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Abstract

We examine the �nite-sample performance of dynamic factor models that use ag-

gregate and disaggregate data, when the latter rely on �ner disaggregations of the

headline concepts of a small set of economic categories. Our Monte Carlo analysis

reveals that using the series with largest averaged within-category correlation outper-

forms using disaggregate data in factor estimation and forecasting in several cases.

This occurs for high level of cross-correlation across the idiosyncratic errors of se-

ries that belong to the same category, for oversampled categories, and especially for

high persistence either in the common factor or in the idiosyncratic errors. However,

the gains in forecasting mitigate considerably when the target series are persistent.

This could potentially explain why, using the constituent balanced panel of the Stock-

Watson factor model, whose US data are classi�ed into 13 economic categories, there

is no clear ranking between the aggregate and disaggregate approaches.
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1 Introduction

Empirical macroeconomists face a peculiar data structure. Due to recent advances in

information technologies, data are becoming increasingly available with unprecedented

degree of disaggregation. However, in practice, the data sets typically rely on �ner disag-

gregations of the headline concepts of a small number of broad economic categories. For

example, the data sets usually contain sectorial splits for industrial production and labor,

detailed information on prices and disaggregations of surveys into sectors.

To deal with these large data sets, factor models have received a growing attention for

their ability to summarize the information contained in lots of series in a small number of

unobserved common factors that may capture the comovements across the series, which

are usually used to forecast some key economic aggregates. Mainly, the factor models

rely on di¤erent sophistications of the works of Forni and Reichlin (1996) and Stock and

Watson (2002a). Recent examples are Forni, Hallin, Lippi and Reichlin (2005), Giannone,

Reichlin and Small (2008), Angelini et al. (2011) and Banbura and Modugno (2014). The

Chicago Fed National Activity Index (CFNAI), released by the Federal Reserve Bank of

Chicago, is an index computed by following this approach.

Although the natural choice would be to use all the sectorial information in factor

models, extracting information from such large data sets could be suboptimal. Boivin and

Ng (2006) for the US and Caggiano, Kapetanios, and Labhard (2009) for some euro area

countries show that including sectorial information could lead to model mis-speci�cation

in small samples since it increases the idiosyncratic cross-correlation. Poncela and Ruiz

(2015) show that, when model parameters have to be estimated, parameter and total

uncertainties could increase when the number of indicators increases. Banbura and Run-

stler (2011) show that forecast weights are concentrated among a relatively small set of

euro area indicators. Banbura, Giannone and Reichlin (2011) and Banbura and Modugno

(2014) �nd that including disaggregated information does not improve the accuracy of the

euro area forecasts.

Our contribution to this literature is twofold. Our �rst contribution is to design a

Monte Carlo experiment that allows us to document the conditions under which adding
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more disaggregated data, which rely on the particular structure described above, could

be undesirable. Within this context, we develop the simulations to evaluate the precision

in estimating the space spanned by the common factors as well as in forecasting a target

time series under two empirical scenarios. In the disaggregated scenario, the factors are

estimated and the forecasts are computed from a large data set, which is generated by

including additional series in a small set of broad categories under the assumption that

the additional series in each category are �ner disaggregations of one broad indicator with

which they could be correlated. In the aggregated scenario, the factors and the forecasts

come from a factor model that uses only a small number of time series from the large data

set. In this case, the subset of time series is selected from each category by using several

statistical criteria.

Our Monte Carlo experiment has been designed to focus on the e¤ects on these two

scenarios of across-category and within-category correlations, serial correlation of factors

and idiosyncratic components, sample sizes, oversampled categories, and ragged edges.

Although there is no unambiguous evidence in favor of using aggregate or disaggregate

data, our results show the cases in which using disaggregate information is advisable

and the cases in which it is not. In particular, we �nd that using aggregate information

outperforms using disaggregate information in factor models when the cross-correlation

across the series of the same category is high, when the factor is persistent, when some

categories are overrepresented and when the serial correlation of the idiosyncratic errors

is high. However, we �nd that these gains in forecasting mitigate substantially when the

target series are persistent. In addition, we show that our results are not qualitatively

a¤ected by the presence of missing data, which typically appear in real-time applications

since data are released in a non-synchronous manner and with di¤erent reporting lags.

Our second contribution has to do with the fact that, in spite of the empirical evidence

that using large cross sections could deteriorate the performance of factor models, the

choice of the data set from which to extract the factors and to perform the forecasts remains

partly unaddressed. To address the problem of selecting the representative indicators from

the small set of separate economic categories, we propose the following criterion: select

one representative of each category, the time series with largest averaged correlation with
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the series of the same category. We compare our selection criterion with that used by

Boivin and Ng (2006), who select the variables by removing the time series with highest

correlation across the idiosyncratic components and with randomly picking one series from

each category. We show that the forecasts computed from our selection process outperform

the forecasts computed from these two alternatives.

The empirical performance of aggregate versus disaggregate factor models is examined

by using the balanced set of US monthly macroeconomic indicators suggested by Stock

and Watson (2002b). The time series included in the data set are classi�ed by these

authors into 13 economic categories, such as real output, prices, and employment. In

an out-of-sample exercise, we examine the performance of a factor model that uses the

disaggregate information of the complete set of indicators versus a factor model that uses

only the indicators that exhibit the highest averaged correlation with the series of the same

category. For this purpose, we analyze the accuracy to forecast four key macroeconomic

variables at di¤erent short-term horizons. The empirical results obtained from actual data

are in concordance with those obtained from generated data. For highly persistent target

series, we do not �nd substantial di¤erences between aggregate and disaggregate factor

models. For less persistent target series, the factor model that uses aggregate information

yields satisfactory forecasting results with respect to those of the factor model that uses

disaggregate information, which agrees with the �ndings of Banbura and Modugno (2014)

and Banbura, Giannone and Reichlin (2011). Remarkably, our variable selection method

clearly outperforms the statistical method suggested by Boivin and Ng (2006) and the

random method.

The empirical analysis helps us to show an additional advantage of our variable selec-

tion criterion. We �nd that picking the series with the highest average within-category

correlation leads to economically meaningful sets of representative indicators, in the sense

that the indicators picked from each category typically coincide with the aggregate head-

line concepts (such as total industrial production). By contrast, some of variables selected

from the alternative procedures are �ner disaggregations of these headline concepts, which

complicates the interpretation of empirical economic applications. In addition, the vari-

ables selected from the Boivin and Ng (2006) method generally belong to only a reduced
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number of economic categories while some key categories become unrepresented. This

could be problematic since some of these categories are routinely monitored by users of

factor models and including them in the analysis is usually important not only to eventu-

ally improve the forecasts but also for interpreting the forecasts.

