
Modeling-Science September 15, 2009

Modeling Science: From Free Fall to
Chaos

Wolfgang Christian
and

Francisco Esquembre



Modeling-Science September 15, 2009



Modeling-Science September 15, 2009



Modeling-Science September 15, 2009

Chapter Two

Introduction to Easy Java Simulations

A good example is the best sermon. Benjamin Franklin

This chapter provides an overview of Easy Java Simulations (EJS for
short), the high-level modeling and authoring tool that we will use to make
our models explicit and to run these models to study their behavior. To
provide a perspective of the modeling process, we first load, inspect, and
run an existing simple harmonic oscillator simulation. We then modify the
simulation to show how EJS engages the user in the modeling process and
greatly reduces the amount of programming that is required.

2.1 ABOUT Easy Java Simulations

Computer modeling is intimately tied to computer simulation. A model is a
conceptual representation of a physical system and its properties and mod-
eling is the process whereby we construct this representation. Computer
modeling requires (1) a description and an analysis of the problem, (2) the
identification of the variables and the algorithms, (3) the implementation on
a specific hardware-software platform, (4) the execution of the implementa-
tion and analysis of the results, (5) refinement and generalization, and (6)
the presentation of results. A computer simulation is an implementation of
a model that allows us to test the model under different conditions with the
objective of learning about the model’s behavior. The applicability of the
results of the simulation to those of the real (physical) system depends on
how well the model describes reality. The process of devising more general
and more accurate models is what science is about.

The implementation of a model and the visualization of its output re-
quires that we program a computer. Programming can be fun, because it
gives us complete control of every visual and numerical detail of the simu-
lated world. But programming is also a technical task that can intimidate.
This technical barrier can, however, be lowered if we use an appropriate
tool. Easy Java Simulations is a modeling tool that has been designed to



Modeling-Science September 15, 2009

6 CHAPTER 2

allow scientists, not only computer scientists, to create simulations in Java.
EJS simplifies this task, both from the technical and from the conceptual
point of view.

EJS provides a simple yet powerful conceptual structure for building
simulations. The tool offers a sequence of workpanels which we use to im-
plement the model and its graphical user interface. EJS automates tasks
such as numerically solving ordinary differential equations, and animation
(using Java threads). The low-level communication between the program
and the end-user that takes place at run-time, including handling of mouse
actions within the simulation’s graphical interface, is accomplished without
low-level programming.

Obviously, part of the task still depends on us. You are responsible
for providing a model for the phenomenon and for designing and selecting
an output view that shows the model’s main features. These high-level
tasks are more related to science than to programming. You are encouraged
to devote your time and energy studying the science, something that the
computer cannot do. The purpose of this chapter is to demonstrate that
this computer modeling is not only possible but can be relatively easy, with
the help of Easy Java Simulations.

2.2 INSTALLING AND RUNNING THE SOFTWARE

Let us begin by installing Easy Java Simulations and running it. EJS is
a Java program that can be run under any operating system that supports
a Java Virtual Machine (VM). Because Java is designed to be platform
independent, the EJS user interface on Mac OS X, Unix, and Linux is
almost identical to the Windows interface shown in this book.

To install and run EJS, do the following:

1. Install the Java Runtime Environment. EJS requires the Java
Runtime Environment (JRE), version 1.5 or later. The JRE may al-
ready be installed in your computer, but, if not, use the copy provided
on the CD that comes with this book or, even better, visit the Java site
at <http://java.sun.com> and follow the instructions there to down-
load and install the latest version.

2. Copy EJS to your hard disk. You’ll find EJS in a compressed
ZIP file called something like EJS X.x yymmdd.zip on the CD of
this book or, again better, download the latest release from EJS web
site <http://www.um.es/fem/Ejs>. Here, the X.x characters stand
for the actual version of the software, and yymmdd stands for the date
this version was created. (For instance, you can get something like



Modeling-Science September 15, 2009

INTRODUCTION TO Easy Java Simulations 7

EJS 4.2 090901.) Uncompress this file on your computer’s hard disk
to create a directory called EJS X.x (EJS 4.2 in the example). This
directory contains everything that is needed to run EJS.1

3. Run the EJS console. Inside the newly-created EJS X.x directory,
you will find a file called EjsConsole.jar. Double-click it to run the
EJS console shown in Figure 2.1.

If double-clicking doesn’t run the console, open a system terminal win-
dow, change to the Ejs directory, and type the command: java -jar

EjsConsole.jar. You’ll need to fully qualify the java command if it is
not in your system’s PATH.

Figure 2.1: The EJS console.

You should see the console (Figure 2.1) and the file chooser dialog of
Figure 2.2, that we will describe below, on your computer display.

Figure 2.2: File chooser to select your workspace directory.

The EJS console is not part of EJS, but a utility used to launch one
or several instances (copies) of EJS and to perform other EJS -related tasks.
You can use the console to customize some aspects of how EJS looks and
behaves at start up. (For instance, we changed the selection of the Look

1In Unix-like systems, the EJS X.x directory may be uncompressed as read-only. Enable write
permissions for the EJS X.x directory and all its subdirectories.



Modeling-Science September 15, 2009

8 CHAPTER 2

and feel field to Nimbus, the latest look and feel for Windows platforms, and
launched a new instance of EJS to apply the change. You will appreciate
the new look and feel in subsequent figures.) The console also displays
EJS program information and error messages on its Output area tab, and
we will refer to it from time to time in this book. The console creates an
instance of EJS at start-up and exits automatically when you close the last
running instance of EJS. Other console features, such as its ability to process
collections of EJS models, are described in the appendices.

