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1 Introduction

The construction of an economic union is based on the idea that an economic and political

union is a guarantee for more growth and welfare for its members taken as a whole.

However, it is not clear that there exists an automatic mechanism that redistributes these

bene�ts among all the members in a fair way. According to Solow (1956) and subsequent

related literature, economic integration will automatically promote economic convergence

under free factor mobility and international di¤usion of technological knowledge. However,

some other authors postulate that economic integration increases geographical disparities,

because the production factors will be concentrated in the more developed regions as

a result of increasing returns to scale and externalities. Signi�cant examples are the

agglomeration theory of Krugman (1990) and the endogenous growth models of Romer

(1986 and 1990). Therefore, discriminating between these two theoretical alternatives is

an important issue for policy makers at the national and international level.

To answer this question, we need e¢ cient statistical and econometric tools. There

already exists a vast theoretical and empirical literature concerning statistical and econo-

metric techniques for the analysis of output convergence. This type of convergence has

been tested with di¤erent sorts of samples, and di¤erent econometric procedures. A well-

known and somewhat pioneering methodology is the so-called ��-convergence�regression,

associated to the works of Barro and Sala-i-Martín (1992). It consists of a cross-sectional

regression of the average growth rate of per-capita output over some long enough time-

period on a constant, on the level of per-capita output at the beginning of the period and,

if necessary, on a set of country-speci�c additional variables. For convergence, the coe¢ -

cient of the output level at the beginning of the period should be negative. However, as

reviewed by Islam (2003), this cross-section approach has received many criticisms. Among

the critics, Evans (1998) and Evans and Karras (1996) show that the �-convergence re-

gression in general provides invalid inference and conclusions and argue in favor of a panel

data approach. The basic idea in this approach consists of starting from conventional

linear panel-data unit root tests and adapt (and extend) them to the analysis of output

convergence. It can indeed be shown that divergence takes place if the per capita GDP
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series have a unit root, whereas convergence requires the absence of such a unit root.

In this paper, we propose a non-linear extension of Evans-Karras approach. The ra-

tional is based on the belief that the convergence process is not uniform, in the following

sense. In the �rst place, it could be that the countries may only converge if certain institu-

tional, political or economic conditions are ful�lled, whereas they may diverge otherwise.

Another possibility is that convergence takes place at one rate in certain conditions and

at another rate under other conditions. If this is true, it is straightforward to understand

that a linear panel data model may lead to misleading results and that a two-regime model

is required. In order to provide an appropriate framework to deal with these cases, we

use here a panel data Threshold Autoregressive (TAR) speci�cation in which the series

of the panel may exhibit unit roots. In the recent literature of TAR models, Tsay (1998)

considered a multivariate TAR speci�cation but excluded the possibility of a unit root.

On the other hand, Caner and Hansen (2001) analyzed how to test for a unit root in TAR

models but they restricted their analysis to univariate time series. Our approach tries to

�ll this gap in the literature: we develop unit root tests in a multivariate TAR model and

show how to apply these results to test real convergence. Therefore, our paper not only

may be considered as an extension of the convergence literature, but also of the nonlinear

TAR literature.

From a theoretical point of view, we contribute to the literature by proposing an esti-

mation procedure for this new TAR model. This is based on a combination of grid-search

procedures and feasible Generalized Least Squares methods. In addition, we propose sev-

eral new testing procedures. The �rst family of tests are aimed at checking non-linearity.

It is inspired in the Likelihood Ratio principle and solves the problem of unidenti�ed nui-

sance parameters under the null hypothesis by computing bootstrap probability values.

Two sets of bootstrap p-values are proposed. The �rst ones are obtained under the hy-

pothesis of no unit root, whereas the second one covers the case of the opposite hypothesis.

The second family of testing procedures are designed for the convergence analysis, once

the TAR model has been con�rmed to be better than the linear one. To discriminate

between convergence and divergence, we propose speci�c tests, which are TAR extensions

of the recent literature on panel data linear unit roots tests advocated by Chang (2004).
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These extensions take into account that the countries might converge under one regime

and diverge under the other. We also develop tests to discriminate between absolute and

conditional convergence. Again, these tests include the possibility of di¤erent conver-

gence patterns under each regime. In both cases, the probability values are obtained by

bootstrap in order to tackle the problem caused by the cross-country contemporaneous

correlations of the data.

On the empirical side, we apply the proposed techniques to check for real convergence

in di¤erent sets of European Union (EU) countries by using their GDP per capita series

for the sample 1950 � 2004. The �rst group of countries refer to nine rich EU countries

(Austria, Belgium, France, Italy, the Netherlands, Sweden, and the United Kingdom) for

which we �nd that the degree of convergence depends on two distinct regimes. Next, in

order to analyze the e¤ect on the convergence of adding new members to the existing EU,

we include in the sample three poorer countries that joined the union during the eighties:

Spain, Portugal and Greece. In this case, we show that the convergence appears only in

one regime. Finally, we examine the e¤ect on the convergence of the last EU enlargement.

To this end, we include in the analysis the three countries for which data were available:

Hungary, Poland and Czechoslovakia. In this case, we fail to detect convergence in any of

the two regimes.

The paper is structured as follows. Section 2 reviews the linear framework for the

convergence analysis with panel data. Section 3 describes our methodology in a non-linear

framework. Section 4 describes the application of this methodology to the analysis of the

convergence processes which might have taken place within the EU. Section 6 concludes.

2 Review of the linear framework

2.1 The basic Evans-Karras procedure

Evans and Karras (1996) use the following speci�cation in order to test real convergence

with panel data:

�gn;t = �n + �ngn;t�1 +

pX
i=1

'n;i�gn;t�i + "n;t; (1)
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with n = 1; � � � ; N; and t = 1; � � � ; T . In this model, the subscript n refers to unit n

(typically country n), whereas the subscript t refers to the time period. The variable gn;t

is de�ned as

gn;t = yn;t �
_
yt; (2)

where yn;t = log(Yn;t), Yn;t is the per-capita income of country n in real terms and
_
yt =

1
N

PN
n=1 yn;t is the cross-country average log of per capita income at time t.

