
Version April 21, 2008 (!RMI)
Nonlinear isomorphisms of lattices of Lipschitz functions

F and J Cabello S�anchez
Abstract. The paper contains a number of Banach-Stone type theorems for lattices of uniformlycontinuous and Lipschitz functions without any linearity assumption. Sample result: two completemetric spaces are Lipschitz homeomorphic if (and only if, of course) the corresponding lattices ofLipschitz functions are isomorphic. Here, a lattice isomorphism is just a bijection preserving the orderin both directions, in particular linearity is not assumed.

IntroductionThe results presented in this paper could be described as nonlinear Banach-Stone type theoremsfor lattices of uniformly continuous and Lipschitz functions. Here, by a Banach-Stone theorem wemean the statement that certain (often algebraical) structure of a system of (continuous, real-valued)functions on a topological space X determines some additional (often topological) structure on X. Aseveryone knows the genuine Banach-Stone theorem says that two compact spaces are homeomorphicprovided their corresponding spaces of continuous functions are isometric in the natural supremumnorm. See [5] for a survey with many historical comments in the linear setting and the references in[2] for the nonlinear background.Let X be a metric space, with distance d. A function f : X ! R is said to be Lipschitz if
�(f) = supx 6=y jf(x)� f(y)jd(x; y) <1:

The set of all Lipschitz functions on X is denoted Lip(X) and carries several structures: it is a linearspace, a lattice and even a Banach lattice. When X has �nite diameter it is also a Banach algebra.The nice booklet by Weaver [11] contains a lot of information on spaces of Lipschitz functions. In thispaper we forget every structure of Lip(X) but the order and we contemplate it as a lattice. Of coursethe order in Lip(X) is the pointwise order inherited from R, with f � g meaning f(x) � g(x) for allx 2 X. Let us emphasize that such notions as `isomorphism', `homomorphism', and the like refer tothe `default' lattice setting unless otherwise stated.The main result of the paper is that the lattice structure of Lip(X) determines the Lipschitzstructure of X amongst complete metric spaces of �nite diameter: if Y and X are complete metricspaces of �nite diameter and there is a lattice isomorphism T : Lip(Y ) ! Lip(X), then X and Yare Lipschitz homeomorphic (we remark again that a lattice isomorphism is nothing but a bijectionpreserving the order in both directions, in particular linearity is not assumed). In fact what we shallshow is that such a T is implemented by a Lipschitz homeomorphism � : X ! Y in the precise waywe explain in Theorem 1.It is worth noting that the corresponding linear result has been obtained only very recently [9,Part (d) of the Main Theorem]. See [4] for related results.The somewhat involved proof of this single result occupies most of the paper (Section 1). In Section2 we give an application to little Lipschitz functions. In Section 3 we prove a non-linear version ofa recent result by Garrido and Jaramillo stating that `unital' uniformly separating lattices determineSupported in part by DGICYT project MTM2004|02635.1
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the uniform structure of complete metric spaces. In Section 3 we exhibit an example showing thatthe hypothesis made in the above results cannot be dropped. This actually follows from standard`reduction' results for Lipschitz functions, but the uniformly continuous case seems to be new. Weclose the paper with an esoteric remark on a classical paper by Shirota and some open problems.

Notations and conventions. We use d to denote distance on any metric space. This causes noconfusion unless we must consider two di�erent metrics on the same space.We write B(x; r) for the closed ball of radius r centred at x. The distance between two subsetsof X is given by d(A;B) = inffd(a; b) : a 2 A; b 2 Bg. Given a continuous function f : X ! R thesupport of f , abbreviated supp f , is the closure of the set fx 2 X : f(x) 6= 0g.Finally, given a partially ordered set S, we write S+ for the subset fs 2 S : s � 0g whenever thismakes sense.
1. Lattices of Lipschitz functionsLet us present now the sought after result on Lipschitz lattices.

