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Abstract

Decision Trees (DTs) are a machine learning technique widely used for regression
and classification purposes. Conventionally, the decision boundaries of Decision
Trees are orthogonal to the features under consideration. A well-known limitation
of this is that the algorithm may fail to find optimal partitions, or in some cases
any partitions at all, depending on the underlying distribution of the data. To
remedy this limitation, several modifications have been proposed that allow for
oblique decision boundaries. The objective of this paper is to propose a new
strategy for generating flexible decision boundaries by means of interactive basis
functions (IBFs). We show how oblique decision boundaries can be obtained as
a particular case of IBFs, and in addition how non-linear decision boundaries
can be induced. One attractive aspect of the strategy proposed in this paper is
that training Decision Trees with IBFs does not require custom software, since
the functions can be precalculated for use in any existing implementation of
the algorithm. Since the underlying mechanisms remain unchanged there is no
substantial computational overhead compared to conventional trees. Furthermore,
this also means that IBFs can be used in any extensions of the Decision Tree
algorithm, such as evolutionary trees, boosting, and bagging. We conduct a
benchmarking exercise to understand under which conditions the use of IBFs
can improve model the performance. In addition, we present three empirical
applications that illustrate the approach in classification and regression. As part
of discussing the empirical applications, we introduce a device called decision
charts to facilitate the interpretation of DTs with IBFs. Finally, we conclude the
paper by outlining some directions for future research.
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1 Introduction

Decision Trees (DTs) are a popular machine learning technique used both
for regression and classification purposes (Loh 2011; James et al. 2013). A DT
is trained by means of a training dataset that provides a set of independent
variables (or features) used to create recursive partitions of the decision space.
This is achieved by locally optimizing at each step a loss function that depends
on the type of problem (i.e., regression or classification) and/or the specific
implementation of the algorithm (i.e., an entropy function for C4.5 and a gini
index for CART; see Loh 2011).

Decision Trees find applications in a variety of domains, including, inter alia,
transportation (e.g., Ghasri, Rashidi, and Waller 2017), physical geography (e.g.,
Praskievicz 2018), engineering (e.g., Bektas, Carriquiry, and Smadi 2013; Suhail,
Denton, and Zwiggelaar 2018), and environmental sciences (e.g., Choubin et al.
2018). There are several characteristics that make DTs an appealing modeling
approach. Notably, DTs are more intuitive than linear/logistic regression (James
et al. 2013, 315) and have much greater interpretability than, for instance,
artificial neural networks and support vector machines (Yang et al. 2017, 354).
In addition, in some settings DTs provide a reasonable heuristic for human
decision making (James et al. 2013, 315). Finally, although no single technique
can be expected to be uniformly superior in every case, the performance of
DTs has been shown to be competitive with, and in some cases superior to,
alternatives such as linear regression, logistic regression, support vector machines,
and artificial neural networks (e.g., Kurt, Ture, and Kurum 2008; Choubin et al.
2018; Yang et al. 2017).

One characteristic of DTs as conventionally implemented, is that partitions of
the variable space are usually done orthogonally to the features. In this way, the
partitions are a set of rectangular p-dimensional prisms,or hyperboxes. While
this is done to reduce the search space of the algorithm, it has the downside
that it may fail to find appropriate partitions, and in some extreme cases, to
find any partitions at all. In this case, the performance of the algorithm tends
to be mediocre. Accordingly, a number of proposals have aimed at ameliorating
this situation by inducing oblique partitions (e.g., Murthy, Kasif, and Salzberg
1994; Wickramarachchi et al. 2016; Cantu-Paz and Kamath 2003) and oblique
decision tree ensemble variants (e.g., Menze et al. 2011; Zhang and Suganthan
2014; Zhang and Suganthan 2015; Zhang and Suganthan 2017; Zhang et al. 2017;
Qiu et al. 2017).

The objective of this paper is to introduce a novel strategy for non-orthogonal
partition of variable space in the training of DTs. The approach is based on the
use of interactive basis functions (IBFs). We will show that oblique partitions
result as a particular case of an IBF. Moreover, depending on the basis function
selected, non-linear partitions are also possible. The modeling strategy proposed
in this paper is attractive because the basis functions can be precalculated and
then used as an input to any decision tree algorithm. Since only the inputs to the
algorithm change, this implies that 1) the underlying algorithm is not changed
and therefore any existing DT software can be used; and 2) basis functions can
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be used in many existing implementations of DTs, including evolutionary trees,
bagging, and boosting.

The structure of the paper is as follows. In the [background section][Background]
we first review some technical aspects of decision trees and motivate the problem.
This is followed by a discussion of [basis functions][Interactive Basis Functions]
and how they can be employed to induce oblique linear and non-linear partitions.
Next, we discuss some [practical aspects][Practical Considerations] of imple-
menting IBFs before conducting a [benchmarking experiment][Benchmarking]
the assess the performance or DTs with IBFs by means of a set of publicly
available empirical datasets. The results indicate that inducing oblique and/or
non-linear partitions using basis functions can improve the performance of the
technique and/or produce more parsimonious models. We then illustrating the
[application][Sample Applications] of IBFs by means of three empirical examples.
Finally, we [conclude][Conclusions and Directions for Future Research] the paper
by summarizing our findings and suggesting some directions for future research.

Given the simplicity and ease of implementation of the modeling strategy,
the development presented in this paper should be of interest for users of DTs
who wish to improve the performance of their models at a relatively modest
computational cost.

2 Background

We begin in this section by formally describing the DT algorithm. This will
serve to motivate subsequent sections of the paper.

A decision tree is a regression/classification algorithm which models a response
variable Y (which could be quantitative or qualitative) from a vector of p features,
X = (X1, . . . , Xp), where X ∈ Rp. The algorithm operates by recursively
partitioning the space of the features into a set of M regions Rm, m = 1, ...,M .

To state the basic notation, let us start by considering a binary tree model
with M terminal nodes, each of which m ∈ {1, ...,M} represents a branch of
the tree that is characterized by m∗ internal splits. The parameter space that
characterizes each branch is θm∗

m =
(
vd1

m,1, sm,1, ..., v
dm∗
m,m∗ , sm,m∗

)
, where Xvm,i

is the splitting variable at the internal split i of the terminal node m, with
vmi ∈ {1, ..., P}, di = 0 if Xvm,i

< sm,i and di = 1 if Xvm,i
> sm,i, sm,i is

the splitting point, and i ∈ {1, ...,m∗}. The parameter space of trees with
M terminal nodes, ΘM , is formed by the collection of all the combinations of

θm =
m∗⋃
j=1

θj
m, ΘM =

M⋃
m=1

θm. In this way, a tree is a collection of branches, each

of which ends up in a terminal node, that characterizes the partitions or regions
through θm.

The objective of the recursive partitioning mechanism is to try to find optimal
partitions in the search space of the features as follows. The path of the partitions
determined by each branch is:

θj
m = θj−1

m

⋃(
v

dj

m,j , sm,j

)
,
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Figure 1: Prototypical Decision Tree

Within this framework, each branch m is a collection of sequential partitions
θj

m, j = 1, . . . ,m∗. For each of these partitions, we define a prediction function
f
(
X, θj

m

)
, which typically is a central tendency measure of the values of the

dependent variable conditional to that region. The goal is to find a decision tree
that optimizes some tradeoff between prediction performance, measured by a
loss function, loss

{
Y, f

(
X, θj

m

)}
, and a measure of the complexity of the tree,

comp
(
θj

m

)
, θ̂j

m = arg
[
loss

{
Y, f

(
X, θj

m

)}
+ comp

(
θj

m

)]
.

In practice, the recursion ends when any additional partitions result in sub-
samples below a minimum number of cases (e.g., less than five cases). Operating
in this way, the recursive partitioning method produces partitions that are
orthogonal to the p features, and thus results in a total of M p-dimensional
rectangular prisms, or hyperboxes (see Figure 1 for a prototypical decision tree
with two features X1 and X2).