They show that �n = 0 implies that the N countries diverge, whereas 0 < ��n < 1 for

all n is a convergence condition.1 The convergence is absolute if �n = 0 for all n whereas

it is conditional if not.

The testing procedure proposed by Evans and Karras (1996) is as follows. First, apply

Ordinary Least Squares (OLS) to (1) in order to obtain an estimate of the standard

deviation of "n, say sn, and use it to transform the data to wn;t = gn;t=sn. Second, obtain

the OLS estimate of � and its t-ratio applying OLS to the equation

�wn;t = �n + �wn;t�1 +

pX
i=1

'n;i�wn;t�i + "n;t: (3)

Third, if this t-ratio is su¢ ciently negative, reject the null in the test

�n = 0 8n against �n < 0 8n: (4)

Under the alternative, the economies converge. Otherwise, they diverge. Note that this

amounts to testing that the series of the panel exhibit a unit root. Finally, if divergence

is rejected in the third step, test the null that

�n = 0 8n against �n 6= 0; (5)

for some n in equation (1); for that purpose, estimate this equation for n = 1; : : : N ;

compute � = 1
N�1

NP
n=1

�
t2
�̂n

�
, and reject the null if � is too large, in which case convergence

would be conditional. Otherwise, convergence is absolute.

Evans and Karras (1996) demonstrate that, under the assumption that the errors in

(1) are contemporaneously uncorrelated, the tests for hypothesis (4) and (5) have standard

1 It can be shown (Beyaert, 2005) that the divergence of one single country in the panel implies that

the gn;t will be I(1) for all n:
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asymptotic distributions, when N and T tend to 1. The authors suggest improvements

on these asymptotic values by obtaining critical values via simulations from Normal inde-

pendent distributions.

In our opinion, Evans-Karras approach presents two types of limitations. On the one

hand, when the number of economies is moderate to low, the crucial Evans-Karras assump-

tion of cross-sectional independence is di¢ cult to sustain. On the other hand, the linear

formulation considered in (1) may be unrealistic when some countries of the panel have

experienced important institutional and economic modi�cations over the sample period.

Obviously, these two limitations are not mutually exclusive.

Therefore, we consider in this paper two simultaneous extensions of this approach.

The �rst one consists of relaxing the assumption of cross-sectional independence. This

extension takes into account the results of Chang (2004), who recommends the use of

bootstrap critical values in panel-data unit roots tests under cross-sectional dependence.

It has already been applied in Beyaert (2005). Since it is used in the empirical application

and it is helpful to better understand the second extension, it is brie�y described in Section

2.2. The second extension adds to the �rst one the possibility that the dynamics of the

convergence process is not uniform over time, but rather varies according to the economic

or institutional circumstances of the countries. It is based on a panel-data TAR model, it

is described in Section 3 and it constitutes the main contribution of this paper.

2.2 A bootstrap version of Evans-Karras procedure

In model (1), p is supposed to be high enough so that "n;t is a white noise process for each

n. So serial correlation in the errors is excluded. However cross-country contemporaneous

correlation is not. Economically speaking, although shocks are serially uncorrelated, it is

likely that convergent countries are a¤ected by the same types of shocks. Therefore, if we

de�ne "n = ["n;1; � � � ; "n;T ]0 and " = ["01; "02; � � � ; "0N ]
0, the variance-covariance matrix of "

is not diagonal and is likely to satisfy

V = 

 IT ; (6)
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where


 =

26666664
�11 �12 � � � �1N

�12 �22 � � � �2N

� � � � � � � � � � � �

�1N �2N � � � �NN

37777775 ; (7)

with �nm = cov("n;t; "m;t) for all n;m.

This has to be taken into account both in the estimation process and in the testing

strategy. As far as estimation is concerned, a Feasible Generalized Least Squares (FGLS)

estimation procedure should be applied. Let Gn = [gn;1; � � � ; gn;T ]0 for n = 1; � � � ; N and

G = [G
0
1; � � � ; G0N ]0; similarly, �G = [�G

0
1; � � � ;�G0N ]0 where �Gn is the �rst di¤erence of

Gn: De�ne also a column-vector of parameter � in which the parameters of each country

are stacked by type in a column:

� = (�1; � � � ; �N ; �1; � � � ; �N ;'1;1; � � � ; 'N;1; � � � ;'1;p; � � � ; 'N;p)0: (8)

Then, we can express (1) compactly in Seemingly Unrelated Regression Estimation (SURE)

form as,

�G = X� + "; (9)

where X = (�{; �G�1;� �G�1; � � � ;� �G�p). The components of X are as follows:

�{ =

26664
�1T 0

. . .

0 �1T

37775 ;
with �1T = [1; � � � ; 1]0T�1,

�G�1 =

26664
G1;�1 0

. . .

0 GN;�1

37775 ;
where Gn;�1 is Gn lagged one period; similarly

� �G�i =

26664
�G1;�i 0

. . .