Theorem 1. Let T : Lip(Y ) ! Lip(X) be an isomorphism, where Y and X are complete metricspaces of �nite diameter. Then there is a Lipschitz homeomorphism � : X ! Y such that(1) Tf(x) = t(x; f(�(x)))for every f 2 Lip(Y ) and all x 2 X, where t : X � R! R is given by t(x; c) = Tc(x).
The rather long proof is divided into three parts. First we construct the required map � : X ! Yand we show it is a uniform homeomorphism. Then, we use it to get the representation (1). Finally, weuse this representation and a category argument to obtain that � must be Lipschitz in both directions.
1.1. From order to topology. In this part we show how the lattice Lip(X) determines thetopological space X and the uniform structure induced by the distance.With an eye in the applications to little Lipschitz functions, let us say that a lattice L(X) ofuniformly continuous functions on X is uniformly separating if, given subsets A and B of X such thatd(A;B) > 0 there is f 2 L(X) such that f = 0 on A and f = 1 on B. This notion is borrowed from[3]. Only the case L(X) = Lip(X) is needed to prove Theorem 1.Throughout this Section L(X) and L(Y ) will stand for uniformly separating vector lattices offunctions on the metric spaces X and Y , respectively.To each f 2 L(X)+ we associate an open set Uf taking the interior of its support. This is in facta regular open set (one that agrees with the interior of its closure).The class of all regular open subsets of X is denoted R(X) and the subclass of those arising asUf for some f 2 L(X)+ is denoted RL(X). These are lattices when ordered by inclusion. Notice thatRL(X) contains a base for the topology of X as long as L(X) is uniformly separating.Our immediate aim is to show that the relations Uf � Ug and Uf � Ug can be expressed withinthe order structure of L(X)+. To this end, following Shirota [8] let us declare f � g when for everyh 2 L(X)+ one has f ^ h = 0 whenever g ^ h = 0. Then, we say that f and g are equivalent if f � gand g � f . Also, we write f b g if, whenever the family (h�) has an upper bound in L(X)+ andh� � f for all �, there is an upper bound h 2 L(X)+ such that h � g.
Lemma 1 (Mainly Shirota). Given f; g 2 L(X)+ one has:(a) f ^ g = 0 if and only if Uf \ Ug = ?.(b) f � g if and only if Uf � Ug if and only if supp f � supp g.(c) If f b g, then d(Uf ; U cg ) > 0. The converse is true if L(X) is closed under products.
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Proof. (a) is trivial, let us prove (b). By the very de�nition, we have f � g if and only if g^h = 0implies f ^ h = 0. By part (a), this is equivalent to `Ug \ Uh = ? implies Uf \ Uh = ?', which isclearly equivalent to Uf � Ug: The last equivalence is obvious.(c) Assume f b g. For each x 2 Uf pick some hx : X ! [0; 1] in L(X) such that hx(x) = 1 andhx � f . Of course, the family (hx) is bounded by 1. Now, if h is an upper bound for (hx) such thath � g, then h � 1 on Uf , h = 0 on U cg and since h is uniformly continuous we have d(Uf ; U cg ) > 0.Assume L(X) is a ring and d(Uf ; U cg ) > 0. Take u 2 L(X) such that u = 0 o� Ug and u = 1 onUf . Now, if h� � f and h is an upper bound for (h�), then uh is also an upper bound and quiteclearly uh � f . �Corollary 1. If T : L(Y )+ ! L(X)+ is an isomorphism, then the map T : RL(Y ) ! RL(X)given by T(Uf ) = UTf is a well-de�ned lattice isomorphism. �The following results show that isomorphisms of function lattices have a local behaviour.Lemma 2. Given f; g; h 2 L(Y )+, one has f � g on Uh if and only if f ^ u � g ^ u for everyu � h.Therefore if T : L+(Y ) ! L+(X) is an isomorphism, then, given f; g 2 L+(Y ) and U 2 RL(Y ),one has f � g on U if and only Tf � Tg on T(U), where T is as in Corollary 1.Proof. If f � g on Uh and u � h, then it is straightforward that every function lower than f andu is lower than g, so f ^ u � g ^ u.As for the converse, it is clear that if f ^ ah � g ^ ah for every a 2 (0;1), then f � g on Uh. �Corollary 2. Let T : L(Y ) ! L(X) be an isomorphism. There is a lattice isomorphism T :RL(Y ) ! RL(X) such that, given f; g 2 L(Y ) and U 2 RL(Y ), one has f � g on U if and only ifTf � Tg on T(U). The same is true if we replace `�' by `�' or `='.Proof. There is no loss of generality in assuming T0 = 0. Let T be as in Corollary 1. We thenhave that for f; g 2 L+(Y ) and U 2 RL(Y ) one has f � g on U if and only if Tf � Tg on T(U). It isevident that this property characterizes T(U) amongst the members of RL(X).But 0 plays no special rôle here, so actually we have proved that, given u 2 L(Y ), there is anisomorphism Tu : RL(Y )! RL(X) such that for f; g � u in L(Y ) and U 2 RL(Y ) one has f � g onU if and only if Tf � Tg on Tu(U). As before, this property characterizes Tu(U) in RL(X). Now, ifu; v 2 L(Y ), it is easily seen that Tu = Tu^v = Tu_v = Tv;so Tu = T0 = T and the conclusion obtains. �Before embarking into the proof of the main result, let us remark that Lip(X) is always uniformlyseparating. Indeed, if d(A0; A1) > 0, then the function given by

f(x) = d(x;A0)d(x;A0) + d(x;A1)equals i on Ai, for i = 0; 1. Moreover every regular open subset ofX arises as Ug for some g 2 Lip(X)+,for if U 2 R(X), then U = Ug, where g(x) = d(x; U c):Proof of Theorem 1. Part I. In this part of the proof we construct the required mapping� : X ! Y and we prove it is a uniform homeomorphism. Our reasonings depend on the fact thatLipschitz functions on spaces with �nite diameter are bounded and they do not apply to unboundedmetrics; see Example 1 below.So, let T : Lip(Y ) ! Lip(X) be an isomorphism and let T : R(Y ) ! R(X) be the latticeisomorphism given by Corollary 2. What we will show is that T is induced by a point-mapping� : X ! Y in the sense that T(U) = ��1(U) holds for every U 2 R(Y ).
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Consider the set valued map ~� : X ! 2Y given by~�(x) = \

x2T(U)U = \
x2V T�1(V ):Let Vn be the open ball of radius 1=n, centred at x. As d(Vn+1; V cn ) > 0, if we write Vn = Uhn forsuitably chosen hn 2 Lip(X) we have hn+1 b hn and thus T�1hn+1 b T�1hn whence if we denoteUn = T�1(Vn) = UT�1hn one has d(Un+1; U cn) > 0, in particular Un+1 � Un and

