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Abstract 

 

We examine the short-term performance of two alternative approaches of forecasting from 

dynamic factor models. The first approach extracts the seasonal component of the individual 

variables before estimating the model, while the alternative uses the non seasonally adjusted 

data in a model that endogenously accounts for seasonal adjustment. Our Monte Carlo 

analysis reveals that the performance of the former is always comparable to or even better 

than that of the latter in all the simulated scenarios. Our results have important implications 

for the factor models literature because they show the that the common practice of using 

seasonally adjusted data in this type of models is very accurate in terms of forecasting ability. 

Using five coincident indicators, we illustrate this result for US data. 
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1. Introduction 

 

The late-2000s recession, sometimes referred to as the Great Recession, magnified the interest 

of economic agents in having efficient short-term forecasting models that help monitor 

ongoing economic developments. This could explain the recent resurgence of dynamic factor 

models, first developed by Stock and Watson (1991), which have proven to be useful in 

growth and inflation forecasting. Among others, recent examples are Aruoba, Diebold and 

Scotti (2009), Aruoba and Diebold (2010) and Camacho and Perez-Quiros (2010). 

 To our knowledge, all of the forecasting analyses developed in this related literature 

use seasonally adjusted data, where the seasonal components are extracted individually from 

each variable either by the official statistical offices that publish the data or by the analyst 

(when seasonally adjusted data are not available) before estimating the models.1 Therefore, 

only one common factor and several idiosyncratic components are estimated in these dynamic 

factor models. We will call this approach traditional, because it is the standard procedure in 

the literature. 

This traditional approach has some limitations. First, behind the individual seasonal 

adjustments there exists the implicit assumption that the seasonal component for each variable 

is necessarily idiosyncratic (not common). Second, removing the seasonal component from 

the individual variables before estimating the models may lead to losses of information about 

the seasonal components that could potentially be useful for forecasting.  

As an alternative to this traditional approach, the structural dynamic factor models 

have the advantage of being formulated in terms of common components, such as trends, 

seasonal components and cycles that have a direct interpretation. Modelling these features 

inside the model could be of great benefit since they could be easily projected into the future, 

leading to potential forecasting improvements. 

This paper aims to evaluate the performance of traditional versus structural factor 

models. We use a Monte Carlo exercise to show that when the data generating process 

exhibits idiosyncratic seasonal components the traditional dynamic factor model that uses 

seasonally adjusted data (the outcomes of TRAMO-SEATS) outperforms the structural 

dynamic factor model, especially when the idiosyncratic seasonal components are erroneously 

                                                 
1 Note that the literature on large-scale dynamic factor models, which include a vast number of indicators, also 
uses seasonally adjusted data. Although our results can be extended to large-scale models, we focus on small-
scale models for the sake of simplicity. In addition, Boivin and Ng (2006), Poncela and Ruiz (2012) and Banbura 
and Modugno (2014) recently show that large specifications could perform worse than small specifications due 
to difficulties in extracting a relevant signal in the presence of indicators of different quality. 
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modelled as if they were common across series.2 Interestingly, when the data are generated 

with common seasonal components, the performance of traditional factor model is still 

comparable to or even better than that of structural factor models, even in the case that the 

seasonal components are correctly modelled as common across the series.  

One potential explanation is that if seasonality is idiosyncratic, the common 

seasonality model would be clearly misspecified; if there is common seasonality, extracting 

idiosyncratic seasonal terms is inefficient and suffers from the curse of dimensionality. The 

traditional approach apparently provides the best of both worlds: not making incorrect 

assumptions about common seasonality, while keeping a limited number of parameters to 

estimate. These results have important implications for the literature on factor models since 

they show the good forecasting performance of the standard models that use seasonally 

adjusted data with respect to alternative models that handle seasonally adjustments 

endogenously. 

The results obtained in the Monte Carlo analysis are confirmed by using a set of five 

coincident US economic indicators. Our empirical results also suggest that the standard 

strategy of forecasting from dynamic factor models that use seasonally adjusted data is the 

most advisable way to compute the forecasts.  

The paper is structured as follows. Section 2 describes the main features of structural 

and traditional dynamic factor models. Section 3 outlines the Monte Carlo simulation and 

discusses the results. Section 4 addresses the empirical analysis. Section 5 concludes. 

  

2. Methodological framework 

 

2.1. Structural factor decomposition 

 

The stationary economic variables are assumed to admit a structural factor decomposition.3 

Therefore, each of the N stationary variables, yit, can be written as the sum of three stochastic 

components: a common component, ft, which represents the overall business cycle conditions; 

an idiosyncratic component, itu , which refers to the particular dynamics of the series; and a 

seasonal component, its , which refers to the periodic patterns and are allowed to be either 

                                                 
2 We use the TRAMO-SEATS version dated March 11, 2011, as downloaded from the Bank of Spain database. 
Alternative filters as X-11, X-12, and ARIMA models would lead to qualitatively similar results. 
3 We focus the analysis on stationary variables. The updates of Aruoba Diebold and Scotti (2009) showed that 
modeling the stochastic trends were very disappointing since the growth rate transformation facilitates better 
handling of benchmark revisions, which typically affect levels more than growth rates. 
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idiosyncratic or common. According to this decomposition, the structural dynamic factor 

model can be stated as 

                                                         ,itittiit sufy                                                           (1) 

where i=1,…,N, and the i  are the loading factors. 

We assume the following dynamic specifications for the three components. The 

common component and the idiosyncratic components follow autoregressive processes of 

orders p1 and p2, respectively: 

                                      ftptptt fafaf   1111 ... ,                                                 (2) 

where  2,0...~ fft Ndii  , and 

                                      ,... 2211 itpitipitiit ububu                                                 (3) 

where  2,0...~ iit Ndii  , with i=1,…,N. 