0 �GN;�i

37775 ;
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for i = 1; � � � ; p, where �Gn;�i is �Gn lagged i periods. Given the structure of V as

speci�ed in (6) and (7), an estimate of the components of 
 is required. For that purpose,

model (9) can be estimated by OLS and an estimate 
̂ = [snm] can be computed, with

snm = 1
T

PT
t=1 entemt for n;m = 1; � � � ; N , where elt is the OLS residual of model (9)

corresponding to observation t for country l. The FGLS estimator of � is then

�̂FGLS =
h
X

0
V̂ �1X

i�1
X

0
V̂ �1�G; (10)

where V̂ = 
̂
 IT :

In order to test divergence against convergence as described by (4), model (9) is esti-

mated by FGLS under the restriction that �n = � for all n, and the t-statistic associated

with the estimation of this restricted coe¢ cient is computed. The probability value is

obtained by bootstrap to control for the structure of V . For that purpose, an FGLS esti-

mate of model (1) is obtained under the additional restriction that � = 0 and the residuals

e�n;t for n = 1; � � � ; N and t = 1; � � � ; T are then recentered and arranged in the following

matrix:2

E� =

26666664
e�1;1 e�2;1 � � � e�N;1

e�1;2 e�2;2 � � � e�N;2
...

... � � �
...

e�1;T e�2;T � � � e�N;T

37777775 : (11)

The rows of this matrix are then resampled with replacement, in order to obtain new time-

series
�
e�

�
n;t; t = 1; � � � ; T

	
of residuals for each n that preserve the initial contemporaneous

correlation among the series (Maddala and Wu, 1999, Chang, 2004). Bootstrap data are

then generated back from these resampled residuals using the FGLS coe¢ cient estimates

of model (1) under � = 0. This resampling and data generation process is repeated a very

large number of times. In each replication, the value of the test statistic is computed in

the same way as on the observed data. The bootstrap probability value is the percentage

of bootsrapped t-statistics falling to the left of the observed t-statistic.

The bootstrapped version of test (5) is carried out in a similar way. Model (1) is esti-

2For each country n, the sample mean over time is substracted from the residuals to obtain zero-mean

residuals.
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mated in SURE form by unrestricted FGLS. The following test-statistic is then computed:

� =
1

N � 1

(
NX
n=1

h
t(�̂FGLS;n)

i2)
; (12)

where �̂FGLS;n is the FGLS estimate of �n in (9). Then, (9) is estimated under the

restriction that �n = 0 for all n, and the residuals are recentered and resampled by row.

The bootstrap data are generated from these bootstrap residuals under this restriction

and the corresponding bootstrap � statistics are computed. The bootstrap p-value for

(12) is then obtained from the relative position of the observed � statistic in the empirical

distribution of the bootstrapped � statistics.

3 Convergence analysis with TAR models

3.1 The non-linear model

Let us now suppose that the convergence process is not uniform, in the following sense.

In the �rst place, it could be that the N countries converge only if certain institutional,

political or economic conditions are ful�lled whereas they diverge otherwise. In this case,

it may happen that 0 < ��n < 1 for all n under certain circumstances but that �n = 0

if these circumstances are not met. Another possibility would be that convergence takes

place at one rate in certain conditions and another rate under other conditions. That is, it

may happen that 0 < ��n < 1 for all n but that its speci�c value di¤ers according to the

prevailing conditions at time t. A model that would be able to represent such a behavior

can be speci�ed as follows:

�gn;t =

"
�In + �

I
ngn;t�1 +

pX
i=1

'In;i�gn;t�i

#
Ifzt�1<�g

+

"
�IIn + �

II
n gn;t�1 +

pX
i=1

'IIn;i�gn;t�i

#
Ifzt�1��g + "n;t; (13)

with n = 1; � � � ; N , and t = 1; � � � ; T . In this model, I fxg is an indicator which

takes value 1 when x is true, and zero otherwise. It therefore acts as a dummy variable

which takes a unit value if the condition zt�1 < � is ful�lled. So when zt�1 < �, the

model is �gn;t = �In+ �
I
ngn;t�1+

pP
i=1
'In;i�gn;t�i+ "t, whereas it is �gn;t = �

I
n+ �

I
ngn;t�1+
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pP
i=1
'In;i�gn;t�i+"t when zt�1 � �. In other words, at any t, the dynamics of the per-capita

incomes follows one of two possible regimes. We will call �regime I�the case where zt�1 < �

and �regime II� the case where zt�1 � �. The parameter � is therefore a �threshold�

parameter and equation ( 13) belongs to the class of threshold autoregressive (TAR)

models �rst introduced by Tong (1978). Note that model ( 13) includes the linear model

(1) as a particular case, which takes place when zt�1 stands on the same side of � for all t.

As is usual in this type of model, the threshold parameter is unknown. However, in order

to carry out the estimation process, the restriction that 0 < �1 � P (zt�1 � �) � 1� �1 is

imposed so that no regime takes place in less than a �1 fraction of the total sample, with

�1 typically around 0:10 or 0:15. If �1 falls below this limit, the linear process is preferred.

With respect to the basic TAR model of Tong (1978), ours proposes extensions in two

directions. The �rst extension consists of abandoning the single-equation time-series TAR

model in favour of a multivariate panel-data model. The second extension refers to the

possible non-stationarity of the data, in the form of a unit-root in the individual (country)

series when �n = 0. This second extension has been considered by Caner and Hansen

(2001) although their model is limited to a single series, whereas we consider a panel of

N time series.

Note that in model (13) divergence would take place if �In = �IIn = 0 for all n. Al-

ternatively, global convergence would correspond to 0 < ��in < 1 for all n and i = I; II.

Finally, there would be partial convergence if 0 < ��in < 1 but �
j
n = 0 for all n and i 6= j.

In (13), the so-called transition variable, zt, can be either endogenous, when its values

are directly obtained from the gn;t variables, or exogenous, when it refers to an economic

variable di¤erent from any gn;t. In the endogeneity case, it makes sense to choose zt =

gm;t � gm;t�d , for some m and some 0 < d � p (where m and d are not a priory �xed but

rather determined endogenously). In this way, from the statistical point of view, zt would

be stationary, whether the economies converge (gn;t � I(0); for all n and all regimes) or

not (gn;t � I(1), for one or both regimes). From the economic point of view, it amounts to

saying that the shift from one regime to another is related to the growth rate of country j

in the last d periods. Another possibility would be to choose zt exogenously, on the basis

of economic arguments. For instance, we might think that the intensity of the convergence
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process among the countries in the panel varies as a function of their degree of openness

towards each other. Let opt be some measure of the intensity of the international trade

relations linking the countries of the panel. Then zt = opt�d (d could be determined

endogenously from the data or �xed exogenously). However, in this paper and in what

follows we focus on the endogeneity case.