~�(x) =\n Un =\n Un:
Let us see that ~�(x) is nonempty. For each n, take yn 2 Un and consider the resulting sequence.Every cluster point of (yn) is in the closure of every Un and so in ~�(x). So, if we assume ~�(x) tobe empty, then there is " > 0 and an in�nite M � N such that d(yn; ym) � " for n 6= m providedn;m 2M . Take a partition M =M0 �M1 into two in�nite subsets and, for i = 0; 1, setWi = [

n2Mi

B(yn; "=3):
Clearly d(W0;W1) � "=3, so there is a Lipschitz u : Y ! [0; 1] such that u = 0 on W0 and u = 1 onW1. Let f and g be such that Tf = 0 and Tg = 1. The function v = f + u � (g � f) agrees with f onW0 and agrees with g on W1. So, if w = Tv, then w takes the values 0 and 1 on any neighbourhoodof x, a contradiction.We see that ~�(x) has exactly one point. If y 2 ~�(x), then by the very de�nition, given U 2 R(Y ),we have y 2 U as long as T(U) contains x. Let S : Lip(X)! Lip(Y ) be the inverse of T , S : R(Y )!R(X) the lattice isomorphism associated to S and ~� : Y ! 2X the set-valued function associated toS. Clearly, S is nothing but the inverse of T. Of course, we have proved that ~�(y) is nonempty.Taking x0 2 ~�(y) we obtain the following implications, for V 2 R(X):x 2 V ) y 2 S(V )) x0 2 VThis already implies that x0 = x and so, for y 2 ~�(x), we have x 2 V if and only if y 2 S(V ). But Sis a lattice isomorphism and so there is at most one y satisfying that condition.This shows that ~�(x) is a singleton for every x 2 X. That the map � : X ! Y sending x into theonly element of ~�(x) is continuous is trivial. That this map is a homeomorphism follows by symmetry.It remains to see that � is uniformly continuous, that is, d(xn; x0n)! 0 in X implies d(yn; y0n)! 0in Y , where yn = �(xn); y0n = �(x0n). If we assume the contrary, we get sequences (xn) and (x0n)such that d(xn; x0n)! 0, while d(yn; y0n) is bounded away from zero. Since neither (xn) nor (x0n) haveconvergent subsequences, and passing to a subsequence if necessary, we get d(A0; A1) > 0 in Y , whereA0 = fyn : n 2 Ng and A1 = fy0n : n 2 Ng. Take u 2 Lip(Y ) such that u = i on a neighbourhood ofAi, where i = 0; 1 and proceed as before: assuming Tf = 0 and Tg = 1, the image of the functionv = f+u�(g�f) under T takes the value 0 at every xn and the value 1 at every x0n, a contradiction. �

1.2. Functional representation. In this Section we use the map � to obtain the representationof T appearing in the main result. The key point is the construction of certain Lipschitz functionswith suitable oscillation properties we present now.
Lemma 3. Let S be a set of real numbers having 0 as a cluster point. There is a Lipschitz function' : R! [0; 1] and two in�nite subsets M and N of S such that:� '(t) > t for all t 2M .� ' = 0 on a neighbourhood of every t 2 N .Moreover ' can be chosen with Lipschitz constant arbitrarily close to 1.
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Proof. Without loss of generality we may assume 0 is a cluster point of S+. The action takesplace in the plane R2 and to avoid any risk of confussion, in this proof, we denote by ]a; b[ the openinterval with endpoints a and b. Fix r > 1. Pick s1 2 S\]0; 1=r[. Now take 0 < s2 < s1 in S+so thatthe line joining (s2; 0) with (s1; s1) has slope at most r, that is:s1 � 0s1 � s2 � r:

Let 0 < s3 < s2 so that ]s3; s2[\S 6= ?. Next take s4 < s3 in such a way that the line joining (s4; s4)with (s3; 0) has slope at most r: ���� 0� s4s3 � s4
���� � r:

Now, replace s1 by s4 to obtain s5 as we did with s2 and so on.Let us consider the function � vanishing on the semiaxis ]�1; 0], taking the value s1 on [s1;1[and whose graph in ]0; s1[ is the `polygonal' de�ned by the points
(s1; s1); (s2; 0); (s3; 0); (s4; s4); (s5; 0); (s6; 0); (s7; s7); : : :Then ' = r� is the Lipschitz function we were looking for and, quite clearly, �(') � r2. �

Proof of Theorem 1. Part II. Let us prove the formula (1), where � : X ! Y is the uniformhomeomorphism we got in Part I. Plainly, it su�ces to prove that, given f; g 2 Lip(Y ), one hasTf(x) = Tg(x) if and only if f(y) = g(y), where y = �(x). By symmetry, we only need the proof ofthe `if' part.Suppose f(y) = g(y). Replacing f and g by f ^ g and f _ g we may assume f � g. In thiscase we already know Tf � Tg and we must show Tf(x) = Tg(x). This is obvious if f = g on aneighbourhood of y, so in the ensuing argument we assume every neighbourhood of y contains pointswhere f < g. In particular y (hence x) is not isolated.Put h = g � f . Then h(y) = 0 and there is a sequence yn ! y such that h(yn) > 0 for every n.Take tn = h(yn) and apply Lemma 3 to the set of these tn. Let ' the resulting function and de�neu = f + ' � h. Clearly, every neighbourhood of y contains an open set where u = f and also anopen set where u � g. Therefore, if v = Tu, then every neighbourhood of x contains an open setwhere v = Tf and also an open set where v � Tg. It follows that Tf(x) = Tg(x) = v(x) and we aredone. �
1.3. From order to distance through category. We have arrived to the most delicate pointof our main result and we face the proof that � is Lipschitz. Here we will use in a essential way thefact that Lipschitz lattices are themselves complete metric spaces.First of all, whenever X has �nite diameter we can equip Lip(X) with the norm kfk = kfk1_�(f)which makes it into a Banach space. The resulting Banach lattice turns out to be boundedly complete.This simply means that WS exists as long as the set S is norm bounded in Lip(X). We hasten toremark that `norm bounded' implies `bounded' , but the converse fails.Also, recall that a lattice homomorphism T is said to be normal if it preserves all joints and meets,that is, it satis�es T (WS) = WT (S) (respectively, T (VS) = VT (S)) provided WS (respectively, VS)exists. Needless to say, lattice isomorphisms are normal.
Lemma 4. Let T : Lip(Y )! Lip(X) be a normal homomorphism. Then:(a) If (fn) is bounded in the norm of Lip(Y ) and converges pointwise to f , then Tfn convergespointwise to Tf provided (Tfn) is norm bounded in Lip(X).(b) T maps an open set of Lip(Y ) into a norm bounded set of Lip(X).
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Proof. The �rst part is nearly obvious once one realizes that if (fn) is bounded in norm, thenfn converges to f pointwise if and only iff =^n