Despite its advantages, it is not difficult to find examples where orthogonal
recursive partitioning does not work. Consider the situation depicted in Figure
2, a simple classification problem with p = 2 features. It is straightforward to
see that in this case the algorithm fails to find an initial partition, as the loss
function on the resulting subsets cannot be reduced by any first split. This
situation, on the other hand, is easily avoided if oblique splits are used. In
this case an optimal split can be found at the first step, as illustrated by the
candidate split shown with a dashed line in the figure.

Motivated by the challenge posed by situations such as the one in Figure
2, and more generally to better capture non-orthogonal decision boundaries,
previous research has seen the development of numerous methods to induce
oblique decision boundaries for trees (see Cantu-Paz and Kamath 2003; and
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Figure 2: Chessboard example with variable Y with two classes

Wickramarachchi et al. 2016 for an overview). More concretely Menze et al.
(2011) propose the use of oblique random forests (oRF) which explicitly learn
optimal split directions at internal nodes using linear discriminative models,
rather than using random coefficients as the original oRF; Zhang and Suganthan
(2014) propose a new method to increase the diversity of each tree in the forests
and thereby improve the overall accuracy by building the Random Forests with
two projection methods Principal Component Analysis and Linear Discriminate
Analysis; Zhang and Suganthan (2015) propose a new method for oblique trees
based on multisurface proximal support vector machine; Zhang et al. (2017)
propose to use a more powerful proximal SVM to obtain oblique hyperplanes
to capture the geometric structure in the context of visual tracking; Zhang and
Suganthan (2017) propose an efficient co-trained kernel ridge regression method
and a random vector functional link network ensemble that outperform the
behavior of classical classifiers; Qiu et al. (2017) study the oblique random
forest in the context of time series forecasting by using a least square classifier
to perform partitions. Some others excellent reviews on ensemble learning are
Dietterich (2000), Rokach (2010), and Ren et al. (2016) where the authors
explain why ensembles can often perform better than any single classifier and
reviews traditional as well as state-of-the-art ensemble methods.

As discussed by Wickramarachchi et al. (2016), some algorithms used to
induce oblique partitions identify candidate partition boundaries based on the
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statistical properties of the data. For instance, a number of algorithms use the
orientation of the classes as given by their first principal component (Henrichon
and King-Sun 1969), the Household projection matrix (Wickramarachchi et al.
2016), or Fisher’s linear discriminant (Friedman, Bentley, and Finkel 1977). New
features are added to the problem, and the conventional orthogonal partition
mechanism is retained. Other algorithms are based on optimization approaches,
which could be deterministic or stochastic. CART-LC (Breiman et al. 1984) is
an example of the former, whereas Cantu-Paz and Kamath (2003) with their
use of genetic algorithms is an example of the latter. The increase in complexity
of these algorithms, and consequently their computational burden, comes from
the additional steps needed to conduct additional statistical or optimization
procedures. Finally, heuristic approaches have also been used, for example by
Manwani and Sastry (2012) and Robertson, Price, and Reale (2013).

In the following section, we describe a novel strategy to induce oblique (and
possibly non-linear) decision boundaries via the application of interactive basis
functions (IBFs). This modelling strategy adds judiciously constructed features
to the dataset while retaining the conventional orthogonal partition mechanism.

3 Interactive Basis Functions (IBFs)

Let us begin our discussion of basis functions by stating that the search
domain of a decision tree is contained by the features under consideration. Put
in other words, the features used for training constitute the basis vectors for the
problem. For instance, when the number of features is p = 2, the search space is
the plane formed by the orthogonal axes of the features, and each feature is a
basis vector. Three features form a 3D basis, and so on. If we consider a feature
as a basis vector, a basis function is simply a transformation thereby. In the
simplest case, the basis function could be the identity:

b(X1) = X1

which is a particular case of a polynomial function, with a = 1:

b(X1) = Xa
1

Other basis functions can be defined as well, such as the exponential:

b(X1) = eX1

Basis functions are commonly used in regression analysis, where they have
the effect of changing the properties of a regression plane. For instance, a
transformation from identity to the square of a variable has the effect of changing
the regression line to a parabola. Alas, the use of basis functions in DTs does
not have the same effect. To see why this is so, consider the general case with K
real functions bi : R→ R with i = 1, . . . ,K candidate basis functions. We will
call {b1, b2, . . . , bK} a set of basis functions. Next proceed to enlarge the set of p
features with T new features obtained by means of basis functions:
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Figure 3: Example of a basis function used as a feature to train a Decision Tree to classify
variable Y with two classes

X∗ = (X1, . . . , Xp, Xp+1, . . . , Xp+T )

where X∗ ∈ Rp+T , and Xp+i = bsi
(Xji

), for i = 1, . . . , T , si ∈ {1, . . . ,K}
and ji ∈ {1, . . . , p}

Notably, the standard recursive partitioning mechanism of Decision Trees ap-
plied to any Xp in the augmented set T leads to partitions of (p+ T )-dimensional
prisms. Furthermore, the projections of these prisms in the subspace of Rp de-
fined by X are a consequence of a linear orthogothal partition on the original
space. Consider an example with p = 2, that is X = {X1, X2}. Moreover, T = 1
and K = 1 with b1(x) = x2, so that X∗ = {X1, X2, X3 = X2

1}. Whenever the
partitioning mechanism selects a split s in X3 (say, s = 2, the solid line in
Figure 3), this split is projected in X as X1 =

√
X3, which is a constant. As

a consequence, any splits on the dimension of the basis function is equivalent
to finding an orthogonal decision boundary on the original basis, in the present
example at

√
2 in X1 (dashed line).

Since basis functions still produce orthogonal partitions in the original basis,
our proposal instead is to use interactive basis functions in the construction of
X∗ for the tree under consideration. These interactions can be identified by a set
of D functions that reproduce functional interactions of the transformations of
the features by the basis functions. Thus, these interaction functions are defined
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Figure 4: Oblique basis function and projections with different splitting points (s)

as:

hi : RpK −→ R
(b1(X1), b1(X2) . . . , bK(Xp))  a

Under this setting define X∗ = (X1, . . . , Xp, Xp+1, . . . , Xp+D), with Xp+i =
hi(b1(X1), b1(X2) . . . , bK(Xp)), for i = 1, . . . , D. Therefore by applying the
standard recursive partitioning method to X∗, its projection on X will provide
an oblique partition (also eventually non-linear as desired), which will take into
account the interactions among the features.

For example, in the case of p = 2, that is X = {X1, X2}, T = 1, K = 1 with
b1(x) = x, D = 1 with h1(b1(X1), b1(X2)) = b1(X1)+ b2(X2) = X1 +X2 (i.e., an
additivie function) and X∗ = (X1, X2, X3) we obtain that X3 = s is projected
on the plane of the original basis as X2 = s − X1, thus providing an oblique
partition on that plane as shown in Figure 4.

It is interesting to note that the framework provided by IBFs allows us to
induce, in addition to oblique partitions, non-linear decision boundaries as well.
This is done by projecting the equation hi(b1(X1), b1(X2) . . . , bK(Xp)) = a in
the subspace X = {X1, X2, . . . , Xp} generated by the features in the dataset.
For example, the IBF h1(b1(X1), b1(X2)) = b1(X1)b2(X2) with b1(x) = x leads
to X1X2. A split s in the dimension of this multiplicative IBF fixes X1X2 = s,
and therefore X2 = s/X1, thus creating a hyperbolic partition, as shown in
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Figure 5: Hyperbolic basis function and projections with different splitting points (s)

Figure 5.
As one final example (see Figure 6), the IBF h1(b1(X1), b1(X2)) = b1(X1) +

b2(X2) with b1(x) = x2 leads to X2
1 + X2

2 . A split s in the dimension of the
IBF fixes X2

1 + X2
2 = s, and therefore X2 =

√
s−X2

1 , thus creating a radial
partition.