However, before the console can run EJS right after installation, the
file chooser displayed in Figure 2.2 will appear, letting you select the direc-
tory in the computer hard disk that you will use as your workspace. EJS
uses the concept of a workspace to organize your work. A workspace is
a directory in your hard disk where EJS stores your simulation files for a
given project. A workspace can contain an unlimited number of simulations.
Inside a workspace directory, EJS creates four subdirectories:

• config is the directory for user-defined configuration and options files.
• export is the proposed target directory when EJS generates files for

distribution.
• output is the directory used by EJS to place temporary files generated

when compiling a simulation.
• source is the directory under which all your simulation (source and

auxiliary) files must be located.

When you first run EJS, the console asks you to choose a workspace
directory. This must be a writable directory anywhere in your hard disk.
You can choose to use the workspace included in the distribution, i.e. the
workspace directory in the EJS X.x directory created when you unzipped
the EJS bundle. But it is recommended to create a new directory in your
usual personal directory. The file dialog that allows you to choose the
workspace has a check box that, when checked, will copy all the exam-
ples files of the distribution to the new workspace. Leave this check box
checked and you will find some subdirectories in the source directory of
your workspace which contain sample simulations. In particular, the Mod-
elingScience directory includes the EJS models described in this book.

You can create and use more than one workspace for different projects or
tasks. The console provides a selector to let you change the workspace in
use and EJS will remember the current workspace between sessions or even
if you reinstall EJS. Appendix A describes how to configure and use EJS in
a multiuser installation.

Finally, the first time you run EJS, the program will also ask you to



Modeling-Science September 15, 2009

INTRODUCTION TO Easy Java Simulations 9

introduce your name and affiliation (Figure 2.3). This step is optional but
recommended, since it will help you document your future simulations. You
can choose to input or modify this information later using the options icon
of EJS ’ task bar.

Figure 2.3: Optionally input your name and affiliation.

We are now ready to turn our attention to the EJS modeling tool,
displayed with annotations in Figure 2.4 (our first image with the Nimbus
look and feel). Despite its simple interface, EJS has all the tools needed for
a complete modeling cycle.

Figure 2.4: The Easy Java Simulations user interface with annotations.

The taskbar on the right provides a series of icons to clear, open,



Modeling-Science September 15, 2009

10 CHAPTER 2

search, and save a file, configure EJS, and display program information and
help. It also provides icons to run a simulation and to package one or more
simulations in a jar file. Right-clicking on taskbar icons invokes alternative
(but related) actions that will be described as needed. The bottom part
of the interface contains an output area where EJS displays informational
messages. The central part of the interface contains the workpanels where
the modeling is done.

Easy Java Simulations provides three workpanels for modeling. The
first panel, Description, allows us to create and edit multimedia HTML-
based narrative that describes the model. Each narrative page appears in
a tabbed panel within the workpanel and right-clicking on the tab allows
the user to edit the narrative or to import additional narrative. The second
work panel, Model, is dedicated to the modeling process. We use this panel
to create variables that describe the model, to initialize these variables, and
to write algorithms that describe how this model changes in time. The
third workpanel, View, is dedicated to the task of building the graphical
user interface, which allows users to control the simulation and to display
its output. We build the interface by selecting elements from palettes and
adding them to the view’s Tree of elements. For example, the Interface
palette contains buttons, sliders, and input fields and the 2D Drawables
palette contains elements to plot 2D data.

2.3 INSPECTING THE SIMULATION

To understand how the Description, Model, and View workpanels work to-
gether, we inspect and run an already existing simulation. Screen shots are
no substitute for a live demonstration, and you are encouraged to follow
along on your computer as you read.

Figure 2.5: The open file dialog lets you browse your hard disk and load an
existing simulation.



Modeling-Science September 15, 2009

INTRODUCTION TO Easy Java Simulations 11

Click on the Open icon on the EJS taskbar. A file dialog similar
to that in Figure 2.5 appears showing the contents of your workspace’s
source directory. Go to the ModelingScience directory, and open the
Ch02 Intro subdirectory. You will find a file called MassAndSpring.xml
inside this directory. Select this file and click on the Open button of the file
dialog.

Now, things come to life! EJS reads the MassAndSpring.xml docu-
ment which populates the workpanels and two new “Ejs windows” appear in
your display as shown in Figure 2.6. A quick warning. You can drag objects
within these mock-up windows but this will set the model’s initial condi-
tions. It is usually better to set initial conditions using a table of variables
as described in Section 2.3.2.

Figure 2.6: EJS mock-up windows of the MassAndSpring simulation.
The title bar shows that they are Ejs windows and that the program is not
running.

Impatient or precocious readers may be tempted to click on the green run
icon on the taskbar to execute our example before proceeding with this
tutorial. Readers who do so will no longer be interacting with EJS but with
a compiled and running Java program. Exit the running program by closing
the Mass and Spring window or by right clicking on the (now) red run icon

on EJS ’ taskbar before proceeding.

2.3.1 The Description workpanel

Select the Description workpanel by clicking on the corresponding radio
button at the top of EJS, and you will see two pages of narrative for this
simulation. The first page, shown in Figure 2.7, contains a short discussion
of the mass and spring model. Click on the Activities tab to view the second



Modeling-Science September 15, 2009

12 CHAPTER 2

page of narrative.

Figure 2.7: The description pages for the mass and spring simulation. Click
on a tab to display the page. Right-click on a tab to edit the page.

A Description is HTML multimedia text that provides information and
instructions about the simulation. HTML stands for HyperText Markup
Language and is the most commonly used protocol for formatting and dis-
playing documents on the Web. EJS provides a simple HTML editor that
lets you create and modify pages within EJS. You can also import HTML
pages into EJS by right clicking on a tab in the Description workpanel.
(See Section 2.6.3.) Description pages are an essential part of the modeling
process and these pages are distributed with the compiled model when the
model is distributed as a Java application or posted on a Web server as an
applet. These distribution options are described in Appendix A.