Note also that (13) assumes that all the parameters change when the economies shift

from regime I to regime II. However, restricted versions of this speci�cation could of course

be considered. For instance, the following speci�cation

�gn;t = �n +
�
�Ingn;t�1

�
Ifzt�1<�g +

�
�IIn gn;t�1

�
Ifzt�1��g +

pX
i=1

'n;i�gn;t�i + "n;t; (14)

with n = 1; � � � ; N , and t = 1; � � � ; T , assumes that only the convergence rate varies with

the regime.

In (13) and (14), p is assumed to be high enough so that "n;t is a white noise process for

each n. So serial correlation in the errors is excluded. However, for the same reasons as in

model (1), cross-country contemporaneous correlation cannot be excluded. The relevant

assumption on the errors is of the type described in (6) and (7).

3.2 Estimation

Model (13) is estimated by least squares. However, given the dependence of the coe¢ cients

on the threshold value of the transition variable (both unknown), and given the structures

(6) and (7), it is convenient to use concentration in a GLS approach.

To simplify the exposition, lest us �rst suppose that �; m and d are known and collect

their known values in vector �0 = (�0;m0; d0)
0. So, conditional on �0, model (13) can

be seen as a panel data equation with known dummy variables. Assume that the total

number of available time observations for each country is (T +p+1) so that (p+1) initial

values prior to t = 1 exist.

If � denotes an element-by-element multiplication, (13) can be written in SURE form
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as

�G =

�
X � �II;�0

... X � �III;�0
�26664

�I;�0

� � �

�II;�0

37775+ "; (15)

where �I;;�0 (�II;�0) is de�ned like � in (8) but refers to the coe¢ cients under regime I

(II) when � = �0; m = m0 and d = d0: The expression �II;�0 refers to an (NT � 1) vector

obtained by stacking N times the (T � 1) dummy-variable vector

II;�0 =
�
Iz0;p<�0 ; Iz0;p+1<�0 ; � � � ; Iz0;T�1<�0

�0
; (16)

where z0;t = gm0;t � gm0;t�d0 . Similarly, �III;�0 is obtained by stacking N times the vector

III;�0 =
�
1� Iz0;p<�0 ; 1� Iz0;p+1<�0 ; � � � ; 1� Iz0;T�1<�0

�0
: (17)

Model (15) can be written more compactly as

�G = �X�0��0 + ": (18)

Estimating this model by feasible GLS is justi�ed by the characteristics of the variance-

covariance matrix of " speci�ed in (6) and (7). So

�̂�0;FGLS =
h
�X 0
�0 V̂

�1
0

�X�0

i�1
�X 0
�0 V̂

�1
0 �G; (19)

where V̂0 = 
̂0 
 IT and 
̂0 = [snm;0] with snm;0 = 1
T

PT
t=1 ent;0emt;0 for n;m = 1; � � � ; N ,

and with elt;0 being the OLS residual of model (15) corresponding to observation t for

country l.

In practice, we do not know the true value of �; m and d. However, we can infer

appropiate values for these parameters from the data. Denote "̂�0 the FGLS residual

vector of model (15) and de�ne the weighted sum of squared residuals s2�0 =
1
T "̂

0
�0 V̂0"̂�0 :

Since this sum is a function of �0, a grid-search procedure can be applied to obtain

�̂ �
h
�̂; m̂; d̂

i
= argmin

�0

(s2�0)

and the Least-Squares estimates of the other parameters can be obtained by plugging in

the point estimate �̂ in model (15) and obtain the corresponding �̂�̂;FGLS .
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To implement the grid-search procedure, for each m 2 [1; 2; � � � ; N ] and each d 2

[1; � � � ; p], � is given the value (gm;� � gm;��d) for each � 2 (1; 2; � � � ; T ). The fraction

of the sample falling in the implied regime I is then computed. If this fraction lies in

the interval [�1;1 � �1], the corresponding FGLS estimator of �� and the weighted sum

of residuals are computed. If not, this combination of m; d and � is discarded and the

procedure goes to the next point of the grid. Once all the points have been checked, the

estimation process ends with the obtention of �̂ and the corresponding �̂�̂;FGLS We will

refer later to this estimation procedure as the �grid-FGLS�method.

Once model (13) is estimated, its superiority has to be checked with respect to the

linear Evans-Karras model (1). If con�rmed, the next task consists of testing whether

there is convergence or not, by applying some type of unit-root test on the � coe¢ cients of

(13). Finally, if there is evidence of convergence, the last step should test absolute against

conditional convergence through a test on the � coe¢ cients of (13). We propose a testing

procedure for each case in what follows.

3.3 The linearity test

The null hypothesis to be tested is that model (1) is correct, versus the alternative of model

(13). The problem here is that some parameters (namely, �;m and d) are not identi�ed

under the null since they are de�ned only under the alternative. As a consequence, con-

ventional test statistics, such as Likelihood Ratio, Wald or LM tests, do not have standard

distributions under this null. This problem has been pointed out by Hansen (1996) and is

examined for the single-equation multiple-regime TAR model by Hansen (1999). It is also

examined by Caner and Hansen (2001) when testing the single-equation two-regime TAR

model with a unit root. One of the best solutions proposed in the last two papers consists

of obtaining the critical values by bootstrap simulations. We describe an extension of this

solution for the panel-data TAR model (13) in what follows.