It is worthwhile noting at this point that the additive function shown in Figure
4 is similar to the case of linear combinations used in the CART-LC algorithm (see
Cantu-Paz and Kamath 2003), however without parameterizing the interactive
basis function - or, alternatively, implicitly assuming that a1 = a2 = 1:

h1(b1(X1), b1(X2)) = b1(X1) + b2(X2) = a1X1 + a2X2

In this way, the implementation of IBFs as non-parametric functions leads
to a semi-parametric version of DTs. With respect to the complexity of the
search, the introduction of IBFs increases the complexity at each node of the
tree (when using the conventional search algorithm) by O(n(p+D)), where n
is the number of cases, p is the number of features, and D is the number of
IBFs under consideration. In contrast, the exhaustive search for oblique decision
boundaries has complexity of O(2p×

(
n
p

)
) according to Murthy et al. (1994), and

O(Cp2nlog(n)) in HHCART (where C is the number of classes in classification
problems, Wickramarachchi et al. 2016). As can be appreciated, the increase in
complexity with our approach is fairly modest.
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4 Practical Considerations

An important consideration in the practical implementation of IBFs concerns
the centering and/or scaling of the input features. Centering and scaling are
typically monotonical transformations of the data. For instance, a feature vector
can be centered on its minimum value or its mean, thus shifting the origin.
Scaling can be done for example by scaling all values to the unit interval, or by
dividing by the standard deviation to normalize the scale.

Scaling and centering the features has no impact in the training of DT with
linear partitions, whether orthogonal or oblique. Any monotonic transformation
of the data will simply shift the splitting point that creates a partition accordingly.
The same does not necessarily happen with non-linear partitions. Recall that
the curvature κ of a plane curve is related to the radius of the curve as follows
for a given arc length l:

κ(l) = 1
R(l)

Intuitively, the curvature of a straight line is constant at zero. When the
radius of a curve for l is large the curvature is small, and viceversa. It follows then
that the geometric representation of a non-linear partition in the subspace X
depends on the origin (i.e., center) and scale in which the independent variables
have been measured. This effect is illustrated in Figure 7, where a set of radial
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Figure 7: Behavior of radial IBF with non-centered/non-scaled variables (top panel) and
centered/scaled variables (bottom panel)

IBFs are plotted. In one case (top panel) the features X1 and X2 are measured
in possibly different scales. Since the origin for these variables is at zero, the
radius of the curves is large for partitions whithin the space of interest, and
therefore the partitions generated are locally quasi-linear. The bottom panel
of the figure shows analog radial IBFs, but now on features X ′1 and X ′2. These
features are obtained by centering variables X1 and X2 on their minimum values,
and scaling them to the unit length. Now the radii of the IBFs are smaller, thus
resulting on greater curvature and locally non-linear partitions.

For this reason, we recommend centering and scaling all features prior to
analysis, in order to increase the chances that non-linear partitions are effective,
and reduce the possibility that they resemble linear partitions locally.

5 Benchmarking

In this section we conduct a benchmarking exercise using a collection of pub-
licly available datasets. The source of the data is the paper of Fernandez-Delgado
et al. (2014), who conducted an extensive experiment testing machine learning
algorithms. These authors conducted their experiments with 121 datasets. An
extensive list of classifiers were applied to these datasets, and then the classifiers
were ranked based on their average accuracy and probability that they succeed
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by chance (measured by means of Cohen’s kappa). Their results indicate that
the best classifiers belong to the family of Random Forests and Support Vector
Machines.

Our focus in the present paper is on comparing DT-based algorithms only.
Fernandez-Delgado et al. (2014) already provide a comprehensive ranking of
algorithms, and our objective instead is to assess how IBFs perform in DT,
relative to conventional orthogonal partitions. Since one advantage of using IBFs
is that they can be used in virtually any implementation of DTs, we choose to
illustrate their applicability using three different methods: a conventional tree
algorithm (implemented in the R package tree, see Ripley 2018), random forest
(implemented in the R package randomForest, see Liaw and Wiener 2002), and
an evolutionary algorithm (implemented in the package evtree, see Grubinger,
Zeileis, and Pfeiffer 2014). It is worthwhile to note that the top algorithm in the
experiments of Fernandez-Delgado (2014) was the parallel implementation of the
random forest method; however, these authors did not assess the evolutionary
algorithm as we do. Other R packages exist that implement non-orthogonal
partitions, however they are limited to binary classification (in the obliqueRF
package of Menze and Splitthoff 2012) or to two features (in the spatial oblique
decision trees package SPODT of Gaudart et al. 2015).

The experiments were conducted using a parallel implementation of the code,
using 4 Intel i7-6600U cores clocked at 2.60 GHz. For the present study we
use a subset of the 121 datasets from the collection of Fernandez-Delgado et al.
(2014). After excluding a number of datasets that led to errors when running
the evolutionary tree algorithm, we work with 93 datasets. The main reason for
the errors was a large number of observations, which may be a limitation of our
computer resources rather than the algorithm. Table 1 lists the characteristics of
the datasets, including the number of observations (n), the number of features
(f), the number of classes (k) of the independent variable, and the proportion of
the majority class in the dataset (m).

Table 1: Datasets for Benchmarking Experiment (n: number of
observations, f: number of features, k: number of classes, m: pro-
portion of majority class)

Dataset # Name n f k m
1 abalone 4177 8 3 0.35
2 acute-inflammation 120 6 2 0.51
3 acute-nephritis 120 6 2 0.58
4 adult_train 32561 14 2 0.76
5 annealing_train 798 31 5 0.76
6 audiology-std_train 171 59 18 0.26
7 balance-scale 625 4 3 0.46
8 bank 4521 16 2 0.88
9 blood 748 4 2 0.76
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Table 1: Datasets for Benchmarking Experiment (n: number of
observations, f: number of features, k: number of classes, m: pro-
portion of majority class) (continued)

Dataset # Name n f k m
10 breast-cancer 286 9 2 0.70
11 breast-cancer-wisc 699 9 2 0.66
12 breast-cancer-wisc-diag 569 30 2 0.63
13 breast-cancer-wisc-prog 198 33 2 0.76
14 breast-tissue 106 9 6 0.21
15 car 1728 6 4 0.70
16 cardiotocography-10clases 2126 21 10 0.27
17 cardiotocography-3clases 2126 21 3 0.78
18 chess-krvk 28056 6 18 0.16
19 chess-krvkp 3196 36 2 0.52
20 congressional-voting 435 16 2 0.61
21 conn-bench-sonar-mines-rocks 208 60 2 0.53
22 conn-bench-vowel-deterding_train 528 11 11 0.09
23 contrac 1473 9 3 0.43
24 credit-approval 690 15 2 0.56
25 cylinder-bands 512 35 2 0.61
26 dermatology 366 34 6 0.31
27 echocardiogram 131 10 2 0.67
28 ecoli 336 7 8 0.43
29 energy-y1 768 8 3 0.47
30 energy-y2 768 8 3 0.50
31 fertility 100 9 2 0.88
32 flags 194 28 8 0.31
33 glass 214 9 6 0.36
34 haberman-survival 306 3 2 0.74
35 hayes-roth_train 132 3 3 0.39
36 heart-cleveland 303 13 5 0.54
37 heart-hungarian 294 12 2 0.64
38 heart-switzerland 123 12 5 0.39
39 heart-va 200 12 5 0.28
40 hepatitis 155 19 2 0.79
41 horse-colic_train 300 25 2 0.64
42 ilpd-indian-liver 583 9 2 0.71
43 image-segmentation_train 210 18 7 0.14
44 ionosphere 351 33 2 0.64
45 iris 150 4 3 0.33
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Table 1: Datasets for Benchmarking Experiment (n: number of
observations, f: number of features, k: number of classes, m: pro-
portion of majority class) (continued)