2.3.2 The Model workpanel

The Model workpanel is where the model is defined so that it can be con-
verted into a program by EJS. In this simulation, we study the motion of a
particle of mass m attached to one end of a massless spring of equilibrium
length L. The spring is fixed to the wall at its other end and is restricted
to move in the horizontal direction. Although the oscillating mass has a
well known analytic solution, it is useful to start with a simple harmonic
oscillator model so that our output can be compared with an exact analytic
result.

Our model assumes small oscillations so that the spring responds to
a given (horizontal) displacement δx from its equilibrium length L with a
force given by Hooke’s law, Fx = −k δx, where k is the elastic constant of



Modeling-Science September 15, 2009

INTRODUCTION TO Easy Java Simulations 13

the spring, which depends on its physical characteristics. We use Newton’s
second law to obtain a second-order differential equation for the position of
the particle:

d2 x

dt2
= − k

m
(x− L). (2.3.1)

Notice that we use a system of coordinates with its x-axis along the spring
and with its origin at the spring’s fixed end. The particle is located at x
and its displacement from equilibrium δx = x− L is zero when x = L. We
solve this system numerically to study how the state evolves in time.

Let’s examine how we implement the mass and spring model by se-
lecting the Model radio button and examining each of its five panels.

2.3.2.1 Declaration of variables

Figure 2.8: The Model workpanel contains five subpanels. The subpanel for
the definition of mass and spring dynamical variables is displayed. Other
tabs in this subpanel define additional variables, such as the natural length
of the spring L and the energy E.

When implementing a model, a good first step is to identify, define,
and initialize the variables that describe the system. The term variable is
very general and refers to anything that can be given a name, including a
physical constant and a graph. Figure 2.8 shows an EJS variable table. Each
row defines a variable of the model by specifying the name of the variable,
its type, its dimension, and its initial value.

Variables in computer programs can be of several types depending
on the data they hold. The most frequently used types are boolean for
true/false values, int for integers, double for high-precision (≈ 16 significant



Modeling-Science September 15, 2009

14 CHAPTER 2

digits) numbers, and String for text. We will use all these variable types in
this book, but the mass and spring model uses only variables of type double
and boolean.

Variables can be used as parameters, state variables, or inputs and
outputs of the model. The tables in Figure 2.8 define the variables used
within our model. We have declared a variable for the time, t, for the x-
position of the particle, x, and for its velocity in the x-direction, vx. We
also define variables that do not appear in (2.3.1). The reason for auxiliary
variables such as the kinetic, potential, and total energies will be made clear
in what follows. The bottom part of the variables panel contains a comment
field that provide a description of the role of each variable in the model.
Clicking on a variable displays the corresponding comment.

2.3.2.2 Initialization of the model

Correctly setting initial conditions is important when implementing a model
because the model must start in a physically realizable state. Our model
is relatively simple, and we initialize it by entering values (or simple Java
expressions such as 0.5*m*vx*vx) in the Initial value column of the table of
variables. EJS uses these values when it initializes the simulation.

Advanced models may require an initialization algorithm. For example, a
molecular dynamics model may set particle velocities for an ensemble of
particles. The Initialization panel allows us to define one or more pages of
Java code that perform the required computation. EJS converts this code
into a Java method2 and calls this method at start-up and whenever the
simulation is reset. The mass and spring Initialization panel is not shown
here because it is empty. See Section 2.3.2.4 for an example of how Java
code appears in EJS.

2.3.2.3 The evolution of the model

The Evolution panel allows us to write the Java code that determines how
the mass and spring system evolves in time and we will use this option
frequently for models not based on ordinary differential equations (ODEs).
There is, however, a second option that allows us to enter ordinary differ-
ential equations, such as (2.3.1), without programming. EJS provides a
dedicated editor that lets us specify differential equations in a format that
resembles mathematical notation and automatically generates the correct
Java code.

2A Java method is similar to a function or a subroutine in procedural computer languages.



Modeling-Science September 15, 2009

INTRODUCTION TO Easy Java Simulations 15

Let’s see how the differential equation editor works for the mass and
spring model. Because ODE algorithms solve systems of first-order ordinary
differential equations, a higher-order equation, such as (2.3.1), must be re-
cast into a first-order system. We can do so by treating the velocity as an
independent variable which obeys its own equation:

d x

dt
= vx (2.3.2)

d vx

dt
= − k

m
(x− L). (2.3.3)

The need for an additional differential equation explains why we declared
the vx variable in our table of variables.

Clicking on the Evolution panel displays the ODE editor shown in
Figure 2.9. Notice that the ODE editor displays (2.3.2) and (2.3.3) (using

Figure 2.9: The ODE evolution panel showing the mass and spring differ-
ential equation and the numerical algorithm.

the * character to denote multiplication). Fields near the top of the editor
specify the independent variable t and the variable increment dt. Numeri-
cal algorithms approximate the exact ODE solution by advancing the state
in discrete steps and the increment determines this step size. The Prelim
button at the top-right of the editor allows us to enter preliminary code,
to perform computations prior to evaluating the equations (a circumstance
required in more complex situations than the one we treat in this exam-
ple). A dropdown menu at the bottom of the editor lets us select the ODE
solver (numerical algorithm) that advances the solution from the current
value of time, t, to the next value, t + dt. The tolerance field is greyed out
because Euler–Richardson is a fixed-step method that requires no tolerance
settings. The advanced button displays a dialog which allows us to fine-tune
the execution of this solver, though default values are usually appropriated.