These results could help in formalizing the variable selection of those factor models

that use aggregate information from small sets of indicators. Although they typically

focus on di¤erent enlargements of the four-variable single-index factor model suggested by

Stock and Watson (1991), the data selection is sometimes arbitrary and does not rely on

statistical criteria. Examples are Mariano and Murasawa (2003), Nunes (2005), Aruoba,

Diebold and Scotti (2009), Aruoba and Diebold (2010), and Camacho and Perez Quiros

(2010). The ADS index, released by the Federal Reserve Bank of Philadelphia, also follows

this approach.

This paper proceeds as follows. Section 2 presents the details of the simulation exercise

and shows how the series of each category and their �ner disaggregations are generated.

Section 3 shows the main �ndings in the comparison of factor models that use aggregate

and disaggregate information for di¤erent parameter�s values. Section 4 describes our

empirical application. Section 5 concludes and points out some lines of further research.

2 Designing the simulation study

In this section, we perform Monte Carlo simulations to asses the extent to which using

all the disaggregate time series that belong to a small set of broad economic categories

might deteriorate the performance of the dynamic factor models in �nite samples.1 For

this purpose, the analysis accounts for di¤erent degrees of across-category and within-

category correlation, for di¤erent degrees of serial correlation of factors and idiosyncratic

components, for di¤erent sample sizes, for oversampled categories and for the case of

dealing with ragged edges.

1Moench, Ng and Potter (2013) develop an interesting analysis by using dynamic hierarchical factor

models. The comparison between these models and the factor models used in this paper is left for further

research.
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2.1 Dynamic factor models

Let yt be a scalar stationary time series variable to be forecasted and letXt = (X1t; :::; XNt)
0,

with t = 1; :::; T , be the observed N stationary time series which are candidate predictors

of yt. The baseline model to compute one-step-ahead predictions could be stated as

yt+1 = �0 + �
0
1Xt +

pX
j=1

�2jyt�j+1 + �yt+1; (1)

where �1 = (�11; :::; �1N )
0, and �yt+1 is a zero mean white noise.

Since estimating this expression becomes impractical as the number of predictors in-

creases, it is standard to assume that each predictor Xit admits a factor structure:

Xit = �
0
iFt + �it; (2)

for the i-th cross-section unit at time t, i = 1; :::; N , �i = (�i1; :::; �ir)
0, and t = 1; :::; T . In

this framework the r�1 vector Ft contains the r common factors, �i the r factor loadings,

�it = �0iFt the common components, and �it the idiosyncratic errors. In vector notation

the model can be written as

Xt = �Ft + �t; (3)

where � = (�ij) is theN�r matrix of factor loadings and �t is the vector of N idiosyncratic

shocks. We assume that the vectors Ft and �t are cross-sectionally uncorrelated processes.
2

The dynamics of the common factors are supposed to follow autoregressive processes.

Although it is very easy to generalize, let us assume that the factors follow a simple

V AR(1) process

Ft = AFt�1 + ut; (4)

where A is the r � r matrix of coe¢ cients and ut is serially uncorrelated, with E[ut] = 0

and E[utu0t] = �u. In addition, �t is also assumed to follow a simple stationary V AR(1)

process

�t = C�t�1 + vt; (5)

2 In this framework the common factor is supposed to generate most of the cross-correlation between

the series of the data set fXitgNi=1.
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where vt is serially uncorrelated, with E[vt] = 0 and E[v0tvt] = �v.3 Then, the target

variable yt can be forecasted through the common factors by using the expression4

yt+1 = �0 + �
0Ft +

pX
j=1

jyt�j+1 + eyt+1: (6)

2.2 Generating the data

To simplify the analysis, we assume in this section that the time series are generated from

only one common factor.5 To start with the simulations, we generate the common factor

fFtgTt=1 by using expression (4). In this case, futgTt=1 are random numbers which are

drawn from a normal distribution with zero mean and variances �u = 1. To examine the

dependence of the results on the persistence of the factor, we allow for di¤erent values for

the parameter A = 0:1; 0:5; and 0:75. In the empirical applications, Ft usually represents

the �state of the economy�or the �business cycle�.

The next step is to generate 10 di¤erent categories of data. For this purpose, we

generate f�i;tg
10;T
i;t=1 from (5), where the errors vt = (v1t; :::; v10t)

0, are random numbers

which are drawn from a normal distribution with zero mean and covariance matrix �v. To

simplify simulations, the autoregressive coe¢ cients matrix C is diagonal with two possible

values, c = 0:1 and c = 0:75, in all the elements of the main diagonal. In addition,

to examine the e¤ects of the across-category correlation, the covariance matrix �v takes

di¤erent values across the simulations. In particular, for a given value for the parameter

3Although assuming V AR(p) dynamics for the factors and the idiosyncractic components is straight-

forward, it would complicates notation.
4 In practice, the factors are replaced by factor estimates.
5Using more than one factor would require identifying assumptions that complicate the analysis of all

the possible identi�cation schemes. Nevertheless, we address the possibility of estimating more than one

factor when showing the results.
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�s, the covariance is the Toeplitz matrix

�v =

0BBBBBBBBB@

1 �s �2s : : : �9s

�s 1 �s : : : �8s

�2s �s 1 : : : �7s
...

...
...

. . .
...

�9s �8s �7s : : : 1

1CCCCCCCCCA
: (7)

Now, we use (3) to generate fXs
itg
10;T
i;t=1, where � is assumed to be a column vector of N

ones. Therefore, the parameter �s governs the correlation across categories of data. In the

simulations, the values of this parameter is �s = 0; 0:1; 0:5; and 0:75.

Let us focus now on generating the 10 indicators that belong to each of the 10 dif-

ferent categories, i.e., the data set fX l
i;ktg

10;10;T
i;k;t=1 . For this purpose, we add an error term

representing the idiosyncratic error of the speci�c series of each category to each of the

ten time series fXs
itg
10;T
i;t=1. We denote these errors as fwi;ktg

10;10;T
i;k;t=1 , where i represents the

category, and k represents each of the series that belongs to the i-th category. We assume

that the errors are correlated with the series of the i-th category and serially correlated.

Hence, we generate the 100 indicators from

X l
ikt = X

s
it + wikt; (8)

where i = 1; :::; 10, k = 1; :::; 10, and wit = (wi1t; :::; wi10t)
0 is the vector of idiosyncratic

errors, which is generated by

wikt = Dwikt�1 + e
l
ikt: (9)

In this expression, feliktg
10;10;T
i;k;t=1 are random numbers drawn from a normal distribution with

zero mean and covariance matrix �w, which is the Toeplitz matrix constructed from �l as

in (7), where �l = 0; 0:1; 0:5; and 0:9. Therefore, the parameter �l controls the correlation

that appear within each of the 10 categories of data. The matrix D of autoregressive

coe¢ cients is diagonal, with values of d = 0:1 and d = 0:75 in the main diagonal.

