Geometric clustering in the normed plane

Pedro Martín

University of Extremadura, Badajoz

Cáceres, March 2016
$M^2 = (\mathbb{R}^2, \| \cdot \|)$ is a 2-dimensional normed (or Minkowski) plane.
Geometric clustering

$\mathbb{M}^2 = (\mathbb{R}^2, \| \cdot \|)$ is a 2-dimensional *normed* (or *Minkowski*) plane. Let S be a set of n points in the normed plane and k a fixed number.
Geometric clustering

$\mathbb{M}^2 = (\mathbb{R}^2, \| \cdot \|)$ is a 2-dimensional normed (or Minkowski) plane. Let S be a set of n points in the normed plane and k a fixed number.

How can S be separated (by an algorithm) in k clusters verifying some conditions?
$\mathbb{M}^2 = (\mathbb{R}^2, \| \cdot \|)$ is a 2-dimensional normed (or Minkowski) plane. Let S be a set of n points in the normed plane and k a fixed number.

How can S be separated (by an algorithm) in k clusters verifying some conditions?
Geometric clustering

$k = 1$, minimizing the radius of a enclosing disc:
- Elzinga-Hearn and Shamos-Hoey (Euclidean plane).
- Alonso-Martini-Spirova and Jahn (general normed plane).

$k = 2$, minimizing the maximum Euclidean diameter of the clusters:
- Avis, $O(n^2 \log n)$.
- Asano-Bhattacharya-Keil-Yao, $O(n \log n)$.

$k = 2$, minimizing the sum of the two Euclidean diameters:
- Monma-Suri, $O(n^2)$.

$k = 2$, μ a measure, $\mu_1 > 0$ and $\mu_2 > 0$, splitting S into two clusters A and B such that $\mu(A) \leq \mu_1$ and $\mu(B) \leq \mu_2$:
- Hershberger and Suri,
 - $\mu =$Euclidean diameter, $O(n \log n)$.
 - $\mu =$area, perimeter, or diagonal of the smallest rectangle with sides parallel to the coordinates axes ($O(n \log n)$ time).
 - $\mu =$radius of the smallest enclosing sphere with the norms L_1 ($O(n \log n)$ time) or the Euclidean norm ($O(n^2 \log n)$ time).
Geometric clustering

\(k = 2 \), the **2-center problem**: cover \(S \) by (the union of) two congruent closed disks whose radius is as small as possible.

- Eppstein and Sharir (1997), near linear time cost (Euclidean case).

\(k = 3 \), minimizing the maximum Euclidean diameter

- Hagauer-Rote, \(O(n^2 \log^2 n) \)

Any \(k \), minimizing any monotone function \(\mathcal{F} \) (\(\mathcal{F} : \mathbb{R}^k \to \mathbb{R} \)) of the Euclidean diameters or the Euclidean radii of the clusters.

Examples of \(\mathcal{F} \):

- The sum of the diameters (or the radii)
- The maximum of the diameters (or the radii)
- The sum of the squares of the diameters (or the radii).

- Capoyleas-Rote-Woeginger, polynomial time.
Hagauer-Rote and Capoyleas-Rote-Woeginger obtain their results from this theorem

Theorem (Capoyleas-Rote-Woeginger)

*Let A and B be two sets of points in the Euclidean plane. Then, there are two linearly separable sets A' and B' such that $\text{diam}(A') \leq \text{diam}(A)$, $\text{diam}(B') \leq \text{diam}(B)$, and $A' \cup B' = A \cup B$.***

Figure: Non linearly separable (left) and linearly separable sets (right)
Linear separation of clusters

This first statement is used in the proof of the Theorem: *In every triangle with an obtuse angle, the side lying opposite to the obtuse angle is the (Euclidean) longest side in the triangle.*
This first statement is used in the proof of the Theorem: *In every triangle with an obtuse angle, the side lying opposite to the obtuse angle is the (Euclidean) longest side in the triangle.*

Figure: The side opposite to the obtuse angle is not the longest side in the triangle $\triangle abc$.
Linear separation of clusters

This second statement is used in the proof of Theorem:

1. \(\text{diam}(A) \geq \text{diam}(B) \)