For the purposes of the paper, the treatment of the seasonal components deserves 

special comments. In standard applications that use factor decomposition analyses, which we 

called traditional models in this paper, the seasonal component of the series is extracted 

before estimating the model and, therefore, model selection, estimation and forecasting is 

carried on from seasonally adjusted series. The seasonal adjustment techniques are developed 

either by the researcher, usually with the help of automatic procedures, such as TRAMO-

SEATS or X11, or by the statistical agencies, which in some cases publish only the seasonally 

adjusted versions of the time series. In expression (1), this implies that 0its , i=1,…,N.  

Alternatively, the dynamic properties of the seasonal components could be accounted 

for within the structural dynamic factor model. In line with trigonometric seasonality models 

(see Harvey, 1989), we assume that the seasonal component can be viewed as the sum of its 

s/2 cyclical components  
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s

j
ijtit ss ,                                                                   (4) 

where s  is the number of observations per year. In this expression, the cyclical components 

are modelled as trigonometric terms at the seasonal frequencies, sjj  2 , through the 

model 
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where j=1,…,s/2, i=1,…,N, ijt  and *
ijt  are mutually uncorrelated noises with common 

variance 2

ij , and the term *
ijts  appears by construction to form ijts . In addition, we use the 

standard assumption that the error terms exhibit the same variance across frequencies, i.e., 
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iij     for all j=1,…,s/2. To complete the statistical specification of the model, we assume 

that all the disturbances driving the three stochastic components are mutually and serially 

uncorrelated. 

To facilitate simulations and estimations, we prove in the Appendix that this seasonal 

component can be alternatively expressed by using a seasonal autoregressive integrated 

moving average specification. For quarterly data,4 the seasonal components are 

                                  itit LLsLLL 232 1869.03187.011  ,                            (6) 

where L is the backshift operator,  2,0...~
i

Ndiiit   reflects that the seasonal effect is 

allowed to change over time, and i=1,…,N.5 To derive this expression, we used s=4, since the 

seasonal behaviour of our quarterly variables is often related to the time of a year. 6 

Let us consider some identification issues regarding the structural dynamic factor 

model described in (1). Let k be the number of common components in this model. In the case 

of the traditional model and the structural model with idiosyncratic seasonality, the factor is 

the only common component, which implies that k=1. Therefore, the minimum number of 

time series required to identify these models is N=2k+1=3.  

To achieve identification in the traditional model, we also assume that the factor 

loading of the first variable is one. To achieve identification in the structural model with 

idiosyncratic seasonality, we also assume that the matrix of factor loadings is lower-triangular 

with units on the main diagonal. It means that the factor loading of the first variable is one, 

that first variable does not contain seasonal components ( 01 ts ), and that the seasonal 

patterns are proportional across series it i ts s , i=2,3,4,5, with 2 1  . 

In the case of the structural model with common seasonality, the common components 

are the factor and the season, which implies that k=2 and the minimum number of time series 

required to identify the model is N=2k+1=5. Therefore, we work with five variables since this 

is the minimum number of variables to ensure that the common factor is identified in all 

models. 

It is worth pointing out that the structural model that assumes idiosyncratic seasonality 

could assign part of the seasonal variability to the idiosyncratic component or part of the 

                                                 
4 For the sake of simplicity, we derive all the expressions for quarterly data. Although the expressions would be 
larger, all the results obtained in the paper could easily be obtained for monthly data. 
5 In this case, the yearly sum of the seasonal effects is expected to be zero, since the disturbance term has zero 

expectation. A model of deterministic seasonality is easily obtained by imposing 0it . 
6 Although we focus on trigonometric seasonality as in Harvey (1989), there are alternative ways of allowing 
seasonal variables to change over time, as in Hannan et al. (1970) or Harrison and Stevens (1976). However, the 
Hannan et al. (1970) seasonal model and the Harvey (1989) model with non-equal variances are the same models 
in the Gaussian case, or when innovations follow a mixture of normal distribution as in Bruce and Jurke (1992). 
The Harrison and Stevens (1976) seasonality with correlated disturbances model and the Hannan’s model are the 
same models, which are also identical to the model that we use in the Gaussian case. 
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idiosyncratic variability could be modelled as seasonal. Therefore, the noise can be 

transmitted from the seasonal component, sit, to the idiosyncratic component, uit, and vice 

versa, which may influence the in-sample fitting performance of the model adversely.7 

 

2.2. State-space representation 

 

To estimate model’s parameters and to infer unobserved components by using the 

Kalman filter, it is convenient to rewrite the equations that describe the model’s dynamics in a 

state-space representation. In the case of N economic variables, which are collected in the 

vector Yt, the appropriate state-space form of the model requires the specification of both the 

measurement equation, ttt eHhY  , with  RNdiiet ,0...~ , and the prediction equation 

ttt hh  1 , with  ,0...~ Ndiit .  

For this purpose, it is worth pointing out that the seasonal components 
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can be written as 

                                                     itit LLs 21869.03187.01                                             (8) 

where   ititLLL   321 , with   2var
iit   , i=2,…,5. 

The specific forms of these two equations depend on the assumption about the 

seasonal component. Using the assumptions that N=5, p1=p2=1, when seasonal components 

are common across the different variables, the state space representation of the model 

becomes: 
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7 See Geweke (1977) and Geweke and Singleton (1981) for a general discussion of identification in dynamic 
factor models. 
 