According to expressions (3), (8), and (9), each series of the 100 time series that forms

the data set can be decomposed as follows

X l
ikt = �iFt + �

l
ikt; (10)
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where �likt = �it+wikt. Then, the idiosyncratic components �
l
ikt are composed by a common

error inside the categories, �it, which could be correlated across di¤erent categories and

a speci�c error term, wikt, which could be correlated with series of the same category.

Finally, putting together the series along all the categories, the data set becomes

X l
t=
�
X l
1;1;t; X

l
1;2;t; :::; X

l
1;10;t; X

l
2;1;t; X

l
2;2;t; :::; X

l
2;10;t; :::; X

l
10;1;t; X

l
10;2;t; :::; X

l
10;10;t

�0
:

(11)

These time series can be interpreted as economic indicators that have been generated as

the sum of two components: the common factor, Ft, and the idiosyncratic component, �likt.

Therefore, the idiosyncratic components depend on the within-category cross correlation

(measured by �l), on the across category correlation (measured by �s) and on the serial

correlation of the idiosyncratic components (measured by c and d).

2.3 Using disaggregate information

As suggested by Banbura and Modugno (2014), who extend the quasi-maximum likeli-

hood approach proposed by Doz et al. (2012) to allow for serially correlated idiosyncratic

components on a dataset with an arbitrary pattern of missing data, the estimates of the

parameters the model stated in expressions (3) to (5) are obtained via the EM algorithm,

which consists on an iterative two-step estimator.6 In the �rst step, the algorithm com-

putes an estimate of the parameters given an initial estimate of the common factor. In

the second step, the algorithm uses the estimated parameters to approximate the common

factor by the Kalman smoother. Iterating this process is an algorithm where in every

step the likelihood increases, and hence, under regularity conditions, it converges to the

maximum likelihood solution.

In our simulations, the (i+ 1)-th iteration of the algorithm is de�ned as follows. Let

X l
t be the vector that collects the observations at time t of fX l

j;ktg
10;10;T
i;k;t=1 . Let us assume

that �̂i, Âi, �̂iu, C
i (whose elements are Cij) and the diagonal matrix �̂

i
v (whose elements

are �̂ijv) are estimates from the previous iteration. Let F it be the common factor, which

6Alternative approaches to account for serial correlation in the idiosyncratic components of large models

are proposed by Jungbacker et al. (2011), Pinheiro et al. (2013) and Bai and Wang (2015). Pinheiro et

al. (2013) show that it improves the accuracy.
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is the output of the Kalman �lter from the i-st iteration. The updated estimates of �, A,

C and �v can be obtained from

�̂i+1 =

 
1

T

TX
t=1

�
\E[X l

tF
0
t ]� \E[�tF 0t ]

�! 1
T

TX
t=1

\E[FtF 0t ]

!�1
; (12)

Âi+1 =

 
1

T

TX
t=1

\E[FtF 0t�1]

! 
1

T

TX
t=1

\E[Ft�1F 0t�1]

!�1
; (13)

bCi+1j =

 
1

T

TX
t=1

\E[�jt�jt�1]

! 
1

T

TX
t=1

\E[�jt�1�
0
jt�1]

!�1
; (14)

�̂i+1u =
1

T

TX
t=1

\E[FtF 0t ]�
1

T
Âi+1

TX
t=1

\E[Ft�1F
0
t ]; (15)

�̂i+1jv =
1

T

TX
t=1

\E[�2jt]�
1

T
cCj i+1 TX

t=1

\E[�jt�1�jt]; (16)

with j = 1:::; N . The estimates of the expectations can be obtained from

\E[X l
tX

l0
t ] = X

l
tX

l0
t ; (17)

and

\E[X l
tF

0
t ] = X

l
t
\E[F 0t ]: (18)

The estimates of the moments of the latent factors, [E[Ft], \E[FtF 0t ], \E[Ft�1F 0t�1],
\E[FtF 0t�1],

and the moments involving �t can be obtained from the Kalman smoother for the following

state space representation. Let Ij be the identity matrix of dimension j, let 0a�b be the

(a� b) matrix of zeroes, and let ht be the (r +N) vector ht = (F 0t;�0t)0, where N = 100.

Hence, the measurement equation can be de�ned as

X l
t = Hht + et; (19)

where

H =
�
� IN

�
; (20)

and et is a vector of zeroes. In addition, the transition equation can be stated as

ht+1 = Fht + wt; (21)
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where the (r +N � r +N) matrix F is

F =

0@ A 0r�N

0N�r C

1A ; (22)

and wt = (u0t; v
0
t)
0 with zero mean and covariance matrix

Q =

0@ �u 0

0 �v

1A ; (23)

where �u and �v are diagonal matrices that refer to the variances of ut and vt.

Then, �̂i+1, Âi+1, �̂i+1u , Ci+1 and �̂i+1v are used again in the Kalman �lter to compute

the factors of the (i+ 1)-th iteration. The algorithm, which starts with the static principal

components estimates of the common factors F 0t and their factor loadings �
0, is repeated

until the quasi-maximum likelihood estimates of the parameters are obtained.7 Finally,

the forecasts of yt+1 are estimated by OLS regressions on (6). Let us denote the dynamic

factor model that uses all the disaggregate information as DDFM (N and T are large).

2.4 Using aggregate information

Initiated by the four-variable single-index factor model suggested by Stock and Watson

(1991), there is a strand of literature on factor models that focuses on constructing indexes

of coincident indicators from the aggregate information provided by a subset of indicators

of the total economy. Typically, the analyses focus on di¤erent enlargements of the four

variables used by Stock and Watson, i.e., industrial production, retail sales, unemployment

and income. However, the data used in these analyses are usually designed for a speci�c

problem and does not rely on statistical criteria, which complicates the implementation to

other countries or data sets. Examples are Mariano and Murasawa (2003), Nunes (2005),

Aruoba, Diebold and Scotti (2009), Aruoba and Diebold (2010), and Camacho and Perez

Quiros (2010). The ADS index, released by the Federal Reserve Bank of Philadelphia,

also follows this approach.

7The algorithm requires small number of iterations to converge. In our simulations, we only required

3 or 4 iterations to converge, which occurs whenever the di¤erence between two consecutive log-likelihood

values is lower than a 10�4.
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With the aim of analyzing the e¤ects of estimating the factors using an small set

of informative indicators, we contribute to the literature by proposing a data selection

procedure that bene�ts from the peculiar data structure typically faced by economists:

choose the time series from each category that exhibit the highest averaged correlation

with respect to the other series included in the same category. Let fX l
i;�;tg

10;T
i;t=1 be this

set of N = 10 time series with the highest average within-category correlation, whose

observations at time t are collected in the vector X�
t .