Dataset # Name n f k m

46 led-display 1000 7 10 0.11
47 lenses 24 4 3 0.62
48 letter 20000 16 26 0.04
49 libras 360 90 15 0.07
50 lung-cancer 32 56 3 0.41
51 lymphography 148 18 4 0.55
52 magic 19020 10 2 0.65
53 mammographic 961 5 2 0.54
54 molec-biol-promoter 106 57 2 0.50
55 molec-biol-splice 3190 60 3 0.52
56 monks-1_train 124 6 2 0.50
57 monks-2_train 169 6 2 0.62
58 monks-3_train 122 6 2 0.51
59 mushroom 8124 21 2 0.52
60 nursery 12960 8 5 0.33
61 optical_train 3823 62 10 0.10
62 ozone 2536 72 2 0.97
63 page-blocks 5473 10 5 0.90
64 parkinsons 195 22 2 0.75
65 pendigits_train 7494 16 10 0.10
66 pima 768 8 2 0.65
67 pittsburg-bridges-MATERIAL 106 7 3 0.75
68 pittsburg-bridges-REL-L 103 7 3 0.51
69 pittsburg-bridges-SPAN 92 7 3 0.52
70 pittsburg-bridges-T-OR-D 102 7 2 0.86
71 pittsburg-bridges-TYPE 105 7 6 0.42
72 planning 182 12 2 0.71
73 post-operative 90 8 3 0.71
74 primary-tumor 330 17 15 0.25
75 ringnorm 7400 20 2 0.50
76 seeds 210 7 3 0.33
77 soybean_train 307 35 18 0.13
78 spambase 4601 57 2 0.61
79 spect_train 79 22 2 0.67
80 spectf_train 80 44 2 0.50
81 statlog-australian-credit 690 14 2 0.68
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Table 1: Datasets for Benchmarking Experiment (n: number of
observations, f: number of features, k: number of classes, m: pro-
portion of majority class) (continued)

Dataset # Name n f k m
82 statlog-german-credit 1000 24 2 0.70
83 statlog-heart 270 13 2 0.56
84 statlog-image 2310 18 7 0.14
85 statlog-landsat_train 4435 36 6 0.24
86 statlog-shuttle_train 43500 9 7 0.78
87 statlog-vehicle 846 18 4 0.26
88 steel-plates 1941 27 7 0.35
89 synthetic-control 600 60 6 0.17
90 teaching 151 5 3 0.34
91 thyroid_train 3772 21 3 0.92
92 tic-tac-toe 958 9 2 0.65
93 titanic 2201 3 2 0.68

As noted above, centering and scaling the variables is important for the use
of IBFs. The variables in the datasets provided by Fernandez-Delgado et al.
(2014) have already been normalized to have a mean of zero and a standard
deviation of one (p. 3139). We use the variables as they are, rather than changing
them. The experiments are conducted using k-fold cross-validation, a technique
commonly used to assess the performance of algorithms. k-fold cross-validation
involves randomly thinning a dataset to obtain a (100 − 100/k)% training
sample, in a procedure that is repeated k times. In line with the experiments of
Fernandez-Delgado et al. (2014) in this section we use 4-fold cross-validation.

In terms of the IBFs, we consider the following functions:

h1(b1(X1), b1(X2)) = b1(X1) + b1(X2) = X1 +X2
h1(b2(X1), b2(X2)) = b2(X1) + b2(X2) = X2

1 +X2
2

h2(b1(X1), b1(X2)) = b1(X1)b2(X2) = X1X2
h2(b1(X1)b3(X2)) = b1(X1)b3(X2) = X1e

X2

The size of the experiment is as follows: three different methods (tree/random
forest/evolutionary tree), ninety three different datasets, two different types of
partitions (orthogonal/IBFs), and four replications for each (i.e., 4-fold cross-
validation). The summary of the results is shown in Table 2, where it can be seen
that random forests outperform evolutionary trees, which in turn outperform
conventional trees. This is as anticipated. Further, for the same algorithm, the
use of IBF increases the average accuracy slightly, and provides similar results
in terms of kappa and mean tree size.
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Table 2: Summary of Benchmarking Experiment

Method Basis Function Mean Accuracy (%) Mean kappa Mean Tree Size
Tree Orthogonal 77.13 0.51 12.25
Tree IBF 77.71 0.53 12.82
Forest Orthogonal 84.09 0.61 0.00
Forest IBF 84.11 0.62 0.00
Evolutionary Tree Orthogonal 79.05 0.55 9.74
Evolutionary Tree IBF 79.25 0.54 9.69
Note:
Tree Size is not meaningful in the case of random forest, since the model is an ensemble of trees.

Table 3: Accuracy by Dataset

Tree Forest Evolutionary Tree
Dataset # Orthogonal IBF Orthogonal IBF Orthogonal IBF

1 61.69 62.07 65.18 64.39 64.30 63.86
2 100.00 100.00 100.00 100.00 100.00 100.00
3 100.00 100.00 100.00 100.00 98.33 100.00
4 94.72 95.60 96.98 97.36 90.33 90.95
5 70.35 68.02 83.72 80.81 69.77 72.09
6 78.21 86.70 86.86 87.66 78.69 86.70
7 88.98 89.49 90.66 90.24 90.49 89.80
8 78.48 76.74 76.87 77.94 75.40 78.07
9 76.76 63.73 74.65 73.94 76.76 73.59
10 95.29 94.71 97.57 97.14 94.14 96.14
11 92.78 94.54 95.42 97.01 93.13 95.25
12 69.39 71.43 83.16 82.14 72.45 75.51
13 73.08 70.19 75.00 76.92 75.00 65.38
14 93.63 95.20 97.86 99.42 93.34 95.83
15 76.18 81.12 87.81 87.66 82.39 80.56
16 93.55 91.53 95.01 95.06 93.60 91.57
17 97.72 99.00 98.65 99.34 96.81 96.25
18 74.04 65.38 84.62 82.21 71.63 67.31
19 62.88 66.29 96.02 96.59 65.72 65.53
20 53.94 53.46 54.62 52.92 56.93 54.21
21 84.88 83.14 87.79 88.52 85.90 86.19
22 73.83 74.41 81.45 78.52 69.53 72.85
23 93.41 97.53 98.08 98.63 95.60 94.78
24 75.00 78.79 83.33 84.09 85.61 84.85
25 82.44 83.93 87.50 87.50 84.82 82.44
26 94.01 95.18 95.57 97.66 92.45 95.18
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Table 3: Accuracy by Dataset (continued)

Dataset # Orthogonal IBF Orthogonal IBF Orthogonal IBF
27 88.54 86.59 89.19 91.28 90.36 89.97
28 86.00 79.00 90.00 90.00 88.00 87.00
29 58.85 54.69 67.71 70.31 59.38 60.42
30 64.62 66.04 81.13 75.94 71.23 64.62
31 70.72 62.83 70.72 66.45 73.68 71.38
32 81.82 80.30 82.58 81.06 66.67 78.03
33 56.25 51.64 55.59 55.26 56.25 55.26
34 79.11 77.74 83.22 81.85 82.19 76.37
35 26.61 30.65 43.55 42.74 40.32 34.68
36 25.50 32.50 37.50 35.50 29.00 31.00
37 78.21 71.15 80.77 77.56 73.08 71.15
38 88.33 83.33 87.67 87.00 84.00 82.33
39 70.03 67.29 71.40 73.12 69.35 70.38
40 81.73 84.13 94.71 95.67 85.58 83.17
41 88.07 91.48 94.60 94.32 89.77 90.91
42 95.95 97.97 95.27 95.27 95.27 95.27
43 49.72 58.89 80.56 81.11 50.28 55.56
44 74.32 75.00 88.51 87.16 72.97 79.05
45 79.90 79.27 79.90 78.12 80.52 79.79
46 80.77 73.08 91.35 94.23 76.92 80.77
47 87.55 92.35 95.14 94.39 91.50 90.81
48 73.39 100.00 90.32 96.77 89.52 87.10
49 61.90 60.71 67.26 77.98 61.90 72.02
50 92.50 91.67 93.33 91.67 92.50 92.50
51 99.82 99.93 100.00 100.00 99.98 100.00
52 78.66 84.07 97.91 97.86 87.68 85.96
53 95.78 95.23 97.04 97.12 97.16 97.16
54 96.02 96.53 97.28 97.20 96.33 96.36
55 84.69 92.35 89.80 90.82 86.22 91.33
56 82.54 89.40 99.08 99.31 93.77 93.55
57 71.74 71.09 75.26 75.39 75.39 74.48
58 85.58 80.77 91.35 91.35 89.42 89.42
59 65.38 66.35 70.19 65.38 75.00 64.42
60 59.78 58.70 67.39 68.48 55.43 73.91
61 89.00 85.00 90.00 89.00 88.00 84.00
62 50.00 54.81 70.19 65.38 62.50 64.42
63 52.78 53.33 70.00 69.44 67.22 62.78
64 63.64 48.86 67.05 63.64 72.73 47.73
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Table 3: Accuracy by Dataset (continued)