_
k�n fk =

_
n
^
k�n fkin the corresponding Lipschitz lattice.Let us prove (b). We show that, for each real R, the set ff : kTfk � Rg is closed in Lip(Y ).Indeed, if (fn) converges to f in the Lipschitz norm and kTfnk � R for all n, then (fn) is normbounded and pointwise convergent to f , so (Tfn) is pointwise convergent to Tf , which clearly impliesthat kTfk � R. Now, we have

Lip(Y ) = 1[
k=1ff : kTfk � kg:

By Baire's theorem, there is R 2 N such that the (norm closure of) ff : kTfk � Rg has nonemptyinterior. This completes the proof. �Let V be a vector lattice and let g 2 V . Then the map f 7! f + g is a lattice automorphism ofV . In particular, if T : Lip(Y ) ! Lip(X) is a homomorphism, g 2 Lip(Y ) and h 2 Lip(X), thenf 7! h + T (f + g) is a homomorphism. It is normal or an automorphism if and only if T is. Inparticular, if T maps a neighbourhood of g into a norm bounded set, thenf 7�! T (f � g)� T (�g)maps a ball centered at the origin into a bounded set and sends 0 to 0.In the following result we use b�c for the integer part function.Lemma 5. Let d and � be bounded metrics on X and T : Lip(X; �)! Lip(X; d) a homomorphismhaving the representation Tf(x) = t(x; f(x)) for every f and all x. If �d(Tf) � R for each f in theball of radius r in Lip(X; �), one has the following:(a) If a; b 2 [�r; r] and jb� aj � r�(x; y), then jt(x; a)� t(y; b)j � R � d(x; y).(b) If 0 � c � �(x; y)b1=�(x; y)c, then jt(x; cr)� t(x; 0)j � R � d(x; y)=�(x; y):Proof. (a) There is f 2 Lip(X; �) such that f(x) = a; f(y) = b and kfk � r. Now, as �d(Tf) �R, we have jt(x; a)� t(y; b)j = jTf(x)� Tf(y)j � Rd(x; y):(b) We may assume T0 = 0. Fix x; y 2 X and let N be the least integer such that N�(x; y) > 1,so that N�1 = b1=�(x; y)c. Applying the �rst part with a = r�(x; y) and b = 0 we get t(x; r�(x; y)) �Rd(x; y): And, by symmetry, t(y; r�(x; y)) � Rd(x; y): Also,jt(x; 2r�(x; y))� t(y; r�(x; y))j � Rd(x; y) and jt(y; 2r�(x; y))� t(x; r�(x; y))j � Rd(x; y);hence jt(x; 2r�(x; y))j � 2Rd(x; y) and jt(y; 2r�(x; y))j � 2Rd(x; y). Continuing in this way, we arriveto jt(x; (N � 1)r�(x; y))j � R(N � 1)d(x; y):Since (N � 1)�(x; y) � 1 the result follows. �Proof of Theorem 1. Part III. In previous issues of the proof we have seen that Tf(x) =t(x; f(�(x))), where � : X ! Y is a uniform homeomorphism. Thus, we can transfer the structureof Y to X by de�ning a new distance through � taking �(x; x0) = dY (�(x); �(x0)). In this way wemay assume in the remainder of the proof that Y = X and � is the identity on X so that T de�nesan isomorphism from Lip(X; �) to Lip(X; d) by the formula Tf(x) = t(x; f(x)); where d and � areuniformly equivalent metrics on X, both bounded and complete.We must show that the identity is Lipschitz from (X; d) to (X; �).
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Clearly, isomorphisms are normal homomorphisms, so Lemma 4 guarantees that T maps a closedball of Lip(X; �) into a norm-bounded set of Lip(X; d). By the remark made after Lemma 4 we mayand do assume that �d(Tf) � R for every f 2 Lip(X; �) with kfk � r and also that T0 = 0.Now, if the identity fails to be Lipschitz from (X; d) to (X; �), there are sequences (xn) and (yn)such that

(2) limn!1 �(xn; yn)d(xn; yn) =1;
which already implies d(xn; yn)! 0. Since � is uniformly equivalent to d we also have �(xn; yn)! 0.Thus, for each c < 1, we have c � �(xn; yn)b1=�(xn; yn)c for n large enough and by Lemma 5(b),

t�xn; r2�� t(xn; 0) � Rd(xn; yn)�(xn; yn) :If (xn) has a cluster point in X, say x, then
t�x; r2�� t(x; 0) � R limn!1 d(xn; yn)�(xn; yn) = 0;