 7

and 
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where R=0, and  is a diagonal matrix with main diagonal  

                                                 '22
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2 0,0,,,,,,,  fdiag  .                               (11) 

The state-space form of traditional dynamic factor models that use either the official 

seasonally adjusted data sets or the seasonally adjusted outcomes from TRAMO-SEATS can 

easily be derived from these expressions. In particular, it is obtained by imposing 

1 2 3 0t t t t         , and 0t . 

However, when the seasonal component is assumed to be idiosyncratic for each 

economic variable, the state-space representation of the model is  
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and 
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where  '1869.0,3187.0,1A ,  '

1 2, ,it it it itX     ,  '
, 0,0it itZ  , and i=2,..,5. 
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0R  , and  is a diagonal matrix with main diagonal  

                            '22222
5

2
4

2
3

2
2

2
1

2 0,0,,0,0,,0,0,,0,0,,,,,,,
5432   fdiag  .              (15) 

  

3. Monte Carlo simulations 

 

In this section, we design a Monte Carlo experiment to study some of the finite-sample 

properties of structural dynamic factor models that account for common or idiosyncratic 

seasonal components against traditional dynamic factor models that manage seasonally 

adjusted data. As shown in Table 1, the experiment is conducted with a comprehensive set of 

coefficients in order to capture a wide range of specifications, allowing for different degrees 

of common factor correlation, different persistence of idiosyncratic components, and 

idiosyncratic components that are heterogeneous. 

To cover a large variety of combinations, Table 1 reports that the loading factor of the 

first variable is set to unity in order to achieve identification, while other factor loadings are 

either positive for variables 2 and 3 (0.7 and 1.1, respectively) or negative for variables 4 and 

5 (-0.8 and -0.5, respectively). We generate two alternative scenarios for the seasonal 

components.8 The first scenario, called M1, tries to mimic the empirical forecasting exercise 

where seasonal components are idiosyncratic.9 The second scenario, called M2, tries to mimic 

                                                 
8 As mentioned before, for identification purposes, the seasonal component does not affect the first variable. 
9 In line with our empirical results, we set jiji

,  22  . In particular, we set 2

i
 around 0.1. 
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the case of common seasonal components, where the seasonal factor loadings are either 

positive (0.9 for variable 3) or negative (-0.8 and -0.7 for variables 4 and 5, respectively). 

The common non-seasonal factor, ft, and the individual components, uit, are generated 

as first order autoregressive processes. According to Table 1, in simulations S1, S2, and S3 

we replicate situations where the economic variables share a strong persistent non-seasonal 

common component (autoregressive parameter of 0.9). However, in simulations S4, S5 and 

S6 the persistence of the factor is weak (autoregressive parameter of 0.2) while it is moderate 

in simulations S7, S8 and S9 (autoregressive parameter of 0.5).  

In addition, these potential empirical cases are combined with several degrees of 

autoregressive parameters of the idiosyncratic components. The persistence is strong 

(between 0.1 and 0.4) in simulations labelled S1, S4 and S7, it is weak (between 0.6 and 0.9) 

in simulations labelled as S2, S5 and S8 and mixed (between 0.2 and 0.9) in simulations S3, 

S6 and S9. In line with the empirical results of Section 4, the simulations labelled as S10 uses 

moderate persistence of the non-seasonal common component mixed (positive and negative, 

weak and strong) autoregressive parameters for the idiosyncratic components. 

For all of these data-generating processes, the signal-to-noise ratio or proportion of the 

variance attributed to the common factor to the variance of the idiosyncratic component at 

business cycle frequencies (3 to 8 years) is also included in the table.  

In the simulations, we try to cover various scenarios, according to the contribution of 

the common factor to the variation of the series. In simulations labeled as S2 and S4, the 

common factor and the idiosyncratic components account for about the same portion of the 

variance (signal-to-noise ratio close to 1). In simulations S1, S3 and S7, the variance of the 

common factor is larger than that of the idiosyncratic components (signal-to-noise ratios 

higher than 1), while it is much smaller (signal-to-noise ratios lower than 1) in simulations S5, 

S6 and S8. Finally, simulations S9 and S10 account for mixed scenarios. 

For each of these cases, we generate a total of M=1000 sets of time series of length 

T=120 observations.10 We use them to mimic three different empirical forecasting scenarios. 

The first scenario, called EId, mimics the case in which an analyst fits a structural dynamic 

factor model to the non seasonally adjusted data, whose seasonal components are treated as 

idiosyncratic. The second scenario, called ECo, refers to a similar case but where the seasonal 

component is common to the last four time series. The third scenario, called EsaTS, mimics 

the case in which the analyst uses seasonally adjusted data before estimating the standard 

dynamic factor model, i.e., the traditional approach. In our analysis, the seasonal components 

are extracted from the generated time series using TRAMO-SEATS. 

                                                 
10 The length of the generated time series is 120 since it would refer to 30 years of quarterly observations. 
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In each replication, m, we estimate the two structural factor models and the traditional 

factor model that uses seasonally adjusted data. We examine the performance of these models 

in Tables 2 and 3. In each of these tables, the figures in brackets analyze the ability of the 

models to infer the factor while the rest of the figures refer to the accuracy of the models to 

infer the time series.  

In Table 2, we examine the in-sample fit of the models by computing the averaged 

squared difference across the T observations between the generated and the estimated time 

series (Mean Squared Errors, MSE), which are also averaged across the M replications. In 

Table 3, we compare the out-of-sample forecasting accuracy by computing the errors in 

forecasting (one-step-ahead) the generated target series. For each m-th replication, the one-

step-ahead forecasts are obtained by estimating the models with data from t=1 to t=T-1, and 

by computing the forecasts for T. 