Modeling-Science September 15, 2009

16 CHAPTER 2

Finally, the events field at the bottom of the panel tells us that we have not
defined any events for this differential equation. Examples with preliminary
code and events can be found in Chapter 7. The different solver algorithms
and its parameters are discussed in the EJS help.

The left-hand side of the evolution workpanel includes fields that de-
termine how smoothly and how fast the simulation runs. The frames per
second (FPS) option, which can be selected by using either a slider or an
input field, specifies how many times per second we want our simulation to
repaint the screen. The steps per display (SPD) input field specifies how
many times we want to advance (step) the model before repainting. The
current value of 20 frames per second produces a smooth animation that,
together with the prescribed value of one step per display and 0.05 for dt,
results in a simulation which runs at (approximately) real time. We will
almost always use the default setting of one step per display. However,
there are situations where the model’s graphical output consumes a signifi-
cant amount of processing power and where we want to speed the numerical
computations. In this case we can increase the value of the steps per display
parameter so that the model is advanced multiple times before the visualiza-
tion is redrawn. The Autoplay check box indicates whether the simulation
should start when the program begins. This box is unchecked so that we
can change the initial conditions before starting the evolution.

The evolution workpanel handles the technical aspects of the mass
and spring ODE model without programming. The simulation advances the
state of the system by numerically solving the model’s differential equations
using the midpoint algorithm. The algorithm steps from the current state
at time t to a new state at a new time t + dt before the visualization is
redrawn. The simulation repeats this evolution step 20 times per second on
computers with modest processing power. The simulation may run slower
and not as smoothly on computers with insufficient processing power or if
the computer is otherwise engaged, but it should not fail.

Although the mass and spring model can be solved with a simple ODE algo-
rithm, our numerical methods library contains very sophisticated algorithms
and EJS can apply these algorithms to large systems of vector differential
equations with or without discontinuous events.

2.3.2.4 Relations among variables

Not all variables within a model are computed using an algorithm on the
Evolution workpanel. Variables can also be computed after the evolution has
been applied. We refer to variables that are computed using the evolution



Modeling-Science September 15, 2009

INTRODUCTION TO Easy Java Simulations 17

algorithm as state variables or dynamical variables, and we refer to variables
that depend on these variables as auxiliary or output variables. In the mass
and spring model the kinetic, potential, and total energies of the system are
output variables because they are computed from state variables.

T =
1
2
mvx

2, (2.3.4)

V =
1
2
k(x− L)2, (2.3.5)

E = T + V. (2.3.6)

We say that there exists fixed relations among the model’s variables.

The Fixed relations panel shown in Figure 2.10 is used to write re-
lations among variables. Notice how easy it is to convert (2.3.4) through
(2.3.6) into Java syntax. Be sure to use the multiplication character * and
to place a semicolon at the end of each Java statement.

Figure 2.10: Fixed relations for the mass and spring model.

You may wonder why we do not write fixed relation expressions by
adding a second code page after the ODE page in the Evolution panel. After
all, evolution pages execute sequentially and a second evolution page would
correctly update the output variables after every step. The reason that the
Evolution panel should not be used is that relations must always hold and
there are other ways, such as mouse actions, to affect state variables. For
example, dragging the mass changes the x variable and this change affects
the energy. EJS automatically evaluates the relations after initialization,
after every evolution step, and whenever there is any user interaction with
the simulation’s interface. For this reason, it is important that fixed relations
among variables be written in the Fixed relations workpanel.



Modeling-Science September 15, 2009

18 CHAPTER 2

2.3.2.5 Custom pages

There is a fifth panel in the Model workpanel labeled Custom. This panel
can be used to define methods (functions) that can be used throughout the
model. This panel is empty because our model currently doesn’t require
additional methods, but we will make use of this panel when we modify
our mass and spring example in Section 2.6. A custom method is not used
unless it is explicitly invoked from another workpanel.

2.3.3 The View workpanel

The third Easy Java Simulations workpanel is the View. This workpanel
allows us to create a graphical interface that includes visualization, user
interaction, and program control with minimum programming. Figure 2.6
shows the view for the mass and spring model. Select the View radio button
to examine how this view is created.

The right frame of the view workpanel of EJS, shown in Figure 2.11,
contains a collection of view elements, grouped by functionality. View el-
ements are building blocks that can be combined to form a complete user
interface, and each view element is a specialized object with an on-screen
representation. To display information about a given element, click on its
icon and press the F1 key or right-click and select the Help menu item. To
create a user interface, we create a frame (window) and add elements, such
as buttons and graphs, using “drag and drop” as described in Section 2.6.

The Tree of elements shown on the left side of Figure 2.11 displays the
structure of the mass and spring user interface. Notice that the simulation
has two windows, a Frame and a Dialog, that appear on your computer
screen. These elements belong to the class of container elements whose pri-
mary purpose is to visually group (organize) other elements within the user
interface. The tree displays descriptive names and icons for these elements.
Right-click on an element of the tree to obtain a menu that helps the user
change this structure.

Each view element has a set of internal parameters, called properties,
which configure the element’s appearance and behavior. We can edit these
properties by double clicking on the element in the tree to display a table
known as a properties inspector. Appearance properties, such as color, are
often set to a constant value, such as RED. We can also use a variable from
the model to set an element’s property. This ability to connect (bind) a
property to a variable without programming is the key to turning our view



Modeling-Science September 15, 2009

INTRODUCTION TO Easy Java Simulations 19

Figure 2.11: The View workpanel showing the Tree of elements for the mass
and spring user interface.

into a dynamic and interactive visualization.