a contradiction: in the second part of the proof we established that t(x; c) is strictly increasing in cfor each �xed x.If (xn) has no cluster point, then neither (yn) has and there is " > 0 such that e(zn; zm) � " fore = d; �, with z = x; y and n 6= m. Set Z = fxn; yn : n 2 Ng. As bounded Lipschitz functions extendanywhere the `restriction' of T to Z, given byTf(z) = t(z; f(z)) (z 2 Z)is an isomorphism of Lip(Z; �) onto Lip(Z; d) we still call T .Let � denote the involution on Z that permutes xn and yn. It is clear that � is Lipschitz withrespect to d and �. Thus, we can de�ne a symmetric version of T throughSf = Tf + ��(T (��(f))) = Tf + (T (f � �)) � �:Notice that S maps Lip(Z; �) to Lip(Z; d). Even if S need not be an isomorphism, it is a homomorphismand, in fact, Sf(z) = t(xn; f(z)) + t(yn; f(z))if z is either xn or yn. Also, we remark that S0 = 0 and Sf � Tf for every f . We will constructcertain f 2 Lip(Z; �) so that Sf 2 Lip(Z; d) forces the ratio �(xn; yn)=d(xn; yn) to be bounded by aconstant independent on n, thus contradicting (2).We remark that the metric structure of Z is so simple that f : Z ! R is Lipschitz with respect to� if (and only if) it is bounded and satis�esjf(xn)� f(yn)j � ��(xn; yn)for some � independent on n.Let us write Sf(z) = s(z; f(z)), where s(z; c) = t(xn; c)+ t(yn; c) for z = xn; yn. As T is surjectivewe can choose K 2 R such that TK � 1 whence SK � 1. Fix n 2 N and let N be the least integersuch that N�(xn; yn) � K. Let z denote either xn or yn. We have s(z;N�(xn; yn))�s(z; 0) � 1, hencethere is 0 � m � N � 1 for which
(3) s(z; (m+ 1)�(xn; yn))� s(z;m�(xn; yn)) � 1N � 12(N � 1) � �(xn; yn)2K :
Next, we de�ne f : Z ! R takingf(xn) = m�(xn; yn) and f(yn) = (m+ 1)�(xn; yn):
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Clearly, f 2 Lip(Z; �) and since Sf 2 Lip(Z; d) we infer from (3) that�(xn; yn)2K � �d(Sf)d(xn; yn);
in contradiction to (2). This completes the proof. �

2. Little Lipschitz latticesNow we give an application to little Lipschitz functions. We avoid any pathology by consideringin this Section only compact spaces. Let Z be a compact metric space with distance d. Then lip(Z)consists of those functions in Lip(Z) satisfyingjf(x)� f(y)jd(x; y) ! 0 as d(x; y)! 0:
It may happen that lip(Z) contains only the constant functions: Z = [0; 1] is just one example.Thus some additional condition is necessary to get a sensitive space of little Lipschitz functions.Let us consider the following separation property, introduced by Weaver in [10] under a di�erentname. We say that lip(Z) separates points boundedly if there is a constant k > 1 such that for eachx; y 2 Z there is f 2 lip(Z) satisfying jf(x) � f(y)j = d(x; y) with �(f) < k. It turns out [11,Corollary 3.3.5] that if this condition is satis�ed for some k > 1 then it holds for every k > 1.
Theorem 2. Let Y and X be compact metric spaces such that lip(Y ) and lip(X) separate pointsboundedly. Then lip(Y ) and lip(X) are isomorphic lattices if and only if X and Y are Lipschitzhomeomorphic.
Antonio Jim�enez-Vargas and Mois�es Villegas-Vallecinos proved the corresponding linear result in[6] for H�older metrics. Recall that if Z is a compact metric space with distance d and � 2 (0; 1), thenthe H�older space Z� is just Z with the new distance d�. It is well-known [11, Proposition 3.2.2(b)]that such a lip(Z�) separates points boundedly.The proof in [6] can be shortened just invoking duality. Indeed, if T : lip(Y ) ! lip(X) is alinear bijection preserving the order, then T is continuous (this is proved in [6] for H�older metrics,but the proof goes undisturbed in the general case), and therefore the Banach space double adjointT �� : lip(Y )�� ! lip(X)�� is a bounded linear homeomorphism. On the other hand the separationhypothesis implies lip(Y )�� = Lip(Y ), so T `extends' to a linear bijection T �� : Lip(Y )! Lip(X) thatpreserves order in both directions (this is easily checked). Hence T ��f = a � (f � �), where a = T1 and� : X ! Y is a Lipschitz homeomorphism and the same is true for T . Actually this representationis valid for any pair of metric spaces satisfying that the bidual of the little Lipschitz lattice is the bigLipschitz lattice (this can happen even if the involved spaces are not compact; see [10]). Needless tosay this pattern cannot be followed if T fails to be linear. Instead, we will use the following extensionresult for little Lipschitz functions on compact spaces [11, Theorem 3.2.6(a)]: if lip(Z) separatespoints boundedly, then given a closed set Z0 every f0 2 lip(Z0) with �(f0) < � can be extended to af 2 lip(Z) with �(f) < � and kfk1 = kf0k1.This clearly implies that lip(Z) is a uniformly separating vector lattice. Actually it is even aBanach algebra with the norm inherited from Lip(Z).
Proof of Theorem 2. Let T : lip(Y )! lip(X) be a lattice isomorphism. The �rst part of theproof goes as in Section 1. However this time R lip(X) need not contain every regular open set andwe must replace the neighbourhoods Vn by Uhn , where hn 2 lip(X) equals 1 on Vn+1 and vanishesoutside Vn.
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Moreover [11, Proposition 3.1.3], if ' 2 Lip(R) and f 2 lip(Z) one has ' � f 2 lip(Z), so thesecond part applies verbatim. Thus, we have the following representation(4) Tf(x) = t(x; f(�(x))) (f 2 lip(Y ); x 2 X)where � is a homeomorphism and t(x; c) = Tc(x).Next we claim that T maps an open set of lip(Y ) into a norm bounded subset of lip(X).As little Lipschitz lattices do not enjoy the remarkable completeness properties of the big ones the�rst part of Lemma 4 is useless. However it follows from (4) that t(x; c) is separately continuous inthe second variable (a lattice automorphism of R), so T preserves pointwise convergence. For if (fn)converges pointwise to f in lip(Y ) we haveTfn(x) = t(x; fn(�(x)))! t(x; f(�(x))) = Tf(x):This shows that the sets ff : kTfk � Rg are all closed in lip(Y ) and by Baire's theorem some of themmust have nonempty interior, as we claimed.Now, using two translations if necessary we may and do assume that for certain r;R > 0 one haskTfk � R in lip(X) whenever kfk � r in lip(Y ) . These numbers are �xed for the remainder of theproof. Besides, if we transfer the distance from Y to X through � , we may consider Y is just X withanother (equivalent) distance � and that T : lip(X; �)! lip(X; d) has the formTf(x) = t(x; f(x)):Now, the crucial estimates are the following:(a) If a; b 2 [�r; r] and jb� aj < r�(x; y), then jt(x; a)� t(y; b)j � R � d(x; y).(b) If 0 � c < �(x; y)b1=�(x; y)c, then jt(x; cr)� t(x; 0)j � R � d(x; y)=�(x; y).This can be proved as we did in Lemma 5, using either the extension result for little Lipschitzfunctions we quoted before or the separation condition with k close to 1.After that, the proof is easily completed. Let us see that the formal identity is Lipschitz from(X; d) to (X; �). Assuming the contrary we �nd sequences (xn) and (yn) such that