2. \(\{a_i, a'_i, a_m\} \subset A, \{b_j, b'_j\} \subset B \)

Clockwise order: \(a'_i, b'_j, a_m, b_j, a_i \)

3. \(\langle b_j, b'_j \rangle \) separates \(\{a_i, a'_i\} \) from \(a_m \).

\[
\begin{cases}
\{ \|a_i - b_j\|, \|a'_i - b'_j\| \} \\
(\mathbb{E}^2) \leq \text{diam}(A).
\end{cases}
\]
Linear separation of clusters

But this point configuration is possible in a general normed plane:

Figure: $\|a_i - b_j\|$ and $\|a'_i - b'_j\|$ are longer than the diameter of A.
Linear separation of clusters

Objective: to prove the Theorem for any normed plane.
Linear separation of clusters

Step 1: \(\{u_1, u_2, \ldots, u_{2k}\} = \partial(\text{conv}(A)) \cap \partial(\text{conv}(B)). \)
Linear separation of clusters

We can assume that $\text{diam}(A) \geq \text{diam}(B)$

We say that...

- (A_i, B_j) is a \textit{bad pair} if $\text{diam}(A_i \cup B_j) > \text{diam}(A)$.
 Then, A_i and B_j are \textit{bad partners}.

- $a_i \in A_i$ and $b_j \in B_j$ are \textit{bad points} if $\|a_i - b_j\| > \text{diam}(A)$.
 Then, a_i and b_j are \textit{bad partners},
 and the segment $a_i b_j$ is a \textit{bad segment}.
Lemma
Let \((A_i, B_j)\) and \((A_i', B_j')\) two disjoint bad pairs. Let us choose \(a_i \in A_i, b_j \in B_j, a_i' \in A_i', b_j' \in B_j'\) such that \(a_i b_j\) and \(a_i' b_j'\) are bad segments. Then, either these bad segments intersect, or any point \(a \in A_m\) belonging to the halfplane defined by \(\langle b_j b_j' \rangle\) where \(a_i\) and \(a_i'\) are not contained, is not bad.
Linear separation of clusters

Lemma
Let \((A_i, B_j)\) and \((A'_i, B'_j)\) two disjoint bad pairs. Let us choose \(a_i \in A_i, b_j \in B_j, a'_i \in A'_i, b'_j \in B'_j\) such that \(a_i b_j\) and \(a'_i b'_j\) are bad segments. Then, either these bad segments intersect, or any point \(a \in A_m\) belonging to the halfplane defined by \(< b_j b'_j >\) where \(a_i\) and \(a'_i\) are not contained, is not bad.

Sketch of the proof. Possible clockwise order (up to symmetries):

Case 1: \(a_i, b'_j, a'_i, b_j\)
Case 2: \(a_i, a'_i, b'_j, b_j\)
Linear separation of clusters

Case 1: clockwise order

\[a_i, b_j', a_i', b_j \]

We get a contradiction:

\[
\text{diam}(A) + \text{diam}(B) \geq \| a_i - a_i' \| + \| b_j - b_j' \| \geq \\
\| a_i - b_j \| + \| a_i' - b_j' \| > 2 \text{ diam}(A).
\]
Case 2: clockwise order $a_i, a_{i'}, b_{j'}, b_j$:

Figure: $(a_i, b_j), (a_{i'}, b_{j'})$ are bad partners $\implies \nexists$ any bad partner for a_m
Linear separation of clusters

Case 2: clockwise order $a_i, a_{i'}, b_{j'}, b_j$:

Figure: (a_i, b_j) and $(a_{i'}, b_{j'})$ bad partners \implies \nexists any bad partner for a_m
Linear separation of clusters

Step 2: Maximal cyclic subsequences of polygons.
Linear separation of clusters

Step 2: Maximal cyclic subsequences of polygons.