The model used in this strand of the literature is typically cast in the state space

form described in (19)-(23). The parameters of �, A, C and �v are estimated by direct

optimization via the Kalman �lter, where X l
t is replaced by X

�
t and N = 10.8 In the

standard way, the Kalman �lter also produces �ltered and smoothed inferences of the

common factor: fF stjtg
T
t=1 and fF stjT g

T
t=1. These inferences can be used in the prediction

equation (6) to compute OLS forecasts of the variable yt+h: Let us denote the dynamic

factor model that uses the aggregate information in the way that is described in this

section as ADFM (N is �xed and small and T is large).

Only for comparative purposes, we also apply this method to the set of 10 time series

used to generate the categories, i.e., fXs
itg
10;T
i;t=1, which are collected at time t in the vector

Xs
t . Since these time series are less noisy than any of the time series included in the

disaggregate and aggregate analyses, we know that the results obtained from this method

are, by construction, better.9 However, we consider these results as �lower bounds�with

which the results of the disaggregate and aggregate approaches are compared. Finally,

we compare our selection criterion with the selection procedure used by Boivin and Ng

(2006), who select the subset of indicators by removing those with highest correlation

across the idiosyncratic components. Collecting the selected data, fX l
i;b;tg

10;T
i;t=1, at time t

in the vector Xb
t , the analysis of this section is also applied.

8For identi�cation purposes, �u is usually assumed to be the identity matrix.
9Therefore, the less noisy series are not included in the set of 100 time series from which we performed

the disaggregate and aggregate information approaches.
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2.5 Generating the target series

We generate the series to be predicted in a simple scenario. To simplify simulations, we

consider that the forecasts are computed from the factors and only one lag of the time

series. Hence, the series yt is generated from (6), where �0 = 0, �1 = 1, p = 1 and eyt is a

white noise process with �ey = 1. The parameter , which measures the autocorrelation

of the target series, is assumed to take on the values of 0, 0:3, and 0:8.

3 Simulation results

In each replication, j, we estimate the factor models that use aggregate and disaggregate

information and compute the accuracy of these models to infer the factor by using the

Mean Squared Error over the J = 1000 replications

MSEi =
1

J

JX
j=1

1

T

TX
t=1

(Fjt � F ijtjT )
2; (24)

for i = a in the case of the models that use aggregate information and i = d in the case of

the models that use disaggregate information. In addition, we compare the out-of-sample

forecasting accuracy of ADFM and DDFM by computing the errors in forecasting one

step ahead the generated target series. Let b� and b be the OLS estimates of the parameters
that appear in the prediction equation using the common factor series and the values of

y up to period T . Then, we construct the one-step-ahead forecast of yjT+1 by using the

relation byijT+1 = b�F ijtjT + byjT . In this way, one can de�ne the Mean Squared one-step-
ahead Forecast Errors of model i as

MSFEi =
1

J

JX
j=1

(yjT+1 � byijT+1)2: (25)

According to the forecasting scenarios described above, we callMSEap ,MSE
a
r ,MSE

d,

MSEab , MSFE
a
p , MSFE

a
r , MSFE

d and MSFEab the mean across replications of the

MSE and MSFE. They are computed from an ADFM that uses the 10 series used to

generate the categories (superscript a, subscript p), Xs
t ; from an ADFM that uses the 10

indicators with highest averaged correlation with the series of each category (superscript

a, subscript r), X�
t ; from a DDFM that uses the 100 time series of the simulation exercise
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(superscript d), X l
t ; and from a ADFM that uses a reduced number of series that are cho-

sen from the large pool by using the Boivin and Ng (2006) statistical criteria (superscript

a; subscript b), Xb
t .
10

3.1 Factor estimates

In this section, we investigate the bene�ts of computing inferences from aggregate and

disaggregate data. Let us start the analysis of the simulations by usingMSEs to examine

the relative accuracy of the models to infer the factors. To facilitate understanding, let

us describe how the results are presented in the tables. First, the results in Tables 1 to 3

are classi�ed according to di¤erent values of the autoregressive coe¢ cient of the common

factor (coe¢ cient A). This coe¢ cient takes on the value of 0:1 (low correlation) in Table

1, the value of 0:5 (medium correlation) in Table 2 and the value of 0:75 (high correlation)

in Table 3.

Second, each of these tables shows the accuracy of the models for di¤erent values of

the cross-correlation of the errors within (measured by �l) and across (measured by �s)

categories. The �rst block of the results refers to the case when the cross-correlation

present in the idiosyncratic components is only due to series that belong to the same

category, which occurs when �s = 0. The following blocks of results examine the e¤ects of

progressively increasing the correlation across categories to 0:1, 0:5 and 0:75. Within each

of these blocks, the tables report the models accuracy to infer the common factor when

the within-category correlation, which is measured by �l, increases from 0 to 0:1, 0:5 and

0:9.

Third, the �rst four columns of the tables refer to MSEs from dynamic factor models

which either use the set of 10 time series that were used to generate the categories (results

labelled as MSEap ); or use the 10 indicators that exhibits the highest averaged correlation

with the series of their respective categories (results labelled as MSEar ); or use the com-

plete set of 100 indicators (results labelled as MSEd); or use the 10 series selected with

the Boivin-Ng statistical criteria (results labelled as MSEab ), respectively.
11

10We iterate the algortihm proposed by Boivin and Ng (2006) �ve times. This method provides a number

of time series that average 10.
11Notice that MSEa

p is valid for comparison but not relevant for practical purposes since it reaches the
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Fourth, it is a common practice in large scale factor models that each category is

represented by di¤erent number of time series and frequently some categories might be over

represented.12 We address the e¤ects of over sampling on the performance of the models

in the last three columns of these tables. For this purpose, we simulate ten categories of

data but including 20 series instead of 10 in the �rst category, using 5 series instead of 10

in the second and third categories, and using 10 series in each of the other 7 categories.13

Fifth, in Tables 1 to 3, we assume that the idiosyncratic components and the errors

of the same category have low serial correlation (values of c = d = 0:1), that the sample

is small (T = 50), and that there is only one common factor in the estimation.14 The

robustness of the results in the cases of serial correlation in errors, larger samples, and

ragged edge are analyzed in Tables A1 to A9 in the Appendix.15

A summary of the main results is the following. As expected, the tables show that the

factor model that uses the 10 time series that generate the categories reaches the smallest

MSE. Notably, the tables also show that there is valuable gains by selecting those series

of each category that exhibit the highest correlation with the other series of the same

category. The relative performance of ADFM with the representative highly correlated

series and the DDFM shows that the former improves upon the latter (MSEar < MSE
d)

when the persistence of the factor and the within categories correlation increase.

These results are in line with some recent �ndings proposed in the related literature.

First, our results are in line with the �ndings of Stock and Watson (2002b), although these

lowest value by construction.
12Typically, the number of series of disaggregated industrial production indicators is quite higher than

the number of time series included in other categories. Signi�cant examples are Stock and Watson (2002a,

2002b), Giannone et al. (2008), and Angelini et al. (2011).
13The accuracy of the factor model that relies on the 10 time series used to generate the categories does

not depend on the number of series that are included in each category. Hence, the last columns of the

tables only show MSEa
r , MSE

d and MSEa
b .