To facilitate interpretation, the tables report fractions of MSEs, where the denominator 

is the MSE from forecasting using the specification that agrees with the data-generating 

parameters. That is, the figures compare the MSEs of all models against the situation where 

an oracle has given the researcher the correct model to forecast from. Therefore, figure below 

one indicate that the forecasting model does the job better than the oracle. 

The main results of the Monte Carlo experiment are the following. First, there are two 

main potential sources of seasonal misspecification in structural dynamic factor models: 

when the data are generated with idiosyncratic seasons but the model incorrectly assumes 

common seasons (columns labelled as M1) and when the data are generated with common 

seasons but the model uses the erroneous assumption that the seasons are idiosyncratic 

(columns labelled as M2). According to the magnitude of the figures reported in the tables, 

the second source of misspecification seems to be much less damaging than the first.  

Second, when the seasonal component is generated idiosyncratically across the time 

series, the traditional approach of dynamic factor models that use seasonally adjusted data 

unequivocally achieves the best performance. The figures reported in the third column of the 

panels labelled as M1 show that this strategy outperforms the structural factor model that 

assumes idiosyncratic seasons. The potential explanation is that the structural factor model 

may suffer from an identification problem since it is hard to identify separately the variances 

of the individual components from those of the seasonal components when they are 

idiosyncratic. Another explanation would be that the greater number of parameters to be 

estimated within the structural approach generates larger uncertainty and noise in the 

estimation.  

Third, the structural model that correctly treats the seasonal components as common 

when they are actually generated as common (fifth columns of the tables) usually exhibits the 
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best performance. However, it is worth emphasizing that the accuracy of this model is 

comparable to that of the traditional factor model that uses seasonally adjusted data, which in 

many cases exhibits the lowest MSEs. 

Fourth, the persistence of the idiosyncratic and the common components increases the 

size of the differences across specifications but does not alter the nature of the results. 

Regardless of whether the seasonal components are common or idiosyncratic, the traditional 

factor model achieves relatively better forecasting performance in the case of high 

persistence, which motivates the use of this approach in case of doubts about the nature of the 

seasonal components. 

Fifth, the conclusions obtained by analysing the MSEs achieved by the models on 

inferring the factor and those achieved by the models on fitting the variables are of the same 

nature, i.e., good factor estimation implies good fitting of the data. In addition, the results of 

the out-of-sample analysis (Table 3) are qualitatively similar to those of the in-sample 

performance, although a little weaker. The intuition is that there is more noise in the out-of-

sample analysis, which generates higher uncertainty across the models and makes it difficult 

to extract conclusions from the analysis. 

Summing up, these results agree with the general strategy followed by analysts that 

routinely apply traditional dynamic factor models to time series that exhibit common, 

idiosyncratic, and seasonal components. This approach consists, prior to fitting the factor 

model, of removing the seasonal components. When seasonality is idiosyncratic, this strategy 

leads to the best results. When the seasonality is common across series, it leads to very good 

results, which are comparable to the results of estimating the structural factor model 

associated with the data generating process. Notably, the traditional approach exhibits the 

advantage of eliminating the potential damage of using structural factor models that assume 

common seasonality when it is actually idiosyncratic.  

 

4. Empirical analysis 

 

4.1. In-sample analysis 

 

The five quarterly indicators used in the empirical analysis are the University of Michigan 

consumer sentiment index, new passenger car and truck sales, median usual weekly earnings 

in constant dollars, total housing starts (new privately owned housing units started), and 
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employees on nonagricultural payrolls from 1978.1 to 2007.4.11 According to our preliminary 

analysis of unit roots, we find that all of them contain unit roots; therefore all variables are 

used in growth rates. 

The University of Michigan consumer sentiment index is a consumer confidence index 

published by the University of Michigan and Thomson Reuters. The index is normalized to 

have a value of 100 in December 1964 and it is based on at least 500 telephone interviews, 

which are conducted each month in a United States sample to assess near-time consumer 

attitudes on the business climate, personal finance, and spending. The index does not contain 

seasonality. New passenger car and truck sales and housing starts were obtained from the 

Department of Commerce’s Bureau of Economic Analysis (BEA), the median usual weekly 

earnings and nonagricultural payrolls were obtained from the Bureau of Labor Statistics. 

These economic indicators exhibit a key advantage for our study: they are available as 

both non-seasonally adjusted and seasonally adjusted. In addition, the selection of these 

indicators follows the line suggested by the influential paper of Stock and Watson (1991). We 

start the analysis with a set of indicators that includes an indicator from the supply side of the 

economy (housing starts), an indicator from the demand side (car and truck sales), an 

indicator from the income side (weekly earnings), and an indicator of the labor market 

(employees on nonagricultural payrolls).12 Then, we enlarge the initial set of indicators with 

the University of Michigan consumer sentiment in order to incorporate a non-seasonal series 

which agrees with the evolution of the business cycle. 

Table 4 displays the maximum likelihood estimates of the structural dynamic factor 

models that account for seasonal adjustments and the traditional factor models that use 

seasonally adjusted data where the seasonal components are extracted before estimation. The 

figures that appear in brackets refer to their standard deviations.13 The choice of model 

specifications is always based on the Schwarz criterion. The table also shows the log-

Likelihood achieved by these models and their signal-to-noise ratios. 