Dataset # Orthogonal IBF Orthogonal IBF Orthogonal IBF
65 48.17 40.85 52.44 50.91 49.70 47.87
66 86.76 84.41 95.70 97.99 87.20 89.89
67 91.83 88.94 93.75 93.75 88.46 88.46
68 81.49 87.99 94.81 93.83 81.82 87.99
69 89.46 91.02 95.30 94.76 92.43 91.89
70 67.50 70.00 78.75 80.00 77.50 72.50
71 65.41 59.30 65.70 64.39 67.01 66.42
72 72.60 70.70 77.50 78.40 76.20 73.00
73 80.22 75.00 83.21 85.82 82.46 80.60
74 92.76 93.98 97.88 98.48 95.23 94.67
75 80.16 83.34 89.95 89.61 84.94 84.38
76 71.45 71.92 74.41 77.84 70.50 70.26
77 66.60 70.57 78.45 79.12 72.84 72.16
78 88.50 88.67 99.00 97.83 86.67 88.00
79 51.97 59.21 69.08 67.11 57.24 56.58
80 99.63 99.47 99.63 99.73 99.60 99.71
81 87.24 93.62 99.06 98.54 83.16 89.75
82 77.73 78.95 78.73 78.95 78.68 78.95
83 77.26 85.86 97.35 97.81 82.99 89.22
84 75.97 80.84 80.52 85.06 76.30 83.77
85 80.84 85.39 85.39 86.69 81.49 86.69
86 99.05 97.42 99.41 98.81 99.67 98.28
87 71.14 76.62 84.98 85.24 77.54 79.84
88 72.94 76.04 85.88 85.98 78.68 79.10
89 91.48 97.73 98.30 98.30 94.32 96.59
90 56.25 60.44 69.62 70.62 60.25 60.56
91 50.35 51.59 68.36 68.57 53.74 54.92
92 56.40 58.09 61.39 61.46 58.69 59.10
93 91.00 86.00 97.00 98.00 86.00 89.00

The summary in Table 2 indicates that on average IBFs perform only slightly
better compared to orthogonal partitions. Conducting a Friedman ranking test
of the results of the experiments confirms that there are significant differences
among the three classification methods (i.e., tree, forest, evolutionary trees; Q =
199, p-val ≈ 5.941e-41). However, when the test is conducted between orthogonal
and IBF within a given classification method, the results are not significant (Q =
2.5, p-val ≈ 0.1159 for tree; Q = 0.19, p-val ≈ 0.6625 for forest; Q = 0.1, p-val
≈ 0.7477 for evolutionary tree).

These results would suggest that it does not matter whether orthogonal
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partitions or IBFs are used in any given analysis. An important limitation of this
conclusion is that it assumes that all datasets are comparable. As seen in Table
1, however, the datasets in the experiment vary widely in terms of their number
of observations and composition (number of features, classes, and proportion
of majority class). Inspection of Table 3, where the accuracy results by dataset
are reported, shows that IBFs sometimes out-perform orthogonal partitions -
but does this happen haphazardly, or on the contrary, in a systematic way? To
overcome the limitation of the Friedman test, which ignores the differences in
the datasets, in the following section we take a multivariate approach to delve
more deeply into the results of the benchmarking experiments.

5.1 Accuracy
As discussed above, the summary statistics of the results suggest that IBFs

improve the accuracy of the algorithms only slightly, albeit without necessarily
leading to more complex models. In this subsection, we take a multivariate
approach to further investigate the results of the benchmarking experiment in
terms of the accuracy of the different implementations of the algorithms. In other
words, we are interested in whether the choice between orthogonal partitions
and IBFs is simply a matter of a coin toss, or whether we can distinguish
circumstances in which one approach is consistently better than the other.

We begin by visualizing some of the results.
Figure 8 presents the results of the experiments by method in terms of their

accuracy. The horizontal axis is for datasets, ranked from the lowest average
accuracy of all methods, to the highest. The plot shows the mean accuracy and
standard deviation of each algorithm for each dataset. It can be seen there that
the lowest accuracy is around 25% and the highest is 100% in the test sample.
In general terms, as hinted by the summary results, random forests perform
better and trees worse, but this is not always the case. Moreover, as will be
discussed next, there are notable differences between the use of orthogonal and
IBF within each method.

Figure 9 compares the results of implementing the tree algorithm with
orthogonal partitions and IBFs. Taking as a baseline the accuracy of the models
with orthogonal partitions, the datasets are ranked from the largest accuracy
loss to the largest accuracy gain attained by the models with IBFs. As seen in
the figure, the implementation with IBFs leads to accuracy gains in 53 out of
93 datasets, that is, just over 50% of the time - which would explain why the
Friedman test is not significant. On the other hand, the maximum accuracy gain
is 26.61% whereas the maximum loss is -14.77%. In other words, it is not only a
matter of whether IBFs perform better, but also how much better.

With respect to the random forest algorithm, Figure 10 compares the results
with orthogonal partitions and IBFs. Again, taking as a baseline the accuracy of
the models with orthogonal partitions, the datasets are ranked from the largest
accuracy loss to the largest accuracy gain attained by the models with IBFs. As
seen in the figure, the implementation with IBFs leads to accuracy gains in 44
out of 93 datasets, just below 50% of the time. The maximum accuracy gain is
10.71% whereas the maximum loss is -5.189%.
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Lastly, Figure 11 shows the loss/gain in accuracy of the evolutionary trees
implemented with IBFs with respect to orthogonal partitions. As before, the
datasets are ranked from the largest accuracy loss to the largest accuracy gain
attained by the models with IBFs. As seen in the figure, the implementation
with IBFs also leads to accuracy gains, in this case in 42 out of 93 datasets ,
just below 50% of the time. The maximum accuracy gain is 18.48% whereas the
maximum loss is -25%.

To further disentangle the performance of the IBFs in DTs in datasets
with diverse characteristics, we estimate two models using the results of the
benchmarking experiments.

In these models the independent variable is a proportion, namely the number
of times that the algorithm correctly predicts an observation in the test dataset,
relative to the number of observations. Model 1 is estimated using the full set
of results (i.e., the results from the 4-fold cross-validation), whereas Model 2 is
estimated using the accuracy of the best performer within each set of 4-folds.
The appropriate modeling approach for proportions is the logistic model. For
these models, we use as explanatory variables the attributes of the datasets, to
wit, the number of observations (n), the number of features (f), the number of
classes in the dependent variable (k), and the proportion of the majority class
(m), as well as their squares in order to capture non-linearities. Furthermore, we
use an indicator variable (method) for the algorithms (i.e. tree, random forest,
evolutionary tree), and whether the basis function (bf) was orthogonal or IBF. In
addition we interact the variable for the basis function (bf) with other variables.
The results of the models appear in Table 4. As seen there, most coefficients
are significant at conventional levels of significance. The coefficients for IBF
are significant and positive, which indicates that the use of IBFs increases the
accuracy of the algorithms, however the net effect needs to account for the
variable interactions. For this reason it is best to simulate the probability of a
success to more fully understand how IBFs impact predictive accuracy.