We want to test

Ho;1 : �
I
n = �

II
n ; �

I
n = �

II
n ; '

I
i;n = '

II
i;n; (20)

8n = 1; � � � ; N and 8i = 1; � � � ; p, against the alternative that not all the coe¢ cients are

equal in both regimes.
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For that purpose, estimate (1) by FGLS and (13) by the grid-FGLS method. For each

model, compute the value of the likelihood function at the estimation point and obtain:

$1;2 = �2 ln(L1=L2); (21)

where L1 is the likelihood value of the one-regime linear model (1) and L2 is the likelihood

value of the two-regime TAR model (13).3 The null of linearity would be rejected if $1;2

is too large. In order to know how large $1;2 has to be, we obtain the critical value by

mimicking Caner and Hansen (2001) single-equation procedure, while we adapt it to take

into account the contemporaneous cross-country correlations of the errors as described by

(6) and (7). At this point of the analysis we do not know whether the series exhibit or not

a unit root; therefore, two sets of bootstrap simulations should be carried out. The �rst

set, called the �unrestricted bootstrap�simulations is based on an unrestricted estimation

of the linear model, as speci�ed in (1). The second one, called the �restricted bootstrap�,

imposes a unit root by restricting �n = 0 in (1). That is, the model considered under the

null imposes both linearity and a unit root, as described by

�gn;t = �n +

pX
i=1

'n;i�gn;t�i + "n; (22)

with n = 1; � � � ; N and t = 1; � � � ; T .

The bootstrap algorithm to obtain the critical value is as follows. In the unrestricted

bootstrap simulations, after estimating model (1) by feasible GLS, the corresponding resid-

uals eLn;t = �gn;t � �̂n + �̂ngn;t�1 +
pP
i=1
'̂n;i�gn;t�i are obtained for all n and t, recentered

and organized in the following T �N matrix, similar to E� in (11):

~E =

26666664
eL1;1 eL2;1 � � � eLN;1

eL1;2 eL2;2 � � � eLN;2
...

... � � �
...

eL1;T eL2;T � � � eLN;T

37777775 : (23)

Then, a random sample
�
e�n;t; n = 1; � � � ; N

	
for t = 1; � � � ; N is generated by sampling

matrix ~E by row (with replacement) to preserve the contemporaneous correlation of the

3Alternatively, the weighted sum of squared residuals of each model could be computed and a Wald-type

test statistic could be built.
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errors in the bootstrap populations. The data are then recursively generated from the

following equation, where the coe¢ cients take the values of the GLS estimates of (1):4

�g�n;t = �̂n + �̂ng
�
n;t�1 +

pX
i=1

'̂n;i�g
�
n;t�i + e

�
n;t: (24)

Let $�1;2 be the value of the test (21) for this generated series. Hence, $
�
1;2 is computed

for each simulated bootstrap series. In this study, we make 1; 000 bootstrap replications.

They are then sorted by increasing order and the bootstrap p-value is the fraction of

simulated $�1;2 values smaller than $1;2:

The restricted bootstrap algorithm is similar, except that the residuals to be resampled

are obtained from model (22) instead of model (1):

eL;rn;t = �gn;t � �̂
(r)

n +

pX
i=1

'̂
(r)
n;i�gn;t�i;

where �̂
(r)

n and '̂(r)n;i are the GLS estimates of model (22). By the same token, the data are

recursively generated from

�g
�(r)
n;t = �̂

(r)

n +

pX
i=1

'̂
(r)
n;i�g

�(r)
n;t�i + e

�(r)
n;t : (25)

After both sets of simulations are carried out, inference about linearity is based on the

more conservative result, that is, on the higher bootstrap p-value. If the linear model is

rejected, the rest of the analysis is based on the TAR model (13).

3.4 Convergence tests

If the empirical evidence favours model (13), the next step consists of testing convergence

against divergence. The null hypothesis is

H0;2 : �
I
n = �

II
n = 0 8n (26)

4For the initial values, we use the (p+1) �rst data of the sample of observations; this is also the

simpli�cation used by Caner and Hansen (2001).
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in model (13). If ful�lled, it re�ects that the countries diverge both under regime I and

regime II. Three types of alternative are of economic interest and can be tested:

HA;2a : �In < 0; �
II
n < 0 8n; (27a)

HA;2b : �In < 0; �
II
n = 0 8n; (27b)

HA;2c : �In = 0; �
II
n < 0 8n: (27c)

The alternative (27a) re�ects convergence of the countries both under regime I and II.

We will refer to this case as �full convergence�. On the opposite, the alternatives (27b)

and (27c) imply that convergence takes place only under regime I or only under regime

II, respectively. We will refer to such a situation as �partial convergence�.

Note that the null and the alternative hypothesis are assuming that the � coe¢ cients

satisfy the same property for all the countries at a time. This is consistent with the

de�nition (2) of the series gn;t: since these series are in deviations from their common

cross-section mean, as soon as one of the country does not converge to the other (even

though the remaining countries do converge to each other), none of the gn;t series can be

I(0). In other words, the gn;t series of the panel are all I(0) or all I(1).

In order to discriminate between the three alternatives, we use several test statistics, in

the line of Caner and Hansen (2001) for the single-equation case. These authors propose

a Wald-type statistics for the test against the global alternative HA;2a of convergence.

Extending their proposition to the panel-data case, the statistic is

R2 = t
2
I + t

2
II ; (28)

where tI and tII are t-type statistics associated with the estimation of �In and �
II
n , respec-

tively, in model (13). Namely, if �̂in is the grid-GLS estimate of �
i
n for each regime i, we

have

ti =
�̂in
s�in
, (29)

for i = I; II. Given the de�nition of R2, large values of this statistic are favorable to

convergence.