14 In their simulations, Stock and Watson (2002b) consider that T is large when it is greater than 100,

that T is small when it is smaller than 50, and that T is very small when it is equal to 25.
15The Appendix, which shows all the expressions of this section, is available at

http://www.um.es/econometria/Maximo. However, since the method proposed by Boivin and Ng

(2006) does not provide signi�cant gains with respect to the other proposals, this method is omitted in

the tables that appear in the Appendix.
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authors do not model the serial correlation. These authors �nd some deterioration on the

quality of the factor estimates when the degree of serial correlation in the factor and in the

idiosyncratic errors is high even when the number of variables and observations is large.

This coincides with the �nding that we show in Tables 2 and 3, which report the results

of increasing the inertia in the simulated common factor, with A ranging from 0:1 (almost

no serial correlation) in Table 1 to 0:5 (moderate correlation) in Table 2 and to 0:75 (high

correlation) in Table 3. Although our results con�rm the deterioration in factor estimation

from all the factor models, the relative losses are not uniformly distributed across the

models. When the serial correlation of the factor increases, the relative performance of

the factor model that uses aggregate information increases signi�cantly, except for the case

of very large correlation across categories, where the relative gains attenuate. In fact, when

A = 0:75 the factor model that use only the series of each category with highest within-

category correlation outperforms the factor model that uses disaggregate information in

all scenarios.16

Second, our results are in concordance with those of Boivin and Ng (2006) who suggest

that the factor estimates are adversely a¤ected by cross-correlation in the errors and by

oversampling. The MSEs displayed in Tables 1 to 3 suggest that the factor model that

uses disaggregated information is usually beaten by the factor model that uses aggregate

information when the correlation of the variables of the same category is high. In addition,

the e¤ect of using oversampled categories in factor analysis are analyzed in the last three

columns of the tables, which report the MSEs of estimating the factor from models that

use the 10 unbalanced sets of indicators. Overall, the factor model that uses the disaggre-

gated information performs worse than in the case of balanced categories, especially when

the correlation across categories is small. Again, the relative better accuracy of the factor

model that uses aggregate information is more evident when the low correlation across

categories is combined with high within-category correlation and high persistence of the

factor.
16The scenario of high persistence in the common factor is very realistic in practice. For example,

regressing the Chicago Fed National Activity Index (CFNAI) and the Philadelphia Fed ADS Business

Conditions Index (converted to monthly by averaging) on their past values lead to slope coe¢ cients of 0:86

and 0:93, respectively.
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Notably, Tables 1 to 3 also show that the statistical selection criterion proposed by

Boivin and Ng (2006) leads to poor relative performance in most cases. Only in the

case of very low correlation across categories, very low within-category correlation and

extremely low autocorrelation of the factor, the results obtained by using their selection

criterion are comparable with the results obtained by using ours. Even in this case, it is

also remarkable that the good performance of their statistical criterion are not robust to

oversampling. This result suggests that, when data sets are drawn from a small number

of broad categories, using our variable selection criterion is appropriate.

In the online Appendix, Tables A1 to A4 examine the e¤ects of increasing the serial

correlation of the idiosyncratic components on the factor models. In particular, the e¤ects

of having higher autocorrelation of the series speci�c shock (measured by d) are analyzed

in Tables A1 and A2 whereas the e¤ects of assuming higher autocorrelation of the category

speci�c shocks (measured by c) are analyzed in Tables A3 and A4.

Tables A1 and A2 show the MSEs of the models when the serial correlation of the

series speci�c shock is assumed to grow from d = 0:1 to d = 0:75 in two scenarios, when the

serial correlation of the factor is low (A = 0:1 in Table A1) and when it is high (A = 0:75 in

Table A2). Tables A3 and A4 analyze the role of the serial correlation of category speci�c

shocks, which is measured by the parameter c. This parameter is allowed to increase from

c = 0:1 to c = 0:75 when the serial correlation of the factor is low (A = 0:1 in Table A3)

and when it is high (A = 0:75 in Table A4).

The MSEs reported in the tables show that increasing the serial correlation in the

idiosyncratic components contributes to deteriorate the overall performance of the mod-

els. However, the tables show a better accuracy of the factor models that use the 10

representative series compared to the factor models that use the disaggregate informa-

tion of the 100 series, especially when there is high serial correlation in the idiosyncratic

components. This result reveals that factor models that use large panels could be more

negatively a¤ected by serial correlation than factor models that use a reduced number of

selected indicators. Finally, the tables also show that the relatively larger negative e¤ects

of increasing the correlation of the idiosyncratic components on large panels are magni�ed

in the case of oversampled categories.
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The role of the number of observations in the performance of factor models is examined

in Tables A5 and A6. According to the theory, in absence of the typical data problems

which are accounted for by our simulations and that usually appear in empirical appli-

cations, the larger the sample size of the time series the better expected performance of

factor models that use the largest panels over the factor models that uses only a subset of

indicators. This theoretical result is documented in Table A5 where the reported MSEs

show that under low serial correlation of the factor and low correlation of the idiosyncratic

errors, the accuracy of the factor model that uses the ten representative indicators that

exhibit the largest correlation with the series of each category with respect to the fac-

tor model that uses disaggregate information diminishes. However, the tables also show

that when the serial correlation of the factor increases, the former clearly outperforms

the latter. Interestingly, the tables also reveal that the relative losses in accuracy due to

oversampling in factor models that use disaggregate information are still large when the

sample size increases even in absence of data problems.

It is worth noting that the number of factors has been restricted to be one according

to the data generating process. However, since the time series are generated in di¤er-

ent categories with high within-category and across-category correlation, this assumption

might be too restrictive in practice. To evaluate the e¤ect of this potential restriction that

could a¤ect the accuracy of factor models that use disaggregate information, we leave the

models to select the number of factors according to the procedure described in Bai and Ng

(2002), where the maximum number of factor is 11.17 Table A7 and A8 report the MSEd

and the averaged number of estimated factors across the 1000 replications both in the case

of balanced sets of categories and in the case of oversampled categories. According to the

previous discussion, we �nd that the higher the within-categories correlation, the larger

the number of estimated factors. The intuition is that the high correlation in each category

is interpreted by the model as if the series belonging to the same category would share a

common factor. Notably, although selecting the number of factors increases the accuracy

of factor models that use disaggregated information, the gains are not su¢ ciently large to

17We also selected the factors by using BIC. However, although this method selected lower factors, it

typically exhibited a deterioration in MSE.
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qualitatively alter the results obtained in this section, especially when the autocorrelation

of the factor is high and there are oversampled categories.