In Figures 12, 13, 14, 15, the probabilities of correctly predicting an ob-
servation are plotted with respect to the characteristics of the datasets. The
probabilities are predicted within the first decile and and ninth decile of the
corresponding variable, to avoid making predictions in regions were observations
are sparse (for instance, as seen in Table 1, there is only one dataset with
n > 40, 000). As well, the remaining variables are set to their median values. In
this way, when predicting the probability as a function of n, f , k, and m are set
to their in-sample median values. The plots show the estimated probabilities
with their respective 95% confidence intervals.

With respect to the size of the dataset (n), the general trend indicated by
Model 1 is that accuracy tends to decline for bigger datasets (see Figure 12).
The use of IBFs is a clear improvement over DTs with orthogonal partitions,
however, this is not the case for evolutionary trees, an algorithm that performs
significantly better with orthogonal partitions. In the case of random forests,
there is a a small significant difference between orthogonal partitions and IBFs,
with orthogonal partitions leading to better accuracy for smaller datasets only
(n < 1, 500). These results are replicated by Model 2, but with stronger gains
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Table 4: Accuracy: Results of logistic model (dependent variable: proportion of correct
predictions)

Model 1 Model 2
Estimate p-value Estimate p-value

Intercept 0.620609 0.000000 1.158850 0.000000
n -0.000102 0.000000 -0.000110 0.000000
n^2 0.000000 0.000000 0.000000 0.000000
f 0.030822 0.000000 0.031200 0.000000
f^2 -0.000256 0.000000 -0.000255 0.000000
k -0.159074 0.000000 -0.202363 0.000000
k^2 0.006816 0.000000 0.009204 0.000000
m 3.714093 0.000000 3.182831 0.000000
m^2 -3.733085 0.000000 -3.358070 0.000000
Forest 0.637537 0.000000 0.536046 0.000000
Evolutionary Tree 0.155661 0.000000 -0.054712 0.000000
IBF 1.048966 0.000000 0.374667 0.000000
n:IBF 0.000010 0.000000 0.000021 0.000000
n^2:IBF 0.000000 0.000000 0.000000 0.000000
f:IBF 0.002506 0.000056 0.006843 0.000000
f^2:IBF -0.000030 0.000376 -0.000048 0.006899
k:IBF -0.141183 0.000000 -0.082562 0.000000
k^2:IBF 0.005269 0.000000 0.002569 0.000000
m:IBF -1.901150 0.000000 -0.316850 0.037922
m^2:IBF 1.329481 0.000000 -0.050558 0.686334
Forest:IBF -0.097848 0.000000 -0.014762 0.237508
Evolutionary Tree:IBF -0.123462 0.000000 0.087647 0.000000
Note:
AIC : Model 1 = 392644.965 ; Model 2 = 81034.401
BIC : Model 1 = 392770.599 ; Model 2 = 81129.537
Log Likelihood : Model 1 = -196300.483 ; Model 2 = -40495.2
Deviance : Model 1 = 379653.338 ; Model 2 = 77861.835
Num. obs. : Model 1 = 2232 : Model 2 = 558
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for IBFs.
Figure 13 shows the results for the number of features f . As seen there,

overall accuracy (Model 1) tends to improve as the number of features increases,
irrespective of the method or basis function. Similar to the size of the sample,
using IBFs uniformly tends to improve accuracy for the algorithm tree. Evolu-
tionary trees are significantly more accurate when using orthogonal partitions.
And orthogonal partitions in random forests work slightly better than IBFs, but
only when the number of features is relatively small, approximately less than 15,
after which point the difference is no longer significant. This is similar in the
case of Model 2, again, with a further favorable edge in the case of IBFs.

The third dimension that we investigate is the number of classes. As shown in
Figure 14, there is a general tendency for accuracy to deteriorate as the number
of classes k incrases. However, despite starting at higher levels of accuracy
with respect to orthogonal partitions, this happens much more rapidly when
IBFs are used. In this case, IBFs are associated with better or similar accuracy
when k ≤ 3 but have significantly lower levels of accuracy when the dependent
variables has more classes. The speed at which the performance of IBFs declines
is somewhat slower for the best performing cases (Model 2).

Lastly, with respect to the proportion of the majority class m, we can see
in Figure 15 that the probability tends to behave in a non-linear fashion, with
accuracy being higher when one class has a majority but does not dominate. In
this case, IBFs tend to perform significantly better than non-linear partitions.
The superiority of IBFs is uniform for the algorithm tree, whereas for evolutionary
tree and random forest, orthogonal partitions are significantly more accurate
than IBFs. When looking at the best performers (Model 2), the superiority of
IBFs is more uniform.

It is important to keep in mind when interpreting these results, that each plot
was estimated while setting three dimensions to their median values. For this
reason, one must be cautious when trying to generalize. The results, nonetheless,
are illustrative of potentially the range of different conditions in which the use
of IBFs might be desirable.

5.2 Tree Size
The last part of our benchmarking experiment is related to the size of trees.

Since random forests are ensembles of trees, they are excluded from this. As
hinted at by Table 2, the size of the trees did not change much when using
IBFs. To further investigate this, we estimate a linear regression model, specified
in a similar fashion to the model in the preceding section, with tree size as
the dependent variable. The results of this exercise are shown in Table 5.
As seen there, the algorithms in general tend to generate more complex trees
(more terminal nodes) when the number of observations is large, and there are
non-linear relationships with respect to number of classes k, and proportion of
majority class m. The only other noteworthy result is that evolutionary tree
tends to produce less complex trees (on average with 2.5 less terminal nodes)
than the tree algorithm. Since no other coefficients are significant, we conclude
that there is no increase in model complexity when using IBFs.
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Table 5: Tree size: Results of linear regression model (dependent variable: tree size)

Estimate p.value
Intercept 6.835511 0.029993
n 0.000449 0.002481
n^2 0.000000 0.010134
f 0.042594 0.447129
f^2 -0.001065 0.167214
k 0.692758 0.025402
k^2 -0.029588 0.011604
m 16.064753 0.062771
m^2 -17.663186 0.016387
Evolutionary Tree -2.513441 0.000033
IBF 3.587083 0.420331
n:IBF -0.000123 0.556426
n^2:IBF 0.000000 0.682911
f:IBF -0.106129 0.180536
f^2:IBF 0.001254 0.250141
k:IBF -0.073707 0.866342
k^2:IBF 0.001511 0.927309
m:IBF -6.795145 0.577623
m^2:IBF 6.833829 0.511032
Evolutionary Tree:IBF -0.615591 0.470897
Note:
AIC = 392644.965
BIC = 392770.599
Log Likelihood = -196300.483
Deviance = 379653.338
Num. obs. = 2232
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6 Sample Applications

As illustrated in the benchmarking exercise above, the modelling strategy
proposed here works well on multifeature datasets. Furthermore, inducing oblique
and/or non-linear partitions can improve the performance of DTs. In this section,
we complement the results of the benchmarking experiment by presenting three
empirical examples. One of these examples is a classification problem, and two
examples are regressions on quantitative variables. Two of the examples are of
geographical interest and have the advantage that the features are geospatial,
which greatly facilitates the visualization of the results. The third example is
a multifeature set. In this case, we solve the issue of visualizing non-oblique
partitions by means of a device that we call decision charts.