There are several noteworthy features from the estimates reported in Table 4. First, the 

estimated common factor is moderate (or even weak) since the estimates for its first order 

autocorrelation range from 0.06 to 0.52, which refer to cases S4 to S10 in the Monte Carlo 

experiment. Second, the persistence of the individual components of the first four variables is 

mixed since some autoregressive parameters are small while some others are large, which 

                                                 
11 The Great Recession was not included to overcome the problems associated to the large breaks of the time 
series in these years.  
12 To manage both seasonally and non-seasonally adjusted series, we substitute manufacturing and trade sales, 
originally used in Stock and Watson (1991) for car and truck sales. The same applies to the substitution of real 
personal income less transfers by weekly earnings.  
13 Although not included to save space, we obtained similar results when the traditional model consists of using 
the official seasonally adjusted version of the variables. 
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agrees with simulations S4, S9 and S10. Finally, some of these autoregressive parameters are 

negative, which agrees with simulation S10. Third, employment exhibits large positive 

autoregressive coefficients for the idiosyncratic components, which leads to the low signal-to-

noise ratios in EId and EsaTS models.  

 

4.2. Out-of-sample analysis 

 

In this section, we develop an out-of-sample forecasting analysis. For this purpose, we 

assume that the time series of interest to be forecasted are the seasonally adjusted outcomes of 

TRAMO-SEATS of the five economic indicators described in the previous section.14 The h-

period-ahead forecasts were computed recursively and the analysis was conducted to simulate 

real-time forecasting. The first forecast is obtained by estimating the models with data from 

t=1 to t=, and by computing the forecast +h. Then, the models are re-estimated with data 

from t=1 to t=+1, and the forecast is obtained for +h+1. This process is repeated until =T-

h. The first simulated out-of-sample forecast was made in 1998.1 and we consider forecast 

horizons of h=1 and h=4 periods.15  

For each time series, the averaged squared differences between the forecasts and the 

targeted variables are computed. The results, which are reported in Table 5, suggest some 

conclusions that are in line with the findings obtained in the Monte Carlo analysis. Regardless 

of the targeted series and the forecast horizon, the forecasts computed from the traditional 

dynamic factor model that uses seasonally adjusted series exhibit the lowest MSE.16 In 

addition, the table shows the p-values of Clark and West (2007), which compare the accuracy 

of the traditional approach with the two versions of the structural approach and the seasonal 

ARIMA forecasts. Overall, the table shows that the better performance of the traditional 

approach is statistically significant at 5% level at 1-period forecast horizon. 

Therefore, cleaning up the economic indicators from seasonality either by using the 

seasonally adjusted series or by using automatic univariate procedures before using the 

variables in the dynamic factor model seems to be a reasonably strategy to follow. 

  

5. Conclusion 

                                                 
14 The results obtained from the official seasonally adjusted time series are quite similar to the seasonally 
adjusted outcomes of TRAMO-SEATS. Accordingly, if the former were the series of interest, the results would 
be qualitatively similar to those presented in the paper.  
15 Each quarter, we updated the database as if all the variables had been observed in that quarter. Therefore, we 
did not develop a pseudo real-time analysis since data revisions or publication delays are not treated. For a 
careful analysis of these forecasting problems, see for example Camacho, Perez-Quiros and Poncela (2012).  
16 There is only one exception: the one-step-ahead forecasts of cars. Notably, the gain with respect to the 
traditional factor model is not large. 



 14

 

Despite the efforts of recent studies to evaluate the empirical short-term forecasting 

performance of dynamic factor models, it still remains an open question whether it is better to 

use seasonally adjusted indicators before estimating the model or to account for the seasonal 

components of the raw data within a factor model. The first strategy implicitly assumes that 

the seasonal components are idiosyncratic and the latter strategy could lead to unnecessary 

complexity, especially for practitioners that are not familiar with seasonal analysis.  

We use Monte Carlo experiments to analyze the extent to which these two alternatives 

exhibit relative forecasting performance gains. Our simulation results suggest that when the 

data are generated under the assumption that the seasonal components are idiosyncratic the 

dynamic factor model that uses seasonally adjusted indicators exhibits the best forecasting 

performance. Interestingly, when the seasonal components are common to all the time series, 

its forecasting deterioration with respect to a dynamic factor model that account for the 

common seasonality is usually negligible in our experiment. Notably, the former improves on 

the latter in several cases. 

In empirical applications, it is difficult to decide a priori if the seasonality is common 

or idiosyncratic across series. Given that the deterioration of the in-sample fitting and out-of-

sample forecasting performance of the dynamic factor model that uses seasonally adjusted 

indicators is very small, while the performance of the common seasonal component model is 

very poor in the case of idiosyncratic seasonal factors, we strongly recommend the use of 

seasonally adjusted series in factor models.  

We illustrate these results by using US data from 1978.1 to 2011.1 of the University of 

Michigan consumer sentiment index, new passenger car and truck sales, median usual weekly 

earnings, housing starts, and employees on nonagricultural. In line with the simulations 

results, the forecasting performance of a dynamic factor model that uses the seasonally 

adjusted versions of these series is better than those of dynamic factor models that assume 

common or idiosyncratic seasonal components. 
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Appendix 

 

Since the empirical data are quarterly, the seasonal component of each time series, si, is the 

sum of two cyclical components, titiit sss 21  , which are evaluated at the seasonal 

frequencies, 21   , and  2 . According to (4), the dynamics of the first cyclical 

component is 
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Using 02cos   and 12sin   and rearranging terms, one can obtains 
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which implies that   titisL 11
21  , where *

1111  tititi  . If     2*
11 1

varvar
ititi   , t ,  

then   2
1 1

2var
iti   . 

Similarly, the dynamics of the second cyclical component can be obtained from 
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which, using 1cos   and 0sin  , leads to 
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This expression implies that   titisL 221  , where titi 22    and   2
2 2

var
iti   . Let us 

additionally assume that 222

21 iii    . 