Let’s see how this procedure works in practice. Double-click on the
massShape2D element (the ‘Shape2D’ suffix we added to the element’s name
helps you know the type of the element) in the tree to display the element’s
properties inspector. This element is the mass that is attached at the free
end of the spring. The massShape2D’s table of properties appears as shown
in Figure 2.12.

Figure 2.12: The table of properties of the massShape2D element.

Notice the properties that are given constant values. The Style, Size



Modeling-Science September 15, 2009

20 CHAPTER 2

X, Size Y, and Fill Color properties produce an ellipse of size (0.2,0.2)
units (which makes a circle) filled with the color magenta. More importantly,
the Pos X and Pos Y properties of the shape are bound to the x and y
variables of the model. This simple assignment establishes a bidirectional
connection between model and view. These variables change as the model
evolves and the shape follows the x and y values. If the user drags the shape
to a new location, the x and y variables in the model change accordingly.
Note that the Draggable property is only enabled when the animation is
paused.

Elements can also have action properties which can be associated with
code. (Action properties have their labels displayed in red.) User actions,
such as dragging or clicking, invoke their corresponding action property,
thus providing a simple way to control the simulation. As the user drags
the mass, the code on the On Drag property restricts the motion of the shape
to the horizontal direction by setting the y variable to 0. Finally, when the
mouse button is released, the following code is executed:

vx = 0.0; // sets the velocity to zero

_view.resetTraces(); // clears all plots

Clicking on the icon next to the field displays a small editor that shows this
code.

Because the On Release action code spans more than one line, the property
field in the inspector shows a darker (green) background. Other data types,
such as boolean properties, have different editors. Clicking the second icon
displays a dialog window with a listing of variables and methods that can
be used to set the property value.

Exercise 2.1. Element inspectors
The mass’ inspector displays different types of properties and their possible
values. Explore the properties of other elements of the view. For instance,
the displacementTrail2D and velocityTrail2D elements correspond to
the displacement and velocity time plots in the second window of the view,
respectively. What is the maximum number of points that can be added to
each trail? 2

2.3.4 The completed simulation

We have seen that Easy Java Simulations is a powerful tool that lets us
express our knowledge of a model at a very high level of abstraction. When



Modeling-Science September 15, 2009

INTRODUCTION TO Easy Java Simulations 21

modeling the mass and spring, we first created a table of variables that
describes the model and initialized these variables using a column in the
table. We then used an evolution panel with a high-level editor for systems
of first-order ordinary differential equations to specify how the state ad-
vances in time. We then wrote relations to compute the auxiliary or output
variables that can be expressed using expressions involving state variables.
Finally, the program’s graphical user interface and high-level visualizations
were created by dragging objects from the Elements palette into the Tree of
elements. Element properties were set using a properties editor and some
properties were associated with variables from the model.

It is important to note that the three lines of code on the Fixed re-
lations workpanel (Figure 2.10) and the two lines of code in the particle’s
action method are the only explicit Java code needed to implement the
model. Easy Java Simulations creates a complete Java program by pro-
cessing the information in the workpanels when the run icon is pressed as
described in Section 2.4.

2.4 RUNNING THE SIMULATION

It is time to run the simulation by clicking on the Run icon of the taskbar, .
EJS generates the Java code and compiles it, collects auxiliary and library
files, and executes the compiled program. All at a single mouse click.

Running a simulation initializes its variables and executes the fixed
relations to insure that the model is in a consistent state. The model’s time
evolution starts when the play/pause button in the user interface is pressed.
(The play/pause button displays the icon when the simulation is paused
and when it is running.) In our current example, the program executes a
numerical method to advance the harmonic oscillator differential equation
by 0.05 time units and then executes the relations code. Data are then
passed to the graph and the graph is repainted. This process is repeated 20
times per second.

When running a simulation, EJS changes its Run icon to red and
prints informational messages saying that the simulation has been success-
fully generated and that it is running. Notice that the two EJS windows
disappear and are replaced by new but similar windows without the (Ejs
window) suffix in their titles. These views respond to user actions. Click and
drag the particle to a desired initial horizontal position and then click on the
play/pause button. The particle oscillates about is equilibrium point and
the plot displays the displacement and velocity data as shown in Figure 2.13.

Stop the simulation and right-click the mouse over any of the draw-



Modeling-Science September 15, 2009

22 CHAPTER 2

ing areas of the simulation. In the popup menu that appears, select the
Elements options->plottingPanel->Data Tool entry to display and an-
alyze the data generated by the model. The same popup menu offers other
run-time options, such as screen capture. To exit the program, close the
simulation’s main window.

Figure 2.13: The mass and spring simulation displays an interactive drawing
of the model and a graph with displacement and velocity data.

2.5 DISTRIBUTING THE SIMULATION

Simulations created with EJS are stand-alone Java programs that can be
distributed without EJS for other people to use. The easiest way to do this
is to package the simulation in a single executable jar file by clicking on
the Package icon, . A file browser appears that lets you choose a name
for the self-contained jar package. The default target directory to hold this
package file is the export directory of your workspace, but you can choose
any directory and package name. The stand-alone jar file is ready to be
distributed on a CD or via the Internet. Other distribution mechanisms are
available by right-clicking on the icon as described in Appendix A.