limn!1 d(xn; yn)�(xn; yn) = 0:
Since d and � are bounded, we see that both d(xn; yn) and �(xn; yn) converge to zero. So for everyc < 1 we have c < �(xn; yn)b1=�(xn; yn)c for large n and from the estimate in (b) we get

t�xn; r2�� t(xn; 0) � Rd(xn; yn)�(xn; yn) :Let x be a cluster point of (xn) |recall that X is compact. Then, taking limits in the above inequality,we have t (x; r=2) = t(x; 0), a contradiction. �
3. Uniformly separating latticesIn this Section we prove a nonlinear version of a relatively recent result by Maribel Garrido andJes�us Jaramillo on uniformly continuous functions. In the next result the involved lattices are notassumed to be linear. However, it is easily seen that uniformly separating lattices (in the sense ofSection 1) must contain the constants 0 and 1 and we can adhere this requirement to the de�nition.

Theorem 3. Let Y and X be complete metric spaces and let L(Y ) and L(X) be uniformly sepa-rating lattices. Suppose there is a lattice isomorphism T : L(Y )! L(X) such that T0 = 0 and T1 = 1.Then Y and X are uniformly homeomorphic.
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The proof follows the lines of Section 1.1, but due to the lack of structure in the involved latticeswe need a di�erent approach to get the point mapping � : X ! Y out from the lattice isomorphism.The key point is the following general result where a lattice S of open sets of a given topological spaceX is said to be basic if it contains a base of the topology of X.
Lemma 6. Let B(Y ) and B(X) be basic lattices of open sets for the complete metric spaces Y andX, respectively. If T : B(Y ) ! B(X) is a lattice isomorphism, then there exist dense subsets X 0 ofX and Y 0 of Y and a homeomorphism � : X 0 ! Y 0 such that given x 2 X 0 and U 2 B(Y ) one hasx 2 T(U) if and only if �(x) 2 U .
Proof. Given (x; y) 2 X � Y , let us write x � y if\

y2U T(U) = fxg and \
x2V T�1(V ) = fyg

First of all notice that if x � y and x � y0, then y = y0. Similarly, if x � y and x0 � y, then x = x0.Let X 0 be the set of those x 2 X for which there exists (a necessarily unique) y 2 Y such that x � yand Y 0 the set of those y 2 Y such that x � y for some x 2 X. It is pretty obvious that the map� : X 0 ! Y 0 sending each x 2 X 0 to the only y 2 Y 0 such that x � y is a homeomorphism.It remains to see that Y 0 is dense in Y . The corresponding statement for X 0 follows by symmetry.Let U be a nonempty open subset of Y . We must show that U meets Y 0. Take a nonemptyU1 2 B(Y ) such that U1 � U and diamU1 � 1. Choose a nonempty V1 � T(U1), with diamV1 � 1.Then choose a nonempty U2 � T�1(V1) with U2 � U1 and diamU2 � 1=2. Next, take a nonemptyV2 � T(U2) such that V 2 � V1 and diamV2 � 1=2. In this way we get sequences (Un) and (Vn) inB(Y ) and B(X), respectively, such that, for each n:� Un+1 � Un and V n+1 � Vn.� Un and Vn have diameter at most 1=n.� T(Un+1) � Vn � T(Un).Now, it is clear that there are y 2 Y and x 2 X such that
fyg =\n Un =\n Un and fxg =\n Vn =\n V n:

From where it follows that x � y and since y 2 U we see that Y 0 is dense in Y . �
Proof of Theorem 3. There is no loss of generality in assuming that every function in L(Y )or L(X) takes values in [0; 1]. In any case one can replace L(Y ) by