For the alternative of partial convergence HA;2b the statistic to be used would be tI ,

while tII would be used to test against the partial convergence hypothesis HA;2c . These
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are left-sided tests. So, if tI (tII) is too small, whereas tII (tI) is not, the data favour the

hypothesis of convergence under regime I (II) and divergence under regime II (I).

Here again, bootstrap simulations are used in order to �nd the appropriate probability

values. The �rst steps of the bootstrap algorithm coincides with the restricted bootstrap

of the linearity test. That is, the GLS residuals obtained from adjusting the linear model

(22) in which a unit root is imposed are recentered and resampled by row from a matrix

similar to ~E. The bootstrapped data are then recursively generated from (25). So the

bootstrap generation process imposes not only the null of a unit root but also linearity.

The rational for this is twofold. On the one hand, the generation of the data from a

linear model is much simpler than from a TAR model when the transition variable is

endogenous. On the other hand, Caner and Hansen (2001) obtained much more reliable

results, in terms of size of the test, with the linear model than from a TAR generating

process, as the results appear to be much less sensitive to nuisance parameters. In fact,

they strongly recommend the use of the linearized version of the model in the bootstrap

generation.

Once the bootstrap data are obtained, the statistics R2, tI and tII are computed and

sorted in ascending order to obtain the bootstrap p-values. It must be beard in mind that

the test based on R2 is right-sided, whereas the tests based on tI and tII are left-sided.

The last step of the convergence analysis consists of discriminating between absolute

and conditional convergence. The absolute convergence hypothesis refers to the fact that

converging countries share the same steady path. Conditional convergence refers to the

existence of parallel, though not coincident, paths. So, in terms of model (13), under the

maintained hypothesis that �in < 0, 8n = 1; � � � ; N; and i = I; II, absolute convergence is

equivalent to

�in = 0 , 8n = 1; � � � ; N; i = I; II: (30)

If the convergence process is partial, in the sense that it takes place only under one of the

two regimes, say regime I, then absolute convergence would correspond to

�In = 0 , 8n = 1; � � � ; N: (31)

Note, however, that in this two-regimes model, another case of interest occurs when �in < 0
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for all n and i (global convergence) but �in = 0 for only one value of i. In this case,

convergence is absolute under one regime although conditional under the other one. We

therefore need several test statistics to be able to discriminate between these di¤erent

cases.

The tests that we propose are based on the grid-GLS estimation of model (13). They

direct extensions to the TAR model of the statistics proposed by Evans and Karras (1996)

for the linear case. In particular, they are derived from the t-statistics t(�̂
i

n) =
�̂
i
n

s
�̂
i
n

, with

i = I; II, and n = 1; � � � ; N , associated with the estimated value of the constant terms.

They are the following:

�a =
1

2N � 1

(
NX
n=1

h
t(�̂

I

n)
i2
+

NX
n=1

h
t(�̂

II

n )
i2)

; (32a)

�b =
1

N � 1

(
NX
n=1

h
t(�̂

I

n)
i2)

; (32b)

�c =
1

N � 1

(
NX
n=1

h
t(�̂

II

n )
i2)

: (32c)

Given the endogeneity of the transition variable, here too the bootstrap p-values are ob-

tained from adjusting a linear model to the observed data. So we impose a null constant

term in model (1) and estimate

�gn;t = �ngn;t�1 +

pX
i=1

'n;i�gn;t�i + "t; (33)

with n = 1; � � � ; N and t = 1; � � � ; T by feasible GLS. The matrix of recentered residuals is

then resampled by row and the bootstrapped data are generated from the estimates of (33).

Model (13) is then adjusted on these data and the three tests �a;�b and �c are computed.

The bootstrap right-sided p-values are extracted from their empirical distributions. The

three statistics are then used in the following way:

� if H0;2 has been rejected in favor of HA;2a :

��a is too large ) conditional convergence takes place under both regimes.

��b is too large, although �c is not) conditional convergence takes place under

regime I and absolute convergence takes place under regime II.
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� Symmetrically, �c is too large, although �bis not ) conditional convergence

takes place under regime II and absolute convergence takes place under regime

I.

� if H0;2 has been rejected in favor of HA;2b :

��b is too large ) conditional convergence takes place under regime I.

��b is not large enough ) absolute convergence takes place under regime I.

� if H0;2 has been rejected in favor of HA;2c :

��c is too large ) conditional convergence takes place under regime II.

��c is not large enough ) absolute convergence takes place under regime II.

4 Empirical application

The methodology described in the previous section has been applied on the data of several

European countries, with the main objective of examining the situation of the recently

acceded countries in comparison with the older members.

4.1 The data

The panel of countries on which we have applied our procedure refers to annual data

of the logarithm of the GDP per capita for �fteen countries which can be gathered in

three groups. The �rst group includes nine so-to-speak �rich�West-European countries:

Austria, Belgium, Denmark, Finland, France, Italy, the Netherlands, Sweden and the

United Kingdom. The second group refers to three �poorer�West -European countries:

Spain, Greece and Portugal. Finally, the third group corresponds to three East-European

countries: Hungary, Poland and Czechoslovakia. The data are expressed in 1990 constant

and international GK Dollars and cover the period 1950-2004 but for Czechoslovakia for

which the data stop in 2003. They have been derived from the database of the University
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of Groningen.5

The selection of these countries deserves two comments. On the one hand, Germany

has been excluded from the �rst group in order to avoid the distorting statistical e¤ect

of the 1989 reuni�cation process. Since the former West-Germany was one of the richer

European countries and the reuni�cation drastically lowers the per capita output of the

new geographical area known as Germany, the inclusion of Germany in the panel would

arti�cially favor the convergence hypothesis. On the other hand, as far as the East-

European countries are concerned, our interest is in testing the convergence situation

of the so-called accession countries with respect to the older members of the European.

Ideally, we would like to include the whole set of countries recently acceded to the EU.