6.1 Classification Example: Ethnic Neighborhoods
The first example that we present is concerned with a spatial classification

problem. This kind of problem is often found in geography, public health, and
sociology, among other disciplines, and addresses the objective of defining spatial
neighborhoods. Examples of this kind of research in the literature include include
Gaudart et al. (2005), a team of reserchers who developed oblique DTs to identify
high risk clusters of malaria. Research by Folch and Spielmann (2014) led to an
algorithm to identify regions with flexible constraints. Wong and Huang (2017)
identify geographical spheres of influence based on social media data. One more
example is the research by Logan et al. (2011) that aimed at identifying ethnic
neighborhoods using historical datasets.

The example presented here is similar in spirit to the research of Logan et al.
(2011), and makes use of a portion of the same historical dataset (see John R.
Logan et al. 2011). The dataset consists of 21520 individual records for part of
Newark, coded by ethnicity according to the 1880 US Census. Of these, 7,659
records are classified as White Americans, 4,411 are classified as Irish, and 9,450
are classified as German. The geographical distribution of these groups in the
region of Newark under study is shown in Figure 16.

Since the objective of the example is to find homogeneous neighborhoods, this
examples considers only two features, namely the coordinates of the observations
in longitude and latitude. The following IBFs are introduced as additional
features:

h1(b1(long), b1(lat)) = b1(long) + b1(lat) = long + lat
h2(b1(long), b1(lat)) = b1(long)b1(lat) = long × lat

h1(b2(long), b2(lat)) = b2(long) + b2(lat) = long2 + lat2

h1(b3(long), b3(lat)) = b3(long) + b3(lat) = elong + elat

h2(b3(long)b3(lat)) = b3(long)b3(lat) = elong × elat

After some experimentation, the coordinates of the observations were centered
at the top right corner of the set of points, and scaled to the unit on the longest
extent of the dataset. For comparison purposes, we begin by training a DT
for this problem using conventional orthogonal partitions. The results of this
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model are shown in Figure 17, a model with six terminal nodes that identify two
predominantly German neighborhoods, three predominantly White American
neighborhoods, and one predominantly Irish neighborhood. The model, after
examining the interior branches, did not require pruning.

This model has an in-sample error rate of 0.39 and a cross-validation error
rate of 0.39. The population of two of the White American Neighborhoods is
over 60% of that ethnic group. Another neighborhood has a plurality (49%)
of White Americans and a more or less even distribution of Irish (22%) and
Germans (29%). One neighborhood is strongly Irish (62% of population) with
White American and German minorities (27% and 11% respectively). Another
neighborhood is strongly German, with over 70% of the residents of that ethnicity,
whereas one more has a plurality of Germans (41%) but is otherwise quite mixed.
The partitions of the DT in effect delimit the ethnic neighborhoods, as seen
Figure 18.

Next, the same dataset is used to train a tree with IBFs as listed above. The
model was examined to determine that pruning was not required. The results
of this model are shown in Figure 19. The model also has six terminal nodes
which identify two German neighborhoods, three White American neigborhoods,
and one Irish neighborhoods. Note that two of the partitions are orthogonal
(i.e., lat < −0.37 and lat ≥ −0.16), two partitions are linear but oblique (i.e.,
long + lat ≥ 0.51 and long + lat ≥ 0.21), and one partition is non-linear (i.e.,
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Figure 17: Decision tree with orthogonal partitions for spatial classification, Newark ethnic
groups
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Figure 18: Ethnic neighborhoods in Newark, 1880, using orthogonal partitions

elong + elat ≥ 2.0). The ethnic neighborhoods are shown in Figure 20. This
model has an in-sample error rate of 0.39 and a cross-validation error rate of
0.39, which is comparable to the orthogonal model. In this case, the analyst
must decide whether the neighborhoods identified by the DT with IBFs are a
more realistic representation of a spatial process.

6.2 Regression Example: Spatial Market Segmentation
The case presented next is similar to the spatial classification problem above,

except that it is now a regression situation. The example relates to an issue
widely discussed in the real estate and property valuation literature, and is
concerned with the identification of spatial submarkets. Numerous papers exist
on this topic, including Gabriel (1984), Feitelson (1993), Paez et al. (2001),
Bourassa et al. (2003), Helbich et al. (2013), and Wheeler et al. (2014). More
recently, DTs have been applied to identify spatial market segments in a real
estate setting by Fuss and Koller (2016), however using orthogonal partitions.

One obvious limitation of using orthogonal partitions in the case of real estate
spatial submarkets is that the processes that drive land rent (and therefore prop-
erty values) tend to be radial and are possibly anisotropic due to inhomogeneities
in the landscape. The canonical urban economic theory for monocentric cities
(which has since been expanded to polycentric cities) states that land rent decays
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Figure 19: Decision tree with non-orthogonal/non-linear partitions for spatial classification,
Newark ethnic groups
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Figure 20: Ethnic neighborhoods in Newark, 1880, using non-orthogonal partitions

from business districts (Alonso 1964), a prediction that is borne by numerous
empirical studies.

The illustration presented here deals with land prices in Sapporo, Japan.
The dataset consists of 429 observations of geocoded land prices (in U/m2).
Informed by the literature on property valuation, the coordinates (in longitude
and latitude) were centered on the geometric mean of the locations of the
observations, a location that coincides with the central business district of the
city. Further, the coordinates were scaled to the unit on the longest extent of the
dataset. Land prices were log-transformed to mitigate their lack of normality.
Figure 21 shows the locations of the observations and prices. As can be seen
there, Sapporo is a typical monocentric city, with the highest prices concentrated
in and around the central business district.

As before, we train a DT using orthogonal partitions. The results of this
model are shown in Figure 22, where it can be seen that the tree has thirteen
terminal nodes, or equivalently spatial submarkets. This was the best-performing
tree size, and there was no need to prune. The pseudo−R2 of this model is 0.71.
The submarkets are shown in Figure 23, where it can be seen that the submarkets
manage to capture the monocentric structure of land prices in Sapporo, albeit
in cubist style.

The next step was to train a DT, but this time using IBFs as additional
features in the dataset. The basis functions used are the same five IBFs used
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Figure 21: Land prices in Sapporo (log)

in the preceding example. The resulting DT was checked to see if pruning
was appropriate, but the full tree gave the best results (see Figure 24). It is
worthwhile noting that only one of seven partitions is orthogonal. The remaining
six partitions are all non-linear. The number of terminal nodes/submarkets is
eight compared to thirteen in the model with orthogonal partitions. Both models
have a comparable performace, with a pseudo−R2 = 0.71, however the use of
IBFs results in a more parsimonious model. Furthermore, the resulting market
segments (see Figure 25) are much more appealing, and conform better to our
theoretical understanding of the radial and anisotropic mechanisms of land price
determination.

6.3 Regression Example: Voter Turnout
The previous two examples were of DTs trained using only two features

(the coordinates of the observations) and augmented by means of IBFs. Both
examples dealt with forms of spatial segmentation which incidentally facilitate
the visualization of the non-orthogonal and non-linear partitions that result
from the use of IBFs. In the last example the we present, we use a multifeature
dataset of voter turnout in a recent provincial election in Ontario, Canada.

Voter turnout is an issue of interest to behavioral and political scientists,
who identify this aspect of democracies as one of three key indicators of their
performance (Powell 1982). Moreover, voter turnout tends to vary quite substan-
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Figure 22: Decision tree with orthogonal partitions for submarket identification, Sapporo land
prices
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Figure 23: Spatial land price submarkets in Sapporo using orthogonal partitions

tially by region, a fact that has motivated a voluminous literature (starting with
the pioneering research of Powell 1982; Powell 1986; and Jackman 1987) that
aims at understanding the factors that correlate with voter turnout. Numerous
studies exist that empirically test the relationships between voter turnout and
a variety of socio-economic, demographic, and other variables (for a relevant
review see Geys 2006; and more recently Stockemer 2017).