Finally, factor models are an appropriate framework to handle in an automatic manner

data sets with series that are available with di¤erent publication lags.18 Following Banbura

and Modugno (2014), the idea is to write the likelihood as if the data were complete and

to discard in the Kalman �lter the rows that correspond to missing observations. Table

A9 examines the e¤ects of missing data on factor models when 20% of time series end at

T -2, 40% of the time series end at T -1 and 40% of the time series end at T .19 In line with

these authors, we �nd that although the accuracy decreases when missing data appear in

the data, the losses are not large. Interestingly, our results suggest that the deterioration

in factor estimation is uniformly distributed across the models. This suggests that our

results are not qualitatively a¤ected by the presence of missing data.

3.2 Forecasting accuracy

This section examines how close the one-step-ahead out-of-sample forecasts based on the

estimated factors are to the target series, which has been generated from (6). Part of the

forecast performance analysis has already been developed in the previous section since, in

absence of autocorrelation in the target series (measured by ), the forecast performance

is expected to increase when the discrepancy between the actual and the estimated factors

diminishes.20 Accordingly, this section examines the e¤ects of di¤erent values of  ranging

from 0 (no inertia) to 0:8 (high degree of time series dependence) on forecast performance.

In addition, the section also addresses the e¤ects of the data problems outlined above on

the relative forecast performance of factor models that use aggregate and disaggregate

information.

Tables 4 to 6 evaluate the ability of factor models in forecasting.21 As in the case of

18For a deeper analysis of the e¤ects of missing data on factor models, the readers are referred to Banbura

and Modugno (2014) and the references therein.
19We tried with other combinations of missing data and the results where qualitatively similar.
20Note that the variance of the errors has been normalized �ey = 1.
21To save space, the tables that show the in-sample forecast analysis were omitted. In addition, the

tables that show the forecast analysis has been simpli�ed. More complete versions of these tables are

available from the authors upon request.
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factor estimates, the relative forecasting accuracy of factor models that use aggregate and

disaggregate information is examined under di¤erent scenarios, in which the simulations

allow for di¤erent degrees of cross-correlation across (�s from 0 to 0:5) and within (�l from

0 to 0:9) categories. Table 4 shows the MSFEs of the models when the factor exhibits

low serial correlation (A = 0:1) while Tables 5 and 6 display the MSEs of the models

when the factor autocorrelation increases to medium (A = 0:5) and to high (A = 0:75),

respectively.

The robustness analysis has been conducted through Tables A10 to A15 in the online

Appendix. Tables A10 and A11 display the MSFEs of the models when the autocorrela-

tion of the series speci�c shock increases to d = 0:75, Tables A12 and A13 show the e¤ects

of increasing the sample size to T = 150 and Tables A14 and A15 analyze the forecasting

accuracy when the number of common factors is selected as Bai and Ng (2002) describe.22

Overall, the tables show that the data problems lead to similar e¤ects on the forecasting

ability of the models than those observed on the analysis of factor estimation. When the

time series are correlated with the indicators already included in some categories, the

factor or the idiosyncratic components are persistent, or some categories are oversampled,

forecasting with disaggregate data performs worse than forecasting from a representative

series data set, especially when the categories are not highly correlated. Again, the tables

show the better accuracy of our proposed criterion of picking the series with the highest

average within category correlation with respect to the selection criterion suggested by

Boivin and Ng (2006), which is based on picking the time series with highest correlation

across the idiosyncratic components.

As expected, the results depend on the magnitude of the autocorrelation of the target

variable since it tends to mitigate the forecasts losses of those models which are more

contaminated with data problems. That is, the models that exhibited larger deteriorations

in factor estimation due to data problems present smaller increases in MSFE when the

autocorrelation of the target variable increases. The intuition is clear: the larger the

22The tables that examine the e¤ects of higher category-speci�c autocorrelation, measured by c are

omitted to save space. The results are similar to those obtained when the series-speci�c autocorrelation,

measured by d, increases.
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autocorrelation of the target variable the smaller the weights of the factor in forecasting

the time series and the lower the e¤ect on forecasting from mis-speci�ed models.

For example, Tables 1 and 3 show that if the set of parameters that measure the data

problems change from �s = 0, �l = 0, A = 0:1 to �s = 0:5, �l = 0:9, A = 0:75, the accuracy

of the factor estimation reduces from MSEd = 0:14 to MSEd = 0:59, which implies a

321% increase in MSE. However, under the same change in the set of parameters, Tables

4 and 6 show that the forecast accuracy moves from MSFEd = 1:12 to MSFEd = 1:52

when  = 0, which implies a 36% increase in MSE, and to MSFEd = 1:46 when  = 0:8,

which implies only a 30% increase in MSE.

In sum, in this section we �nd that adding data that bear little additional information

about the factor components does not necessarily lead factor models that use all the disag-

gregate information to improve upon the forecasts of factor models that use the aggregate

information that appear in the selected indicators. When the additional data are too

correlated with the data of some categories that are already included in factor estimation,

forecasting with disaggregated information tends to perform worse than forecasting from

aggregated data. Our results are stronger in the case of high persistence of the common

factor, in the case of high serial correlation of the idiosyncratic components and in the case

of oversampled categories. However, the relative good performance of models that use ag-

gregate information mitigates when the across-category correlation increases. In addition,

the gains in forecasting reduce substantially when the target series are persistent.

4 Empirical example

This section examines the forecasting accuracy of small versus large scale dynamic factor

models by using the data set of monthly macroeconomic indicators used in the balanced

panel factor estimation by Stock and Watson (2002a) for the US economy.23 The variables,

which are available over the sample 1959:01-1998:12, are standardized and transformed to

induce stationarity following their instructions.

23Although the unbalanced panel proposed by Stock and Watson (2002a) included 215 time series, we

concentrate on the time series that form the balanced panel.
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4.1 Preliminary analysis of data

According to Stock and Watson (2002a), Table 7 classi�es the data in 13 di¤erent cate-

gories: (1) real output and income (series 1-19); (2) employment and hours (series 20-44);

(3) retail and manufacturing trade (series 45-53); (4) consumption (series 54-58); (5) hous-

ing starts and sales (series 59-65); (6) inventories (series 66-76); (7) orders (series 77-92);

(8) stock prices (series 93-99); (9) exchange rate (series 100-104); (10) interest rates (105-

119); (11) money and credit (series 120-126); (12) price indexes (series 127-144); (13)

Average hourly earnings (series 145-146).24 This table displays the name of the categories

in column 1 and the number of the series included in each category in column 2. No-

tably, some categories contain more indicators than others. Therefore, the problem of

oversampling outlined in the simulations applies in this empirical analysis.

According to the motivation of the paper, much of the time series included in each

category are disaggregations of the headline concept and, therefore, are expected to exhibit

large correlations with each others. To gauge this fact in our example, Table 7 also shows

in the third column the averaged correlation across the series of each category. Overall,

the categories contains very collinear indicators, which exhibit averaged correlations of

more than 0:5 in the cases of housing starts and sales and exchange rates and of more

than 0:4 in the cases of real output and income, consumption, stock prices, and interest

rates.