Accordingly, the seasonal component of each time series can be expressed as 
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,                                               (A5) 

or 

                                        2
21

32 111 LLsLLL titiit   .                           (A6) 
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 Since the greatest polynomial of the two terms from the right-hand side is of power 

two, the resulting polynomial (the result of summation) is of power two as well 

                                           itit LLsLLL  232 11  .                                 (A7) 

To find the unknown coefficients   and  , we derive the spectra of right-hand sides of both 

expressions. On the one hand, the spectrum of right-hand side of (A6) is 
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The first equality follows from the fact that 2cosi ie e    ,  . The last equation uses 

1
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i i    and 
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i i   . On the other hand, the spectrum of right-hand side of (A7) is 
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 Since the two spectra must represent the same dynamics, one can use the system of 

three equations with three unknowns   2222 16
ii    ,   22 24

ii    and 

22 22
ii    to obtain 0416124 234   . The real solutions of this equation are 

3187.01   and 6813.12  , and using again the system of equations, it is easy to obtain 

that they correspond to values 1869.01   and 2745.52  . The first pair of solutions 

 0.3187, 0.1869    produces invertible MA polynomial in (A7), opposite, the second 

pair of solutions results in non-invertible (A7). Using the first pair of real solutions we find 

22 3505.5
ii    from the last equation of the system. In this way, the seasonal component for 

the series i  is given by: 

    2 3 21 1 0.3187 0.1869it itL L L s L L       . 
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Table 1. Parameters used in Monte Carlo simulations 

Fixed parameters for all simulations 

11  , 7.02  , 1.13  , 8.04  , 5.05 
 

12 f , 7.02
1  , 2

2 0.8  , 9.02
3  , 12

4  , 9.02
5   

Parameters that control idiosyncratic versus common seasons  

 M1 (idiosyncratic seasons) M2 (common seasons)  

 1.02

2
 , 09.02

3
 ,

4

2 0.08  , 1.02

5
 1.02

2
 , 9.03  , 8.04  , 7.05 

Parameters that control non-seasonal factor and individual components 
Not seasonal 
component 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

Common strong strong strong weak weak weak mod mod. mod mod 

Idiosynchr. weak strong mixed weak strong mixed weak strong mixed p-n 

 

a=0.9 
b1=0.3 
b2=0.2 
b3=0.4 
b4=0.1 
b5=0.3 

a=0.9 
b1=0.7 
b2=0.8 
b3=0.9 
b4=0.7 
b5=0.6 

a=0.9 
b1=0.9 
b2=0.2 
b3=0.5 
b4=0.9 
b5=0.3 

a=0.2 
b1=0.3 
b2=0.2 
b3=0.4 
b4=0.1 
b5=0.3 

a=0.2 
b1=0.7 
b2=0.8 
b3=0.9 
b4=0.7 
b5=0.6 

a=0.2 
b1=0.9 
b2=0.2 
b3=0.5 
b4=0.9 
b5=0.3 

a=0.5 
b1=0.3 
b2=0.2 
b3=0.4 
b4=0.1 
b5=0.3 

a=0.5 
b1=0.7 
b2=0.8 
b3=0.9 
b4=0.7 
b5=0.6 

a=0.5 
b1=0.9 
b2=0.2 
b3=0.5 
b4=0.9 
b5=0.3 

a=0.5 
b1=0.9 
b2=-0.2
b3=-0.4
b4=-0.1
b5=0.2 

SNR 

12.46 
4.67 
8.92 
6.12 
1.88 

3.83 
0.81 
1.89 
1.20 
0.81 

2.04 
4.67 
6.72 
0.64 
1.88 

1.61 
0.60 
1.16 
0.79 
0.24 

0.50 
0.10 
0.25 
0.16 
0.10 

0.26 
0.60 
0.87 
0.08 
0.24 

3.50 
1.31 
2.51 
1.72 
0.53 

1.08 
0.23 
0.53 
0.34 
0.23 

0.57 
1.31 
1.89 
0.18 
0.53 

0.57 
2.80 

11.83 
2.51 
0.67 

 
Notes. Parameters i  refer to the loading factors. Parameters 2

f  and 2
i  refer to the variance 

of noises of the common non-seasonal factor and the idiosyncratic components, respectively. 
Parameters 2

i
  refer to the variances of the noises of the cyclical components. Parameters a 

and bi refer to the autoregressive parameters of the common factor and the idiosyncratic 
components, respectively. SNR is the signal-to-noise of the variance of the common factor at 
business cycle frequencies (3 to 8 years) to the variance of the idiosyncratic component in the 
series. 
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Table 2. In-sample Monte Carlo results  

Specification 
M1 (idiosyncratic seasons) M2 (common seasons) 
EId ECo EsaTS EId ECo EsaTS 