However, the data on GDP per capita are available on a long enough period only for

Hungary and Poland whereas for the remaining countries, the series start in 1989. So, we

have just taken these two countries, together with the data for the former Czechoslovakia

as a proxy of the new Czech Republic in order to work with information on a third

acceding country.6

4.2 Empirical results

As mentioned before, when working with the deviations of per capita output from a

common cross-country mean, the divergence of one single country implies that the whole

set of gn;t series are I(1). It is therefore important to carefully select the set of countries

on which we apply the convergence tests. In particular, it is wise to start with a subset

of countries for which convergence is highly probable, and if con�rmed, to progressively

add more countries to the set and repeat the convergence tests on these augmented set.

In this way, it is possible to identify which countries converge and which do not.

As a consequence, we start by testing convergence in the �rst group of richer countries,

which are the most likely to converge. The data of the per capita GDP for these countries

are represented in Figure 1. This visual information points towards a high degree of

5Groningen Growth and Development Centre and The Conference Board, Total Economy Database,

January 2005, http://www.ggdc.net.
6Since its creation, the share of the real GDP of the Czech Republic in the real GDP of former Czechoslo-

vakia evolved between 66:3% and 71; 2%, with an average value of 68; 5%.
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convergence between these countries. The statitical results are gathered in Table 1.a, for

the linear model (1), and in Table 1.b for the TAR model (13). As expected, the linear

model re�ects that these countries have been converging during the last �ve decades (p-

value for the null of divergence equal to 0:000), and that this convergence has been absolute

(p-value of 0:902 for the null of absolute convergence).

Turning to the TARmodel, several results deserve comments. First, the test of linearity

favours the TAR speci�cation very strongly. Both the unrestricted and restricted bootstrap

p-values are below the standard 5% critical value. The United Kingdom is identi�ed as the

country whose evolution determines the switch from one regime to the other. The data

for this country are identi�ed with dots in Figure 1. The overall position of this country

over the whole period has evolved from being the richest country at the very beginning

of the period to one of the lowest position in the middle the sample, to �nally end up

at an intermediate level at the end of the period. In other words, this country can be

seen as representative of the intensive convergence process among the countries of this

�rst group. This may be an explanation of why it has been picked to form the transition

variable. The estimate value of the delay parameter d is 1, so that the transition variable

is gUK;t � gUK;t�1. As far as the threshold parameter � is concerned, it is estimated at

�1:25. Given the de�nition of gUK;t and the value of d, it means that regime I corresponds

to the years in which the growth rate of the UK per capita income was below the average

growth rate of the group by more than 1:25 percentage points. That is, regime I refers

to years during which the UK grew somewhat slower than the remaining countries of the

group. This regime corresponds to 25:5% observations of the sample. On the opposite,

regime II, prevailing during 74:5% of the sample, refers to years that were not so sluggish

or more �ourishing than the average. The periods corresponding to each regime, as well as

the threshold position and the value of the transition variable can be examined in Figure

2. It can be seen that regime II has been dominating during the last twenty years. As far

as convergence is concerned, the null of divergence is rejected both in regime I and regime

II (see Table 1.b), with a p-value of 0:034 and 0:000, respectively. There are thus some

symptoms that convergence is somewhat more intensive under regime II. This regime also

exhibits stronger signs of absolute convergence (p-value of 0:675) than regime I (p-value
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of 0:288). The overall conclusion is, though, absolute convergence under both regimes.

We may therefore conclude that these countries have shared a common steady state path

over the �ve last decades. By the same token, the weighted average of their per capita

GDP (using the population as a weight) is economically meaningful and can be used as a

benchmark in the analysis of the convergence of other countries towards this �rst group.

This is what we do next.

Tables 2.a and 2.b o¤er the results concerning the study of the convergence process of

Spain, Portugal and Greece and the average of the richer countries. Figure 3 reproduces

the data of their per capita GDP in logarithms and re�ects that these poorer countries have

narrowed their distance with respect to the �rst group, especially in the last years of the

sample. However, Table 2.a indicates that the linear model does not detect convergence,

since the p-value for the null of divergence is 0; 114. As a result, the test to discriminate

between absolute and conditional convergence does not apply.

In Table 2.b, the results from the TAR model give another image. According to the

linearity test, there is no doubt that the TAR model is superior to the linear one (p-

values of 0:009 and 0:011 for the unrestricted and restricted bootstrap, respectively). The

transition variable corresponds to the relative growth rate of Greece (estimated d is 1)

and the estimated value of the threshold parameter is 2:14. This implies that regime

I, which takes place in 83:7% of the sample, prevails when the di¤erence between the

growth rate of the Greek GDP per capita and the average one is below 2:14 percentage

points. Accordingly, regime II takes place when the relative growth rate of Greece is

above this level. The results of the convergence tests reveals that divergence cannot be

excluded under regime I (p-value of 0:131), whereas convergence takes place under regime

II (p-value of 0:016). So there is partial convergence under this last regime. The periods

when regime II prevails can be easily located in Figure 4. They broadly coincide with the

seventies and the last years of the sample. From Figure 3, it can be seen that the countries

grew closer together during these years. On the opposite, regime I completely dominates

the decades of the eighties and nineties, which coincide with the period when Greece grew

much slower than the other countries and progressively fell down to the worst position.

Hence, the TAR model proves to be useful in announcing the results of the convergence
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analysis. Note �nally that the test of absolute against conditional convergence gives a

p-value of 0:385 under regime II, which is favorable to absolute convergence.