L[0;1](Y ) = f0 _ (f ^ 1) : f 2 L(Y )g
and similarly with L(X). Also, it is clear that the class of open sets B(Y ) = fUf : f 2 L(Y )g is alattice. Moreover, for every y 2 Y and every neighbourhood U of y, there is f 2 L(Y ) vanishing o�U and such that f(y) = 1, so B(Y ) is a basic lattice of (regular) open sets of Y , and similarly forX. Next we de�ne a mapping T : B(Y ) ! B(X) sending Uf into UTf . The de�nition makes sensebecause Part (b) of Lemma 1 remains true replacing Lip(X) by L(X). Next, we claim that, for i = 0; 1one has f = i on U 2 S(Y ) if and only if Tf = i on T(U). And this is so because f = 0 on Uh isequivalent to f ^ h = 0, while f = 1 on Uh is equivalent to f ^ u = u whenever u � h.Now we apply Lemma 6 to get a homeomorphism � : X 0 ! Y 0 between dense subspaces in such away that given U 2 S(Y ) and x 2 X 0 one has �(x) 2 U if and only if x 2 T(U). We are going to seethat � is uniformly continuous on X 0. Assuming the contrary we have sequences (xn) and (x0n) in X 0such that d(xn; x0n)! 0, while d(yn; y0n) does not converge to zero, where yn = �(xn); y0n = �(x0n). As
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(yn) and (y0n) cannot converge to the same limit, there is an in�nite set M � N and � > 0 such thatd(yn; y0m) > � for all n;m 2M . Set

A0 = [
n2M B(yn; �=3) and A1 = [

n2M B(y0n; �=3);
then d(A0; A1) � �=3 and there is f 2 L(Y ) such that f = i on Ai, for i = 0; 1. Therefore, for n 2M ,we have Tf(xn) = 0 and Tf(x0n) = 1, a contradiction which completes the proof. �

Corollary 3. Let Y and X be complete metric spaces. Suppose L(Y ) and L(X) are uniformlyseparating vector lattices of bounded functions that are isomorphic as mere lattices. Then Y and Xare uniformly homeomorphic.
Proof. Let T : L(Y )! L(Y ) be a lattice isomorphism. We may assume without loss of generalitythat T0 = 0. Put u = 1Y _T�11X and v = Tu = 1X _T1Y . Next notice that since u; v � 1 Theorem 3remains true if we replace the condition T1 = 1 by Tu = v provided L(Y ) has the property that if Aand B are subsets of Y such that d(A;B) > 0 there is f 2 L(Y ) such that f = 0 on A and f = u onB and L(X) has the analogous property with respect to v.To check the relevant condition for L(Y ), take sets A and B such that d(A;B) > 0. Take someh 2 L(Y ) such that h = 0 on A and h = 1 on B. If M � 0 is any constant satisfying M � u, thenf = u ^Mh does what we need. �
As a byproduct of the proof we have the following explicit description of the isomorphisms oflattices of regular open sets of complete metric spaces. Notice that regular open sets play a major rôlein lattice theory; see [1].
Proposition 1. Let Y and X be complete metric spaces with dense subspaces Y 0 and X 0. Suppose� : X 0 ! Y 0 is a homeomorphism. Then the mapping T : R(Y )! R(X) given by

(5) T(U) = ���1(U \ Y 0)is a lattice isomorphism. And, conversely, every lattice isomorphism arises in this way.
Proof. The �rst part follows from the fact that A 7! A0 = A\Y 0 de�nes an isomorphism betweenR(Y ) and R(Y 0) whose inverse is obtained sending B 2 R(Y 0) to the interior of the closure of B inY , and similarly for X. Thus if � : X 0 ! Y 0 is a homeomorphism between dense subspaces, then themap T de�ned in (5) is just the composition

R(Y ) �! R(Y 0) ��1�! R(X 0) �! R(X):To prove this let us introduce the following notation. Given B � Y 0, we write clY 0(B) for the closure ofB in Y 0 and intY 0(B) for the interior of B in Y 0. As before, the bar and the circle stand, respectively,for the closure and the interior in the whole space Y . Now, we have:� If A is open in Y , then clY 0(A \ Y 0) = A \ Y 0.� If F is closed in Y , then intY 0(F \ Y 0) = �F \Y 0.We check the �rst point only: the second one easily follows by duality taking complements. ThatclY 0(A\Y 0) � A\Y 0 is trivial. The reversed inclusion is as follows. If y 2 A\Y 0, there is a sequence(yn) in A converging to y. As Y 0 is dense in A for each n there is y0n 2 A\Y 0 such that d(yn; y0n) < 1=n.It follows that (y0n) converges to y, which belongs to clY 0(A \ Y 0), as required.Let now A be open in Y and put A0 = A \ Y 0. We have
intY 0 clY 0(A0) = intY 0 clY 0(A \ Y 0) = intY 0(A \ Y 0) = �A \Y 0:
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It follows that A0 is regular if A is. Next, if A;B 2 R(Y ) are such that A\ Y 0 = B \ Y 0, then A = B.Indeed we have A = B and so A = B.It remains to see that each C 2 R(Y 0) can be obtained as the intersection of Y 0 with some memberof R(Y ): but is is easily seen that taking the interior of the closure of C in Y su�ces. This ends theproof of the �rst statement.To prove the converse, let T : R(Y ) ! R(X) be an isomorphism and let � : X 0 ! Y 0 be as inLemma 6. It is pretty obvious from the de�nition of x � y and the �rst part of the proof that givenU 2 R(Y ) one has T(U) \X 0 = ��1(U \ Y 0); which implies (5). �

4. CounterexamplesThe following example shows that the hypothesis on the diameters cannot be removed in Theo-rem 1. It also shows at once that the `unital' character of the isomorphism is necessary in Theorem 3and that Corollary 3 fails for lattices of unbounded functions. Please notice that linearity would nothelp!
Example 1. Two non-uniformly homeomorphic complete metric spaces Y and X such that thelattices Lip(Y ) and Lip(X) are (even linearly) isomorphic.
Proof. Set X = fn2 + i 2 R : n 2 N; n � 2; i = 0; 1g and Y = fn + i=n 2 R : n 2 N; n � 2; i =0; 1g. We equip these spaces with the restriction of usual distance in R. Consider the map sendingeach f 2 Lip(Y ) into the function