S1 

(1.00) 
1.00 
1.00 
1.00 
1.00 

(1.57) 
7.62 
6.13 
9.19 
13.62 

(0.91) 
0.46 
0.37 
0.49 
0.33 

(1.11) 
1.83 
3.13 
2.24 
3.38 

(1.00) 
1.00 
1.00 
1.00 
1.00 

(0.92) 
0.73 
0.85 
1.14 
1.09 

S2 

(1.00) 
1.00 
1.00 
1.00 
1.00 

(2.52) 
6.39 
7.56 
6.84 
14.05 

(1.00) 
0.44 
0.37 
0.39 
0.32 

(1.07) 
1.87 
3.18 
2.10 
3.36 

(1.00) 
1.00 
1.00 
1.00 
1.00 

(0.98) 
0.65 
0.92 
1.19 
0.92 

S3 

(1.00) 
1.00 
1.00 
1.00 
1.00 

(2.34) 
12.32 
6.05 
6.01 
13.95 

(0.94) 
0.48 
0.47 
0.39 
0.41 

(1.14) 
1.95 
3.31 
1.84 
3.60 

(1.00) 
1.00 
1.00 
1.00 
1.00 

(0.94) 
0.77 
0.88 
0.84 
1.15 

S4 

(1.00) 
1.00 
1.00 
1.00 
1.00 

(1.69) 
8.21 
5.32 
7.44 
10.06 

(0.94) 
0.60 
0.52 
0.45 
0.45 

(1.17) 
1.97 
3.17 
2.33 
3.60 

(1.00) 
1.00 
1.00 
1.00 
1.00 

(0.98) 
0.69 
1.06 
0.99 
1.02 

S5 

(1.00) 
1.00 
1.00 
1.00 
1.00 

(1.72) 
6.94 
6.73 
9.45 
12.82 

(1.01) 
0.55 
0.58 
0.50 
0.44 

(1.09) 
1.88 
3.27 
2.21 
3.32 

(1.00) 
1.00 
1.00 
1.00 
1.00 

(1.02) 
0.69 
1.58 
1.17 
1.04 

S6 

(1.00) 
1.00 
1.00 
1.00 
1.00 

(1.73) 
16.36 
5.50 
7.02 
12.40 

(0.98) 
0.51 
0.51 
0.47 
0.44 

(1.15) 
2.01 
4.27 
1.95 
3.80 

(1.00) 
1.00 
1.00 
1.00 
1.00 

(1.02) 
0.82 
1.29 
1.14 
1.06 

S7 

(1.00) 
1.00 
1.00 
1.00 
1.00 

(1.73) 
7.68 
5.39 
6.72 
13.31 

(0.93) 
0.54 
0.48 
0.46 
0.39 

(1.15) 
1.89 
3.35 
2.29 
3.45 

(1.00) 
1.00 
1.00 
1.00 
1.00 

(0.95) 
0.70 
0.97 
1.14 
0.99 

S8 

(1.00) 
1.00 
1.00 
1.00 
1.00 

(1.81) 
7.91 
5.39 
6.98 
15.14 

(1.00) 
0.51 
0.54 
0.39 
0.42 

(1.08) 
1.87 
3.53 
2.14 
3.59 

(1.00) 
1.00 
1.00 
1.00 
1.00 

(0.99) 
0.63 
1.06 
1.00 
1.09 

S9 

(1.00) 
1.00 
1.00 
1.00 
1.00 

(1.74) 
9.74 
6.62 
5.10 
14.57 

(0.98) 
0.54 
0.51 
0.42 
0.39 

(1.14) 
2.03 
3.24 
2.18 
3.55 

(1.00) 
1.00 
1.00 
1.00 
1.00 

(0.98) 
0.85 
1.28 
0.97 
0.94 

S10 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(1.02) 
1.05 
1.22 
1.30 
1.33 
2.04 

(1.00) 
1.02 
1.00 
0.81 
0.99 
0.99 

(1.01) 
1.01 
1.00 
1.74 
1.00 
1.00 

(1.00) 
1.00    
1.00    
1.00    
1.00    
1.00 

(0.98) 
1.04 
0.97 
0.99 
0.97 
0.98 

Notes. Expressions S1 to S10 are described in Table 1. Figures in parentheses refer to the MSE of the 
common factor while other figures refer to the MSE of series 2 to 5. Columns labelled as M1 and M2 
refer to data generated processes with idiosyncratic and common seasonal components, respectively. 
EId, Eco, and EsaTS refer to models with idiosyncratic seasons, common season, and models whose 
indicators are seasonally adjusted (TRAMO-SEATS) before estimation, respectively. Lowest MSE are 
highlighted in bold. 
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Table 3. One-period-ahead Monte Carlo results 

Specification 
M1 (idiosyncratic seasons) M2 (common seasons) 

EId ECo EsaTS EId Eco EsaTS 

S1 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(1.02) 
0.97 
1.43 
1.19 
1.84 
3.48 

(0.92) 
1.00 
0.67 
0.77 
0.51 
0.27 

(1.01) 
1.01 
1.01 
1.03 
1.01 
1.01 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(0.94) 
0.97 
0.96 
0.97 
1.01 
0.98 

S2 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(1.28) 
1.02 
1.29 
1.47 
1.39 
2.83 

(0.79) 
0.99 
0.70 
0.63 
0.67 
0.31 

(0.97) 
0.99 
0.98 
1.00 
1.00 
0.97 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(0.96) 
0.99 
0.93 
0.93 
0.94 
0.92 

S3 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(1.10) 
1.00 
1.73 
1.40 
1.23 
2.38 

(0.93) 
1.00 
0.58 
0.70 
0.76 
0.41 

(1.01) 
1.00 
1.01 
1.02 
1.05 
1.01 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(0.91) 
0.99 
0.96 
0.97 
0.99 
0.98 

S4 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(1.00) 
0.99 
1.31 
1.23 
1.31 
2.01 

(0.99) 
1.02 
0.75 
0.79 
0.75 
0.48 

(1.02) 
1.01 
1.02 
1.02 
1.02 
1.02 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(1.01) 
1.01 
1.00 
1.01 
1.01 
1.04 

S5 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(1.01) 
1.02 
1.25 
1.27 
1.12 
2.13 

(0.98) 
1.01 
0.75 
0.72 
0.84 
0.43 

(1.01) 
1.00 
1.00 
0.96 
1.02 
1.01 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(0.99) 
1.01 
0.96 
0.95 
0.97 
0.99 

