizer Problem
X Banach space

e A: X — 2% s 1f Vo,y € X

(27 =y 2 —y) 20, 2" € Az),y" € Ay).

—p.30/32



Minimizer Problem
X Banach space

e A: X — 2% is 1f Vo,y € X
(" —y" e —y) >0, "€ Alx),y" € Aly).

G(A) ={(z,y) e X x X*:y € A(x)}

—p.30/32



Minimizer Problem
X Banach space

e A: X — 2% is if Vo, y € X
(" —y" e —y) >0, "€ Alx),y" € Aly).
G(A) ={(z,y) € X x X" :y € A(z)}
e Ais if 1t 1s monotone and

(z,u) € X x X*

(u—v,z—y) =0 V(y,v) € G(A) } = ) € GlA

—p.30/32



Minimizer Problem
X Banach space

e A: X — 2% is if Vo, y € X
(" —y" e —y) >0, "€ Alx),y" € Aly).
G(A) ={(z,y) € X x X" :y € A(z)}
e Ais if 1t 1s monotone and

(z,u) € X x X*

(u—v,z—y) =0 V(y,v) € G(A) } = ) € GlA

H Hilbert
maximal monotone = m-accretive
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Minimizer Problem

H Hilbert
C C H closed convex
f : C' — R convex lower semicontinuous

mingec f(x)
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Minimizer Problem

H Hilbert
C C H closed convex
f : C' — R convex lower semicontinuous

mingec f(x)

0

0€df(x)+ Ne(x)

N¢ the normal cone over C'.

* Jf(x) + N¢(x) is maximal monotone.
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SPLIT FEASIB!

LITY PROBLEM

i

FIXED POINT PROBLEM

{

ZEROS OF M-ACCRETIVE OPERATORS

{

MINIMIZER PROBLEM

“Perturbation Techniques for Nonexpansive Mappings with

Applications” G. Lopez, V. Martin and H-K Xu, preprinted.
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