Exercise 2.2. Distribution of a model
Click on the Package icon on the taskbar to create a stand alone jar archive
of the mass and spring simulation. Copy this jar file into a working direc-
tory separate from your EJS installation. Close EJS and verify that the
simulation runs as a stand-alone application. 2

Although the mass and spring jar file is a ready to use and to dis-
tribute Java application, an important pedagogic feature is that this jar file
is created in such a way that users can return to EJS at any time to exam-
ine, modify, and adapt the model. (EJS must, of course, be installed.) The
jar file contains a small Extensible Markup Language (XML) description of



Modeling-Science September 15, 2009

INTRODUCTION TO Easy Java Simulations 23

each model and right clicking on a drawing panel within the model brings
in a popup menu with an option to copy this file into EJS. This action will
extract the required files from the jar, search for the EJS installation in the
user’s hard disk, copy the files into the correct location, and run EJS with
this simulation loaded. If a model with the same name already exits, it can
be replaced. The user can then inspect, run, and modify the model just as
we are doing in this chapter. A student can, for example, obtain an example
or a template from an instructor and can later repackage the modified model
into a new jar file for submission as a completed exercise.

Exercise 2.3. Extracting a model
Run the stand-alone jar file containing the mass and spring model created

in Exercise 2.2. Right click on the model’s plot or drawing and select the
Open Ejs Model item from the popup menu to copy the packaged model
back into EJS. 2

EJS is designed to be both a modeling and an authoring tool, and
we suggest that you now experiment with it to learn how you can create
and distribute your own models. As a start, we recommend that you run
the mass and spring simulation and go through the activities in the second
page of the Description workpanel. We modify this simulation in the next
section.

2.6 MODIFYING THE SIMULATION

As we have seen, a prominent and distinctive feature of Easy Java Simula-
tions is that it allows us to create and study a simulation at a high level of
abstraction. We inspected an existing mass and spring model and its user
interface in the previous section. We now illustrate additional capabilities of
Easy Java Simulations by adding friction and a driving force and by adding
a visualization of the system’s phase space.

2.6.1 Extending the model

We can add damping in our model by introducing a viscous (Stoke’s law)
force that is proportional to the negative of the velocity Ff = −b vx where
b is the damping coefficient. We also add an external time-dependent driv-
ing force which takes the form of a sinusoidal function Fe(t) = A sin(ω t).
The introduction of these two forces changes the second-order differential
equation (2.3.1) to

d2 x

dt2
= − k

m
(x− L)− b

m

d x

dt
+

1
m

Fe(t), (2.6.1)



Modeling-Science September 15, 2009

24 CHAPTER 2

or, as in equations (2.3.2) and (2.3.3):

d x

dt
= vx, (2.6.2)

d vx

dt
=− k

m
(x− L)− b

m
vx +

1
m

Fe(t). (2.6.3)

2.6.1.1 Adding variables

The introduction of new force terms requires that we add variables for the
coefficient of dynamic friction and for the amplitude and frequency of the
sinusoidal driving force. Return to the Model workpanel of EJS and select
its Variables panel. Right-click on the tab of the existing page of variables
to see its popup menu, as in Figure 2.14. Select the Add a new page entry as
shown in Figure 2.14. Enter Damping and Driving Vars for the new table
name in the dialog and an empty table will appear.

Figure 2.14: The popup menu for a page of variables.

We now use the new table to declare the needed variables. We could
have used the already existing tables, but declaring multiple pages helps us
organize the variables by category. Double-click on a table cell to make it
editable and navigate through the table using the arrows or tab keys. Type
b in the Name cell of the first row, and enter the value 0.1 in the Initial
value cell to its right. We don’t need to do anything else because the double
type selected is already correct. EJS checks the syntax of the value entered
and evaluates it. If we enter a wrong value, the background of the value
cell will display a pink background. Notice that when you fill in a variable
name, a new row appears automatically. Proceed similarly to declare a new
variable for the driving force’s amp with value 0.2 and for its freq with value



Modeling-Science September 15, 2009

INTRODUCTION TO Easy Java Simulations 25

2.0. Document the meaning of these variables by typing a short comment
for each at the bottom of the table. Our final table of variables is shown
in Figure 2.15. You can ignore the empty row at the end of the table or
remove it by right-clicking on that row and selecting Delete from the popup
menu that appears.

Figure 2.15: The new table of variables for the damping and forcing terms.

2.6.1.2 Modifying the evolution

We now modify the differential equations on the evolution page by adding
expressions for the new terms in equation (2.6.3). Go to the evolution panel,
double-click on the Rate cell of the second equation, and edit it to read:

-k/m * (x-L) - b*vx/m + force(t)/m

Notice that we are using a method (function) named force that has not yet
been defined. We could have written an explicit expression for the sinusoidal
function. However, defining a force method promotes cleaner and more
readable code and allows us to introduce custom methods.

2.6.1.3 Adding custom code

The force method is defined using the Custom panel of the Model. Go
to this panel and click on the empty central area to create a new page of
custom code. Name this page force. You will notice that the page is created
with a code template that defines the method. Edit this code to read:



Modeling-Science September 15, 2009

26 CHAPTER 2

public double force (double time) {

return amp*Math.sin(freq*time); // sinusoidal driving force

}

Type this code exactly as shown including capitalization. Compilers com-
plain if there is any syntax error.

Notice that we pass the time at which we want to compute the driving
force to the force method as an input parameter. Passing the time value
is very important. It would be incorrect to ask the method to use the value
of the variable t, as in:

public double force () { // incorrect implementation of the force method

return amp*Math.sin(freq*t);

}

The reason that time must be passed to the method is that time changes
throughout the evolution step. In order for the ODE solver to correctly
compute the time-dependent force throughout the evolution step, the time
must be passed into the method that computes the rate.

Variables that change (evolve) must be passed to methods that are used
to compute the rate because numerical solvers evaluate the Rate column
in the ODE workpanel at intermediate values between t and t + dt. (See
Chapter 5.) In other words, the independent variable and any other dynamic
variable which is differentiated in the State column of the ODE editor must
be passed to any method that is called in the Rate column. Variables which
remain constant during an evolution step may be used without being passed
as input parameters because the value of the variable at the beginning of
the evolution step can be used.