The case presented in this section is of the 2018 provincial election in
Ontario, Canada. Data were obtained from three sources. First, a geogra-
phy file of Electoral Districts in Ontario was obtained from Elections Ontario
(https://www.elections.on.ca/en/voting-in-ontario/electoral-district-shapefiles/limited-
use-data-product-licence-agreement/download-shapefiles.html). The effectively
final counts of the election were obtained from a political blog and cross-checked
with information from Elections Ontario for accuracy (https://quandyfactory.com/blog/201/unofficial_ontario_2018_election_riding_by_riding_summary_table).
Finally, socio-economic and demographic information was retrieved from the 2016
Canadian Census. Census data were obtained at the level of Census Subdivisions.
Electoral Districts are sometimes larger than Census Subdivisions, so census
variables were converted to the Electoral Districts by aggregation in the case of
absolute values (e.g., population, population by educational achievement), or
by calculating their area-weighted averages in the case of rates (e.g., median
income).

The dataset consists of 124 records (one for each electoral district), and
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Figure 24: Decision tree with non-orthogonal/non-linear partitions for submarket identification,
Sapporo land prices
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Figure 25: IBF-based non-orthogonal land price regions (log) in Sapporo

seventeen variables, with descriptive statistics as shown in Table 6. Voter
turnout is calculated as the proportion of total votes to number of registered
electors. The selection of variables reflects an interest in geographical context
(e.g., population density and median commute duration), the effect of government
policy (% of government transfers relative to income and average income taxes
as percent of income), in addition to features relating to age, income, poverty,
and academic achievement. These variables were centered on their minimum
values and scaled to the unit interval prior to the analysis.

We started by training an initial DT which resulted in a model with eleven
terminal nodes. This model was examined, and based on performance was
eventually pruned to give the model shown in Figure 26. This model has a
pseudo − R2 of 0.24. As seen in the figure, the model is relatively simple,
and identifies two covariates that correlate with voter turnout, namely % of
population living in low income and population density. The lowest voter turnout
rates are associated with Electoral Districts with higher rates of population
living in poverty, whereas the highest turnout rates are associated with Electoral
Districts characterized by higher population density and low poverty rates.

The next step was to train a model that included IBFs as above. The
initial model had eleven terminal nodes, but upon examination was pruned
to produce the model shown in Figure 27. The pseudo − R2 of this model
is 0.44. Note that three of the partitions in this model are oblique, and one
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Figure 26: Decision tree with orthogonal partitions, Ontario voter turnout
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Table 6: Descriptive statistics for electoral districts in Ontario, 2018

Variable Abbv Min Max Mean std
Voter_Turnout Turnout 0.44 0.67 0.58 0.047
Pop_Den PD 0.091 4150 1349 1567
Median_Age MA 12 51 39 4.9
Median_Income MI 11776 40831 29901 5275
Male_Median_Income MMI 12972 51442 36029 6960
Female_Median_Income FMI 10478 33728 25042 4193
Pct_Government_Transfer_Payments PGTP 6.1 23 13 3.6
Median_Commute_Dur MCD 7.3 35 23 6.6
Avg_Inc_Taxes_as_Pct_Inc AITPI 3.8 24 16 3.4
Pct_Population_in_Low_Income PPLI 1.8 24 13 4.5
Prop_no_certificate PNC 0.044 0.29 0.11 0.036
Prop_HS_diploma PHSD 0.17 0.32 0.24 0.04
Prop_Post_HS_diploma PPHSD 0.49 0.79 0.64 0.067
Prop_trade_certificate PTC 0.043 0.15 0.08 0.027
Prop_college_diploma PCD 0.17 0.33 0.24 0.045
Prop_university_bachelor PUB 0.068 0.29 0.17 0.065
Prop_postgraduate PPG 0.029 0.19 0.11 0.048

is non-linear. Population density (PD), which appeared in the model with
orthogonal partitions, is still part of this model in the last interior node. However,
percentage of population living in poverty is not. Instead, average income taxes
as percentage of income (AITPI), median age (MA), and several academic
achievement variables entered the model (proportion of trade certificates: PTC;
proportion of college diploma: PCD; proportion of high school diploma: PHSD;
proportion of university bachelor: PUB; and propotion with no certificate: PNC).
These variables are often correlated with population living in poverty, but give a
more refined view of the characteristics of populations that associate with voter
turnout.

In the case of a multifeature dataset, interpretation of a DT with IBFs is not as
straightforward as it was for orthogonal partitions, particularly considering that
the variables were centered and scaled. In order to enhance the interpretability
of the results of models with IBFs, we propose to use a device we call decision
charts. These charts allow us to plot the decision boundaries in the space of
the two basis implied by each node of the tree. By recentering and rescaling
the decision boundaries back to the units of the original basis vectors, a simple
protocol can be devised to interpret the results of a model. The maps in the
previous two examples showing ethnic boundaries and market segments are
essentially decision charts for the case of two features. An example of a set of
decision charts for the multifeature voter turnout model is shown in Figure 28.

As seen in the figure, low voter turnouts are associated with Electoral
Districts where income taxes as percentage of income are on average low, and
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Figure 27: Decision tree with non-orthogonal/non-linear partitions, Ontario voter turnout

that simultaneously have relatively high proportions of residents with trade
certificates (an indication of the presence of blue collar workers). High voter
turnout rates, in contrast, are associated with Electoral Districts that tend to be
older and better educated (tops of Charts 2 and 3), and with high population
density or low population density and a high proportion of people without
certificate (bottom of Chart 4).

7 Conclusions and Directions for Future Research

Decision Trees are a popular data analysis technique used in a wide range of
applications. The somewhat restrictive nature of binary orthogonal partitions
has been recognized in the past, and a number of methods have been proposed in
the literature that allow for oblique partitions. In this paper, we proposed a new
strategy to induce oblique and non-linear partitions for DTs. This is achieved by
introducing Interactive Basis Functions. The use of IBFs is attractive because
it can induce partitions of different shapes at a relatively low computational
cost. Furthermore, the underlying recursive-partition algorithm is not changed,
which means that IBFs can be used with any implementation of DTs in existing
software.

An extensive benchmarking exercise using 93 publicly available classification
datasets shows that the use of IBFs can improve the accuracy of the model without
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Figure 28: Decision charts for voter turnout

compromising model parsimony, at only very modest increases in computation
time. Analysis of the results of the benchmarking experiments suggests that
IBFs are a superior alternative to conventional trees in a wide range of situations,
and may also improve the performance of evolutionary trees and random forests.
IBFs in particular seem to perform better for 1) larger datasets; 2) with a large
number of features f ; 3) when the number of classes k is small; and 4) the target
variable is not dominated by a single class, in other words when the proportion
of the majority class m does not exceed 40-50%.

In addition to the benchmarking experiments, three case studies helped
to illustrate the application and potential advantages of IBFs. In one spatial
classification example, the accuracy of the model was maintained but potentially
more appealing boundaries were identified. In a market segmentation example,
likewise, accuracy was maintained but a more parsimonious and theoretically
consistent model was obtained. And in a multifeature model of voter turnout,
IBFs led to a better model fit and a more parsimonious model.

One downside of using oblique/non-linear partitions in DTs is that the
interpretability of the typical visual output (as a tree with binary branches)
becomes compromised. To remedy this situation we introduced a new tool called
decision charts, a set of visual devices where new inputs can be located to help
an analyst to reach a decision using the underlying DT.

As we noted in the paper, the additive IBF is equivalent to previous efforts
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to induce oblique partitions, with a key simplification: the assumption that the
function is non-parametric. Obviously, parameterizing an IBF could increase its
flexibility, however at a higher computational cost. Whether this higher compu-
tational cost exceeds that of, say, the CART-LC method, is an open question. A
research challenge would be to parameterize other IBFs for increasingly flexible
non-linear partitions. Finally, a limitation of the development presented in this
paper is that it only applies to quantitatie features, and therefore it would be
interesting to explore possible extensions for qualitative features. This is also a
matter for future research.
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