Tf(n2 + i) = nf(n+ i=n):We claim that T de�nes an (obviously linear) isomorphism between Lip(Y ) and Lip(X). We takeadvantage of the fact that the Lipschitz constant of functions de�ned either on Y or on X can becomputed using only `adjacent' points, so
�X(g) = supn�2

�jg(n2 + 1)� g(n2)j; jg((n+ 1)2)� g(n2 + 1)j2n
� ;

while �Y (f) = supn�2
�njf(n+ 1=n)� f(n)j; nn� 1 jf(n+ 1)� f(n+ 1=n)j� :

But, jTf(n2 + 1)� Tf(n2)j = njf(n+ 1=n)� f(n)j � n�Y (f)=n = �Y (f)and jTf((n+ 1)2)� Tf(n2 + 1)j2n = j(n+ 1)f(n+ 1)� nf(n+ 1=n)j2n= j(n+ 1)f(n+ 1)� (n+ 1)f(n+ 1=n) + f(n+ 1=n)j2n� n+ 12n jf(n+ 1)� f(n+ 1=n)j+ jf(n+ 1=n)j2n� n+ 12n � �Y (f) � n� 1n + jf(n+ 1=n)� f(2) + f(2)j2n� 34�Y (f) + �Y (f)2n (n+ 1=n� 2) + jf(2)j2n� 54�Y (f) + jf(2)j;



Lipschitz lattices 13
so �X(Tf) � 54�Y (f)+ jf(2)j and T maps Lip(Y ) into Lip(X). To see T is surjective let us show thatfor each g 2 Lip(X) the function f : Y ! R given by

f(n+ i=n) = g(n2 + i)nis Lipschitz. Obviously one then has Tf = g. We havejf(n+ 1=n)� f(n)j1=n = jg(n2 + 1)� g(n2)j � �X(g):
Also, nn� 1 jf(n+ 1)� f(n+ 1=n)j = nn� 1

����g((n+ 1)2)n+ 1 � g(n2 + 1)n
����

= jng((n+ 1)2)� (n+ 1)g(n2 + 1)(n+ 1)(n� 1)
� n(n+ 1)(n� 1) � �X(g) � 2n+ jg(n2 + 1)j(n+ 1)(n� 1)
� 83�X(g) + jg(n2 + 1)� g(4) + g(4)j(n+ 1)(n� 1)
� 113 �X(g) + jg(4)j3 :

Whence �Y (f) � 113 �X(g) + jg(4)j=3, which completes the proof. �Garrido and Jaramillo proved in [4, Theorem 3.10] that two complete metric spaces are Lipschitzhomeomorphic if and only if there is a linear and unital lattice isomorphism between the correspondingspaces of Lipschitz functions. The above example shows that `unital' is needed here. And the nextone that neither `linear' can be omitted.Example 2. Let N1 denote the set of integers with the discrete metric instead of the usualmetric. Obviously N1 is not Lipschitz homeomorphic with N. However, there is a lattice isomorphismT : Lip(N1)! Lip(N) such that T0 = 0 and T1 = 1.Proof. Notice Lip(N1) is nothing but the space of bounded sequences. Put
Tf(n) = (f(n) if jf(n)j � 1nf(n) otherwiseIt is easily veri�ed that T de�nes an isomorphism of Lip(N1) onto Lip(N). �
5. Concluding remarksThe paper [8] contains the statement that two complete metric spaces are uniformly homeomorphicif the corresponding lattices of uniformly continuous functions are isomorphic [8, Theorem 6].While it is apparent that Shirota's proof works for bounded functions (we refer the interestedreader to [2] for a contemporary proof), a serious gap occurs in the `unbounded' case. It is worthnoticing that Nagata had already proved a closely related for bounded uniformly continuous functionswhich are uniformly continuous outside a �nite set [7, Theorem 2].Perhaps the following explanations are in order. Let U(X) denote the lattice of all uniformlycontinuous functions onX and U�(X) the sublattice of bounded functions in U(X). Consider Shirota'srelations `�' and `b' we used in Section 1 in U�(X) and U(X). As before, f � g is equivalent toUf � Ug both in U�(X)+ and in U(X)+, but the meaning of f b g depends on the `ambient' lattice.
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Indeed, one has f b g , d(Uf ; U cg ) > 0 in U�(X), by Lemma 1(c). However, the implication (() mayfail in U(X). To see this, take X = R with the usual distance and the sets:V =[n (n� 1=8; n+ 1=8) and W =[n (n� 1=4; n+ 1=4):
Clearly, d(V;W c) = 1=8. De�ne f and g taking f(x) = d(x; V c) and g(x) = d(x;W c), so that V = Ufand W = Ug. Let us see that the relation f b g does not hold in U(R). Indeed, for n 2 N, let hn bepiecewise linear function de�ned by the conditions hn(n) = n; hn(n � 18) = 0. Then hn � f for all nand the sequence (hn) is bounded by j � j. However no uniformly continuous function h � g can be anupper bound for (hn).So, let us close the paper with the following.Problem. Let Y and X be complete metric spaces such that the lattices U(Y ) and U(X) areisomorphic. Must X and Y be uniformly homeomorphic? What if U(Y ) and U(X) are linearlyisomorphic?It is apparent that the problem reduces to �nd a condition equivalent to `d(Uf ; U cg ) > 0' (or to`d(Uf ; Ug) = 0') within the order structure of U(X)+. This could be an impossible task: Example 1shows that these conditions cannot be expressed within the order structure of Lip(X) if X has in�nitediameter.
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