2.6.2 Improving the view

We now add a visualization of the phase space (displacement versus velocity)
of the system’s evolution to the View. We also add new input fields to display
and modify the value of the damping, amplitude, and frequency parameters.

Go to the View workpanel and notice that the Interface palette con-
tains many subpanels. Click on the tab with the icon to display the
Windows, containers, and drawing panels palette of view elements. Click
on the icon for a plotting panel, , in this palette. You can rest (hover)
the mouse cursor over an icon to display a hint that describes the element if



Modeling-Science September 15, 2009

INTRODUCTION TO Easy Java Simulations 27

you have difficulty recognizing the icon. Selecting an element sets a colored
border around its icon on the palette and changes the cursor to a magic
wand, . These changes indicate that EJS is ready to create an element of
the selected type.

Click on the dialog element in the Tree of elements as shown in Fig-
ure 2.16 to add the plotting panel to the view.

Figure 2.16: Creation of a plotting panel as a child of the dialog element
of the view.

EJS asks for the name of the new element and then creates the element
as a child within the existing dialog. A new plot appears but the dialog
is too small. Return to the design mode (get rid of the magic wand) by
clicking on any blank area within the Tree of elements or hitting the Esc
key. Resize the dialog box by dragging its corner. You can also resize
the dialog box by double-clicking on the dialog element in the tree to
show its properties table and changing its Size property to "385,524", thus
doubling its height. Finally, edit the properties table of the newly created
plotting panel element to set the Title property to Phase Space, the Title
X property to Displacement, and the Title Y property to Velocity. (EJS
will add leading and trailing quotes to these strings to conform to the correct
Java syntax.) Set the minima and maxima for both X and Y scales to -1
and 1, respectively, and leave the other properties untouched.

The plotting panel is, as its name suggests, the container for the phase-
space plot. Phase space data are drawn in this panel using an element of
type Trail2D, . Find the Trail2D element in the 2D Drawables palette
and follow the same procedure as before. Select the Trail2D element and
create an element of this type by clicking with the magic wand on the phase



Modeling-Science September 15, 2009

28 CHAPTER 2

space panel. Finally, edit the properties of the new trail element to set its
Input X property to x - L and its Input Y property to vx. This assignment
causes the simulation to add a new (x - L,vx) point to the trace after each
evolution step, thus drawing the phase-space plot shown in Figure 2.17.

Figure 2.17: The modified simulation. The dialog includes now both a time
and a phase-space plot.

To finish the modifications, we add a new panel to the top of the
drawing frame that shows the sinusoidal driving force parameters.

• Select the Panel element icon, , on the Windows, containers, and
drawing panels subgroup of the Interface palette. Click with the magic
wand on the element named frame within the Tree of elements to create
a new panel named forceParamPanel in the frame’s top location. Use
the properties inspector to set this panel’s layout to FLOW:center,0,0
and its border type to LOWERED ETCHED.

• Select the Label element icon, , on the Input and output subgroup of
the Interface palette and create a new element of that type in the force
parameter panel. Set the label’s text property to ‘‘frequency =’’.

• Select the Field element icon, , and create a new element named
freqField in the force parameter panel. Edit the freqField properties
table as shown in Figure 2.18. The connection to the freq variable is
established using the Variable property. Click on the second icon to
the right of the property field, , and choose the appropriate variable.
The variable list shows all the model variables that can be used to



Modeling-Science September 15, 2009

INTRODUCTION TO Easy Java Simulations 29

set the property field. The Format property indicates the number of
decimal digits with which to display the value of the variable.

• Repeat this process to add the amp variable to the user interface.

Figure 2.18: The table of properties of the freqField element.

2.6.3 Changing the description

Now that we have changed the model and the view, we should modify the
description pages of our simulation. Go to the Description workpanel and
right-click on the tab of the first page, the one labeled Introduction, to
display the popup menu for this page. Select the Edit/View this page option.
The description page will change to edit mode, as shown in Figure 2.19, and
a simple editor will appear that provides direct access to common HTML
features.

If you prefer to use your own editor, you can copy and paste HTML
fragments from your editor into the EJS editor. If you know HTML syntax,
you can enter tagged (markup) text directly by clicking the source icon,

, in the tool bar. You can even import entire HTML pages into EJS by
right-clicking on a tab in the workpanel.

Edit the description pages as you find convenient. At least change the
discussion of the model to include the damping and driving forces. When
you are done, save the new simulation with a different name by clicking the
Save as icon of EJS ’ taskbar, . When prompted, enter a new name for
your simulation’s XML file. The modified simulation is stored in the Mas-
sAndSpringComplete.xml file in the source directory for this chapter.

2.7 FINDING MODELS

Now that we have covered the basics of EJS and you know how to load,
inspect, run, and even modify an example, you may be interested in finding
more examples to see what other users have done with EJS. Maybe, you can



Modeling-Science September 15, 2009

30 CHAPTER 2

Figure 2.19: The HTML editor of EJS. The cursor points to the icon that
switches the editor into source code edition mode.

find a model that already fits your needs or that you can easily modify to
be ready for classroom use.

There are two places you can look at to find more models. The first
place to look at is the source sample directory that came with your distri-
bution of EJS. In the source directory of the distribution’s workspace you
will find some directories with sample simulations. These sample directories
were also copied to your own workspace (unless you unselected this option)
when you first run EJS.