- Consider maximal cyclic subsequences of adjacent bad polygons A_i.
 - No ”good” polygon A_k belongs to one of this maximal cyclic subsequences of bad A_i-polygons.
 - Some intervening ”good” polygon B_j can belong to this maximal cyclic subsequences of A_i-polygons.
- Similarly with adjacent bad polygons B_j.
- These maximal cyclic sequences are noted by $\bar{A}_1, \bar{A}_2, \ldots, \bar{A}_p$ and $\bar{B}_1, \bar{B}_2, \ldots, \bar{B}_q$.
Linear separation of clusters

Example with 3 maximal cyclic subsequences of A_i-polygons and 3 maximal subsequences of B_j-polygons:

$\bar{A}_1 = \{A_1\}$
$\bar{B}_1 = \{B_1\}$
$\bar{A}_2 = \{A_2\}$
$\bar{B}_2 = \{B_3\}$
$\bar{A}_3 = \{A_4\}$
$\bar{B}_3 = \{B_5\}$
Linear separation of clusters

Example with 3 maximal cyclic subsequences of A_i-polygons, 3 maximal subsequences of B_j-polygons, and "good" intervening polygons:

\[
\tilde{A}_1 = \{A_1\} \\
\tilde{B}_1 = \{B_1\} \\
\tilde{A}_2 = \{A_2, B_2, A_3\} \\
\tilde{B}_2 = \{B_3\} \\
\tilde{A}_3 = \{A_4\} \\
\tilde{B}_3 = \{B_4, A_5, B_5\}
\]
Linear separation of clusters

Properties

- Let \((A_i, B_j)\) and \((A_i', B_j')\) be two disjoint bad pairs. Then

\[A_i, A_i' \in \bar{A}_k \implies B_j, B_j' \in \bar{B}_t\]

- The number of maximal cyclic sequences of adjacent bad \(A_i\)-polygons and \(B_j\)-polygons is the same.

- If \((\bar{A}_i, \bar{B}_j)\) and \((\bar{A}_i', \bar{B}_j')\) are disjoint bad pairs of maximal subsequences, then there exist two (one from every pair) bad-crossing segments.

- There is an odd number of subsequences from each cluster, and they must be completely interlacing.
Linear separation of clusters

Step 3: Separate the sets.
Linear separation of clusters

- Let A_i be the last polygon of a maximal cyclic subsequence (in clockwise order).
- Let B_j be the last bad partner of A_i.
- Let $B_{j'}$ be the first bad polygon after A_i.
- Let $A_{i'}$ be the first bad partner of $B_{j'}$.
- Choose the line L going through the point just before B_j and the point just after $B_{j'}$.
- Define B' to be the points in $A \cup B$ lying on the same side of L as B_j and $B_{j'}$, and A' as the remaining points.
Linear separation of clusters

A_i and B_j
Linear separation of clusters

Proposition

\[\text{diam}(A') \leq \text{diam}(A), \quad \text{diam}(B') \leq \text{diam}(B). \]

Theorem

Let \(A \) and \(B \) be two sets of points in a general normed plane. Then, there are two linearly separable sets \(A' \) and \(B' \) such that \(\text{diam}(A') \leq \text{diam}(A), \text{diam}(B') \leq \text{diam}(B), \text{ and } A' \cup B' = A \cup B. \)

Corollary

In the construction in the Theorem,

\[\text{perimeter}(A) + \text{perimeter}(B) \geq \text{perimeter}(A') + \text{perimeter}(B') \]

holds. If \(\text{conv}(A) \cap \text{conv}(B) \neq \emptyset \), then the inequality is strict.
Some consequences

The 2-clustering problem for diameter respect to the minimum: Dividing S in two sets minimizing the maximum diameter of the sets.

Theorem

Given a set S of n points in a normed plane, the 2-clustering problem for diameter respect to the minimum can be computed in $O(n^2 \log^2 n)$ time.

- Sort the distances d_i between the points of S into increasing order.
- By a binary search, locate the minimum d_i that admits a *stabbing line* for the set of segments meeting point of S at distance greater than d_i.

Some consequences

The k-clustering problem for diameter respect to a function \mathcal{F} (for example, \mathcal{F} can be the $maximum$, the sum, or the sum of $squares$):

Dividing S in k sets minimizing a function \mathcal{F} of the diameters of the sets.

Theorem

Consider the optimal k-clustering problem for the diameter respect to a monotone increasing function \mathcal{F} of such as diameters. For every set S of n points in a general normed plane,

- There is an optimal k-clustering such that each pair of clusters is linearly separable.
- The problem is solvable by an algorithm in polynomial time.
Thank you very much!