Now, the previous analysis is extended with the inclusion of Poland, Hungary and

Czechoslovakia. The data and the results are presented in Figures 5 and 6 and in Tables

3.a and 3.b. The visual information from Figure 5 is far from favorable to convergence:

compared with the �fties and the sixties, during the seventies and the eighties the per

capita GDP of these three East-European countries decreased with respect to those of

the West-European countries. This tendency changed in the second half of the nineties,

although the series still evolve nowadays far away from each other. Both the linear and the

TAR model re�ect this divergence situation. According to the linear model, divergence

cannot be rejected with a p-value equal to 0:091. Within the framework of the TAR model,

the most conservative p-value of the linearity test is equal to 0:05, which is a limit value.

The transition country is Greece again, although the estimated d turns to be 3 in this

case. So the threshold refers to the relative growth rate over three years. It is estimated

at 5:85 (which roughly coincides with 2 percentage points in annual terms). So regime I

corresponds to the periods in which the relative growth rate of Greece over the last three

years has been above the average by somewhat less than 2 points, which is consistent with

the results obtained in the previous group. From Figure 6, it can be seen that regime I is

the dominating situation, especially in the last three decades. The non-linear convergence

tests exhibit the same results in both regimes: divergence cannot be discarded in any of

them. Given how the GDP series and the transition variable evolve by the end of the

sample period, it is to be expected that these results could change in favour of some type

of convergence once more data will be made available.

5 Conclusions

In this paper, we have developed a new method of testing real convergence, in terms of

the per capita real GDP, in a panel-data non-linear framework. The non-linear model

that we use belongs to the class of TAR models with two regimes. Our model extends

the existing literature in two directions at a time. On the one hand, it extends the usual
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TAR model to a panel data framework. At the same time, it adds to non-linearity the

possibility of non-stationarity due to the presence of a unit root. Allowing for the presence

of a unit root is crucial in our study, since this is precisely what happens when one or

various countries of the panel diverge. On the opposite, when all the countries converge,

no GDP series should exhibit a unit root.

We apply our methodology to study the convergence of several sets of EU countries.

The �rst one concerns a group of nine rich countries for which we obtain that the con-

vergence process has been somewhat more intensive in the last two decades. The second

group of countries includes the weighted average of the previous group plus three poorer

old EU members, Spain, Portugal and Greece. The linear model does not detect any

sign of convergence, whereas the TAR model indicates that these countries have been

converging to the richer ones in the years of more intensive growth of one of the poorest

country of the group. Finally, two new EU members (Hungary and Poland) together with

Czechoslovakia have been added to the analysis. As expected, no form of convergence

is detected in any regime. Our empirical results are therefore very reasonable and add

interesting nuances to what can be obtained from a linear approach. It indicates that our

approach can shed more light on the processes of real convergence.

Finally, it is worth pointing out that our methodology o¤ers an interesting by-product

that can be exploited for the analysis of other economic problems. Our TAR methodology

to discriminate between divergence and convergence is in fact a way of detecting the

presence of a unit root. Therefore, this paper may be applied to detect unit roots in any

set of nonlinear multivariate time series.
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Table 1. Nine EU richer countries

1.a. Linear model

Divergence vs convergence Absolute vs conditional convergence

0.000 0.902

Convergence Absolute

1.b. TAR model

Linearity tests Transition d � % observations in

Unrestricted Restricted country Regime I

0.013 0.011 UK 1 -1.25 25.5

Convergence tests

Divergence vs convergence Absolute vs conditional convergence

Regime I Regime II Both Regime I Regime II Both

0.034 0.000 0.000 0.288 0.675 0.534

Full convergence Absolute

Notes. Entries refer to bootstrap p-values computed as described in the text. The

selected lag length is 2 since it was the lowest value for which the residuals of the linear

panel estimated by FGLS were uncorrelated (on the basis of the Ljung-Box statistic) for

each country.
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Table 2. Average of nine EU richer countries and three EU poorer

2.a. Linear model

Divergence vs convergence Absolute vs conditional convergence

0.114 -

Divergence -

2.b. TAR model

Linearity tests Transition d � % observations in

Unrestricted Restricted country Regime I

0.009 0.011 Greece 1 2.14 83.7

Convergence tests

Divergence vs convergence Absolute vs conditional convergence

Regime I Regime II Both Regime I Regime II Both

0.131 0.016 0.068 - 0.385 -

Partial convergence in Regime II Absolute in Regime II

Notes. The selected lag length is 4. See footnote in Table 1.
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Table 3. Average of nine EU richer countries, three EU poorer and three new members

3.a. Linear model

Divergence vs convergence Absolute vs conditional convergence

0.091 -

Divergence -

3.b. TAR model

Linearity tests Transition d � % observations in

Unrestricted Restricted country Regime I

0.050 0.033 Greece 3 5.85 77.1

Convergence tests

Divergence vs convergence Absolute vs conditional convergence

Regime I Regime II Both Regime I Regime II Both

0.429 0.476 0.569 - - -

Divergence -

Notes. The selected lag length is 4. See footnote in Table 1.
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Notes: Logs of annual per capita GDP for Austria, Belgium, Denmark, Finland, France, Italy, 
Netherlands, Sweden and UK. Sample: 1950-2004.
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Figure 1: Output evolution of nine richer
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Figure 2: Threshold variable for nine richer
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Notes: Logs of weighted average of annual per capita GDP for countries of Figure 1 and logs 
of GDP for Greece, Portugal and Spain. Sample: 1950-2004.
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Figure 3: Output evolution of average and poorer
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Figure 4: Threshold variable for average and poorer

Notes:  Threshold variable refers to Greece data (d=1). Horizontal line refers to the threshold 
(2.14). Sample: 1950-2004.
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Notes: Logs of annual per capita GDP for countries of Figure 2 along with Czechoslovakia, 
Poland and Hungary.  Sample: 1950-2003.
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Figure 5: Output evolution of average, poorest and newly acceded
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Figure 6: Threshold variable for average, poorest and newly acceded

Notes:  Threshold variable refers to Greece data (d=3). Horizontal line refers to the threshold 
(5.85). Sample: 1950-2003.