S6 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(0.98) 
1.09 
2.65 
1.04 
1.22 
2.37 

(1.01) 
0.94 
0.37 
0.94 
0.78 
0.41 

(1.00) 
1.00 
1.01 
1.04 
1.01 
1.00 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(1.00) 
1.00 
0.98 
0.98 
0.93 
0.97 

S7 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(0.97) 
0.98 
1.18 
1.17 
1.25 
2.89 

(1.01) 
1.00 
0.84 
0.84 
0.80 
0.34 

(0.99) 
1.00 
1.00 
1.03 
1.01 
1.02 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(0.97) 
1.00 
0.97 
0.97 
0.98 
0.97 

S8 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(1.10) 
1.05 
1.28 
1.25 
1.45 
3.13 

(0.88) 
0.96 
0.76 
0.74 
0.66 
0.30 

(0.98) 
1.00 
1.02 
1.04 
1.02 
1.03 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(0.99) 
1.01 
0.93 
0.99 
1.00 
0.99 

S9 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(1.13) 
1.02 
1.29 
1.31 
1.27 
2.93 

(0.88) 
0.99 
0.77 
0.74 
0.72 
0.33 

(0.97) 
1.00 
0.99 
0.98 
1.01 
1.02 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(0.99) 
1.01 
0.97 
0.93 
0.96 
1.00 

S10 

(1.00) 
1.00 
1.00 
1.00 
1.00 
1.00 

(1.02) 
1.05 
1.22 
1.30 
1.33 
2.04 

(0.98) 
0.97 
0.82 
0.63 
0.74 
0.49 

(1.01) 
1.01 
1.00 
1.74 
1.00 
1.00 

(1.00) 
1.00     
1.00 
1.00 
1.00 
1.00 

(0.98) 
1.04 
0.97 
0.99 
0.97 
0.98 

Notes. See notes of Table 2. 



 21

Table 4. Maximum likelihood estimates 
 

 Estimated models 
 EId Eco EsaTS 
2 0.59 (0.40) 0.84 (0.33) 1.12 (0.40) 
3 0.37 (0.17) 1.40 (0.50) 0.72 (0.37) 
4 -0.08 (0.05) -0.39 (0.21) -0.39 (0.39) 
5 1.20 (0.32) 0.38 (0.15) 2.29 (0.97) 
a 0.25 (0.09) 0.06 (0.13) 0.51 (0.12) 
b1 -0.14 (0.09) -0.05 (0.09) -0.13 (0.09) 
b2 -0.51 (0.09) -0.32 (0.09) -0.45 (0.09) 
b3 -0.26 (0.10) -0.95 (0.04) -0.26 (0.09) 
b4 0.81 (0.05) -0.58 (0.08) 0.84 (0.05) 
b5 0.52 (0.22) 0.06 (0.05) -0.07 (0.31) 
f 0.31 (0.08) 0.33 (0.10) 0.26 (0.09) 
1 0.94 (0.06) 0.94 (0.06) 0.94 (0.06) 
2 0.48 (0.04) 0.68 (0.07) 0.83 (0.06) 
3 0.51 (0.03) 0.21 (0.07) 0.91 (0.06) 
4 0.18 (0.01) 0.67 (0.04) 0.53 (0.03) 
5 0.01 (0.18) 0.26 (0.03) 0.52 (0.16) 

2
  0.16 (0.04) 0.09 (0.07) - 

3
  0.08 (0.03) - - 

4
  0.01 (0.01) - - 

5
  0.05 (0.02) - - 

3 - -1.94 (0.80) - 
4 - 0.70 (0.32) - 

5 - 1.88 (0.67) - 

logL -29.71 153.97 261.62 

SNR 

0.24 
0.56 
0.13 
0.01 
99 

0.15 
0.33 
20.36 
0.10 
0.23 

0.33 
0.89 
0.23 
0.01 
5.36 

 
Notes. See notes of Table 2. SNR is the signal-to-noise ratio of the variance of the common 
factor at business cycle frequencies (3 to 8 years) to the variance of the idiosyncratic 
component in the adjusted series. 
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Table 5. Empirical forecasting analysis 
 

 Sentim Cars Wages Employ Housing 
1-period-ahead forecasts: Relative MSE 

EId 
Eco 

EsaTS 
TSW 

0.82 
0.78 
0.71 
1.74 

1.39 
1.53 
1.32 
1.07 

1.39 
6.26 
1.32 
14.37 

0.03 
1.26 
0.01 
1.06 

0.23 
0.57 
0.21 
0.25 

1-period-ahead forecasts: Equal accuracy tests 
EsaTS/Eid 
EsaTS/Eco 

EsaTS/TSW 

0.023 
0.039 
0.001 

0.056 
0.013 
0.026 

0.032 
0.001 
0.001 

0.001 
0.001 
0.003 

0.209 
0.028 
0.140 

4-period-ahead forecasts: Relative MSE 
EId 
Eco 

EsaTS 
TSW 

0.71 
0.64 
0.63 
0.65 

0.72 
0.74 
0.71 
0.72 

0.80 
6.43 
0.80 
0.88 

0.40 
0.60 
0.38 
0.66 

0.33 
0.33 
0.33 
0.37 

4-period-ahead forecasts: Equal accuracy tests 
EsaTS/Eid 
EsaTS/Eco 

EsaTS/TSW 

0.077 
0.238 
0.234 

0.338 
0.109 
0.184 

0.428 
0.001 
0.196 

0.082 
0.008 
0.007 

0.354 
0.318 
0.473 

 
Notes. See notes of Table 2. To compare the results across time series easily, the figures show the 
MSE divided by the in-sample standard deviations of each time series.  