In order to gain better insights on the set of indicators selected from the selection

method proposed in the paper, the fourth column of Table 7 shows the name of the

indicators that exhibit the largest averaged correlation with the series of each category

and the last column of Table 7 reports the magnitudes of these averaged correlations.

Overall, the representative indicators exhibit averaged correlations with the series of the

same category of more than 0:5, and in some cases the correlations rise up to 0:70 in the

case of exchange rates and to 0:74 in the case of housing starts. Interestingly, when �ner

disaggregations of sectorial data are included in a category, the representative indicator of

the category in the aggregate information scenario usually refers to the headline concept.

24The last category labelled as miscellaneous has been omitted from the empirical analysis since it

included only one series.
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In this sense, the proposed criterion of picking the series with the highest average within

category correlation selects economically meaningful sets of representative indicators from

each category.

4.2 Out-of-sample forecasting

We consider two real (industrial production and non agricultural employment) and two

nominal (consumer and producer price indexes) target series, which are called Yt. We

investigate the accuracy of the di¤erent speci�cations of dynamic factor models to forecast

the target series using the multi-step ahead forecasting procedure described in Stock and

Watson (2002a)

yht+h = �0 +

mX
i=0

�
0
i
bFt�i + vX

j=0

jzt�j + "
h
t+h: (26)

In this equation, yht+h is the h-step ahead covariance stationary transformation of the

original series Yt, where yht+h = ln(Yt+h=Yt), bFt�i is the i-lagged (i = 0; 1; :::;m) value of the
(r�1) vector of estimated factors, and zt�j is the j-lagged (j = 0; 1; :::; v) value of the 1-step

ahead covariance stationary transformation of Yt, where zt = ln(Yt=Yt�1). Expressions �
0
j

and j refer to the standard parameters of autoregressive processes. The term "ht+h is a

homoskedastic martingale di¤erence sequence with respect to the set of information at

time t. Finally, in line with previous studies in forecasting with empirical factors, our

model is allowed to choose values of m lying between 1 and 6 and v lying between 1 and

12 based upon the BIC selection criterion. In large scale factor speci�cations, r is either

imposed to be just one or selected as Bai and Ng (2002) describe.

The out-of-sample forecasting exercise begins with data from 1959:3-1970:1. Using

this sample, m, v, and (in some cases) r are chosen, and a h period ahead forecast is

formed by using values of the regressors at 1970:1 to give yh1970:1+h. Then, the sample is

updated by one period, the factors and the forecasting models (including m, v, and, in

some cases, r) are re-estimated, and a h-month forecast for 1970:1+h is computed (for

h = 1 it would be 1970:2, for h = 6 1970:7 and for h = 12 1971:1). The forecasting

procedure continues iteratively until the �nal forecast yh1998:12 which is made using data

until 1998:11 for h = 1, 1998:6 for h = 6 and 1997:12 for h = 12: In each iteration, the
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root of the squared deviation of h-ahead forecasts from actual data are computed and the

average of these �gures is labeled as RMSFE.

To investigate the bene�ts of forecasting from aggregate and disaggregate data, Tables

8 and 9 consider a forecast competition of di¤erent factor models. The �rst competitor is

a simple autoregressive model which is obtained when �i = 0 for all i = 1; :::;m in (26).

The second set of competitors are autoregressive models that are enlarged with the factors

obtained from factor models applied to reduced sets of indicators, which have been selected

by using three di¤erent alternatives. In the �rst alternative, the 13 representative indi-

cators are the series of each category that exhibit the highest averaged cross-correlation.

In the second alternative, the representative indicators are selected as in Boivin and Ng

(2006) by removing the time series with highest correlation across the idiosyncratic com-

ponents.25 In the third scenario, the 13 indicators are selected by randomly picking one

series from each category. The last competitor is a factor model that uses the disaggregate

information of the balanced set of the 146 indicators. In some cases, the number of factors

is restricted to be r = 1 while in others the optimal number of factors r� is determined by

using BIC in the case of ADFM and by using Bai and Ng (2002) in the case of DDFM .

To facilitate comparisons, the tables report the RMSFEs relative to the autoregressive

models. Hence, an entry less than one indicates that the factor model forecast is superior to

the autoregressive univariate forecast. According to Stock and Watson (2002a), regardless

of the factor model and the forecasting horizon used in the analysis, the forecasts of the

factor models generally improve over the benchmark univariate forecasts.

In addition, we �nd that the forecasting accuracy depends on the number of factors

included in the analysis. In the case of real variables, we �nd signi�cant improvements

in the forecast performance of factor models whose factors are determined by statistical

criteria over the forecasts computed from only one factor, especially when the forecasting

horizon becomes large. For example, Table 8 shows that when only one factor is included

in the factor forecasts, most of the relative RMSFEs are greater than 0:9, which implies

that the factor forecasts are only slightly more accurate than the univariate autoregressive

forecasts. However, Table 9 shows that in the case of nominal variables, we failed to �nd

25To allow for balanced comparisons, the method is iterated until the �nal dataset contains 13 indicators.
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the forecast deterioration when the number of factors is restricted to one.

According to our simulation results, which model do we expect to perform better?

We �nd that the factors are highly persistent and some categories are over-represented.

Therefore, the aggregate model should perform better, especially if there is high within-

category correlation. However, if the across-category correlations are high, forecasting

from the aggregate scenario could su¤er from a signi�cant deterioration. In addition,

the nominal target series are very persistent, which implies that the potential bene�ts

of the two alternatives could become negligible in these cases.26 In line with Banbura

and Modugno (2014) and Banbura, Giannone and Reichlin (2011), in Tables 8 and 9,

we �nd that including more disaggregated data does not improve the accuracy of the

forecasts. For less persistent target series of economic activity, the factor model that uses

aggregate information yields satisfactory forecasting results with respect to those of the

factor model that uses disaggregate information. In the case of nominal variables, which

are very persistent, we do not �nd substantial di¤erences between the two approaches.

This suggests that using the series with highest within-category averaged correlation can

reliably extract the relevant signals from the large data set suggested by Stock and Watson

(2002a), which relies on �ner disaggregations of the headline concepts of a small number

of broad categories.

Remarkably, Tables 8 and 9 show that the variable selection criterion proposed in

this paper, which is based on picking the series of each category that exhibits the largest

within-category correlation uniformly performs better than the variable selection suggested

by Boivin and Ng (2006) of removing the time series with highest correlation across the

idiosyncratic components and than the criterion of randomly picking one series from each

category. Therefore, we consider that our proposal could be the basis of factor models

that use aggregated data whose variable selection process does not follow statistical crite-

ria. Among others, examples are Mariano and Murasawa (2003), Nunes (2005), Aruoba,

Diebold and Scotti (2009), Aruoba and Diebold (2010), Camacho and Perez Quiros (2010),

and the ADS index, released by the Federal Reserve Bank of Philadelphia.