The second, and perhaps more interesting, place (actually places) to
look for new models are available through the Internet. The EJS digital
libraries icon in the taskbar, , opens a window which allows you to connect
to repositories of EJS models available through the Internet. This window,
displayed in Figure 2.20, contains a combo box at its top that lists the
available digital libraries. Select one of these libraries or click the Get catalog
button to get the list of EJS models in it. All these libraries work in a similar
way, and we use the comPADRE digital library repository to illustrate how
they are accessed from within EJS.

The comPADRE Pathway, a part of the (USA) National Science
Digital Library, is a growing network of educational resource collections
supporting teachers and students in Physics and Astronomy. Of special
relevance for our interests is the Open Source Physics comPADRE collec-
tion available at <http://www.compadre.org/OSP>. This collection con-
tains computational resources for teaching in the form of executable simu-
lations and curriculum resources that engage students in physics, computa-



Modeling-Science September 15, 2009

INTRODUCTION TO Easy Java Simulations 31

Figure 2.20: The Digital Libraries window of EJS. Select one of the available
repositories using the combo box at the top of the window, or click the Get
catalog button to retrieve the list of models available.

tion, and computer modeling. In particular, it contains EJS models whose
source (XML) code can be accessed directly from EJS using the digital
libraries icon.

If you are connected to the Internet, select the OSP collection on the
comPADRE digital library entry of the top combo box and EJS will con-
nect to the library to obtain the very latest catalog of EJS models in the
library. At the moment of this writing, there are some 160 models organized
in different categories and subcategories, and the collection is expected to
grow. As the left frame of Figure 2.21 shows, the collection is organized in
categories and subcategories. When the name of a subcategory appears in
red, double-click it to expand the node with the list of models of the sub-
category. Because many models have primary and secondary classifications,
the check box at the top, right below the library combo box, allows you
to decide whether you want the models to be listed uniquely under their
primary classification, or appear in all matching categories (thus appearing
more than once).

When you click a model node, the right frame shows information about
the model obtained instantly from the library. The information describes
the model, and includes a direct link to the comPADRE library for further
information. Double-clicking the model entry, or clicking the Download
button, will retrieve the model and auxiliary files from the library, ask you
for a place in your source directory of your workspace to download them,



Modeling-Science September 15, 2009

32 CHAPTER 2

Figure 2.21: The OSP collection on the comPADRE digital library. The
collection is organized in categories and subcategories. The entry for a
model provides information about the model.

and open the model in EJS when the download is complete. Because source
files are usually small, the download takes place almost instantly. Now, you
can inspect, run, or modify the model as we did, earlier in this chapter, for
the mass and spring model.

The OSP collection on the comPADRE digital library is a highly rec-
ommended place to look for EJS models and accompanying curricular ma-
terial. We will often include references to models in the comPADRE digital
library in this book, whenever they relate to the narrative.

2.8 SUMMARY

This book is about modeling and using these models to study and display a
wide range of phenomena ranging the simple to the complex. An appropriate
way to conduct these studies is to use computer simulations, that is, to use
a computer to obtain numerical data from our models as they advance in
time, and to display this data in a form humans can understand.



Modeling-Science September 15, 2009

INTRODUCTION TO Easy Java Simulations 33

Easy Java Simulations is a modeling and authoring tool expressly de-
voted to this task. It has been designed to let us work at a high conceptual
level, concentrating most of our time on the scientific aspects of our sim-
ulation, and asking the computer to automatically perform all the other
necessary but easily automated tasks. Every tool, including Easy Java Sim-
ulations, has a learning curve. The first part of the book contains a series
of detailed examples that will familiarize you with the modeling capabilities
of EJS and with the most frequently used view elements. The second part
of the book is devoted to advanced examples, and emphasizes the scientific
content of the models and their behavior. The appendices cover additional
features such as a review of Java and guidelines that will help you through
the unavoidable moment when you make your first programming mistakes.

Modeling is both a science and an art. This book gives you a solid
starting point in the science, a coverage of the techniques required by the
art, and examples that are useful in practice.

2.9 PROBLEMS AND PROJECTS

Problem 2.1 (Energy). Add a third plotting panel to the dialog window
of the MassAndSpringComplete.xml simulation that will display the
evolution of the kinetic, potential, and total energies.

Problem 2.2 (Function plotter). The analytic solution for the undriven
simple harmonic oscillator is

x(t) = A sin(w0t + φ) (2.9.1)

where A is the amplitude (maximum displacement), w0 =
√

k/m is the
natural frequency of oscillation, and φ is the phase angle. Consult a me-
chanics textbook to determine the relationship between the amplitude and
phase angle and the initial displacement and velocity. Use the Function-
Plotter.xml simulation in the Chapter 2 directory to compare the analytic
solution to the numerical solution generated by the MassAndSpringCom-
plete.xml model.

Project 2.1 (Two-dimensional oscillator). Modify the model of the mass and
spring simulation to consider motion that is not restricted to the horizontal
direction. Assume that a second spring with spring constant k′ produces a
vertical restoring force Fy(δy) = −k′ δy. Modify the simulation to allow the
user to specify the Hooke’s law constants as well as the initial conditions in
both directions. Describe the motion produced without a driving force but
under different initial conditions and with different spring constants. (Try
k = 1 and k′ = 9.) Show that it is possible to obtain circular motion if
k = k′.



Modeling-Science September 15, 2009

34 CHAPTER 2

Project 2.2 (Simple pendulum). Create a similar simulation as the one de-
scribed in this chapter for a simple pendulum whose second-order differential
equation of motion is

d2θ

dt2
= − g

L
sin(θ), (2.9.2)

where θ is the angle of the pendulum with the vertical, g is the acceleration
due to gravity, and L is the arms’s length. Use fixed relations to compute
the x and y position of the pendulum bob using the equations:

x = L sin(θ)
y = −L cos(θ).