26An additional explanation is that all the categories are assumed to be equally informative in the Monte

Carlo analysis, while this might not be the case in practice.
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5 Conclusions

Two versions of dynamic factor models have received a growing attention in the recent

forecasting literature, the dynamic factors that use disaggregate information from large

data sets and the dynamic factors that use the aggregate information from a small number

of representative indicators. In this paper, we propose simulations that mimic di¤erent

scenarios of empirical forecasting when the large data sets rely on �ner disaggregations of

the headline concepts of a small number of broad categories.

As in economic applications, we assume that some categories are oversampled, that

cross correlation and serial correlation among idiosyncratic components may appear, that

the factors exhibit di¤erent degrees of correlation and that there could be missing data.

In this context, we ask whether it is su¢ cient to use only some key selected indicators of

each category (those with largest averaged within-category correlation) or it would be more

e¢ cient to use the disaggregated (sometimes redundant) information of each category.

We �nd that adding data that bear little additional information about the factor com-

ponents does not necessarily lead factor models that use all the disaggregate information

to improve upon the forecasts of factor models that use the aggregate information. When

the within-category idiosyncratic components are correlated, forecasting with disaggre-

gated data tends to perform worse than forecasting with aggregated data. Our results

are stronger in the case of high persistence of the common factor, in the case of high

serial correlation of the idiosyncratic components and in the case of oversampled cate-

gories. However, the relative good performance of models that use aggregate information

mitigates when the across-category correlation increases. In addition, the gains in fore-

casting reduce substantially when the target series are persistent. Therefore, our paper

contributes to the existing literature by adding some new lights on the existing black box

decisions in the use of disaggregate and aggregate approaches.

All the data problems outlined above are very frequent in empirical applications, as

in the example proposed in the paper, which focuses in the Stock and Watson (2002a)

large database. Therefore, in line with Banbura and Modugno (2014), we failed to �nd

substantial di¤erences between the aggregate and disaggregate approaches. This suggests
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that using the series with highest within-category averaged correlation could be a good

alternative to using large disaggregated data sets.

Therefore, the paper o¤ers a formal method to select the series for factor models

once the categories are �xed, which is a typical data structure faced by empirical macro-

economists. However, three three issues are left for further research. First, the analysis of

which categories to choose when the data structure described in this paper is not available.

Second, the issue of ragged edges, where apart from signal to noise ratio also timeliness

matters. Third, the comparison between dynamic hierarchical factor models and the factor

models used in this paper.
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Table 1. Common factor estimation (T=50, c=0.1, d=0.1, A=0.1) 
 

Correlation 
within 

categories ρl 

Same number of series in each 
category 

Over sampling one 
category 

a
pMSE  a

rMSE  dMSE  a
bMSE  a

rMSE  dMSE  a
bMSE  

 Correlation across categories ρs=0 

0 0.101 0.195 0.144 0.172 0.191 0.173 0.210 

0.1 0.101 0.192 0.148 0.176 0.191 0.175 0.217 

0.5 0.101 0.196 0.143 0.188 0.190 0.174 0.225 

0.9 0.101 0.195 0.195 0.231 0.192 0.330 0.337 

 Correlation across categories ρs=0.1 

0 0.116 0.207 0.143 0.190 0.204 0.164 0.218 

0.1 0.116 0.205 0.145 0.191 0.204 0.166 0.221 

0.5 0.116 0.205 0.158 0.201 0.203 0.181 0.229 

0.9 0.116 0.206 0.207 0.240 0.202 0.321 0.339 

 Correlation across categories ρs=0.5 

0 0.223 0.289 0.238 0.284 0.285 0.236 0.283 

0.1 0.223 0.286 0.240 0.285 0.284 0.238 0.283 

0.5 0.223 0.286 0.250 0.288 0.284 0.248 0.289 

0.9 0.223 0.287 0.287 0.309 0.284 0.313 0.335 

 Correlation across categories ρs=0.75 

0 0.350 0.383 0.348 0.399 0.382 0.342 0.392 

0.1 0.350 0.380 0.349 0.398 0.383 0.343 0.391 

0.5 0.350 0.381 0.356 0.392 0.376 0.350 0.389 

0.9 0.350 0.377 0.381 0.396 0.378 0.379 0.394 

 

Notes. The values of s  determine the cross-correlation of the idiosyncratic shocks 

across categories, and the values of l determine the cross-correlation of the idiosyncratic 

shocks across the series of the same category. T is the sample size. Parameters A and c 
measure the serial correlation of the factor and the idiosyncratic shocks, respectively. The 
Mean Squared Errors of the model that uses the 10 series that generate the categories, the 
model that uses the 10 series with higher correlation with the series of the same category, 
the model that uses all the 100 series, and the model that uses the series selected by 
following Boivin and Ng (2006), are denoted by a

pMSE , a
rMSE , dMSE , and a

bMSE , 

respectively. 
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Table 2. Common factor estimation (T=50, c=0.1, d=0.1, A=0.5) 
 
 

Correlation 
within 

categories ρl 

Same number of series in each 
category 

Over sampling one 
category 

a
pMSE  a

rMSE  dMSE  a
bMSE  a

rMSE  dMSE  a
bMSE  

 Correlation across categories ρs=0  

0 0.100 0.191 0.185 0.229 0.190 0.211 0.262 

0.1 0.100 0.190 0.187 0.231 0.188 0.213 0.263 

0.5 0.100 0.192 0.200 0.243 0.188 0.229 0.271 

0.9 0.100 0.191 0.251 0.274 0.187 0.370 0.362 

 Correlation across categories ρs=0.1  

0 0.115 0.204 0.200 0.244 0.201 0.220 0.269 

0.1 0.115 0.203 0.202 0.244 0.201 0.222 0.270 

0.5 0.115 0.204 0.215 0.255 0.200 0.237 0.278 

0.9 0.115 0.203 0.263 0.284 0.199 0.363 0.360 

 Correlation across categories ρs=0.5  

0 0.227 0.293 0.301 0.344 0.290 0.300 0.341 

0.1 0.227 0.291 0.303 0.345 0.288 0.301 0.342 

0.5 0.227 0.291 0.314 0.347 0.290 0.312 0.345 

0.9 0.227 0.291 0.353 0.363 0.288 0.374 0.385 

 Correlation across categories ρs=0.75  

0 0.372 0.399 0.425 0.473 0.403 0.418 0.466 

0.1 0.372 0.400 0.426 0.472 0.405 0.419 0.464 

0.5 0.372 0.407 0.434 0.467 0.402 0.427 0.461 

0.9 0.372 0.400 0.463 0.096 0.402 0.459 0.095 

Notes. See notes of Table 1. 
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Table 3. Common factor estimation (T=50, c=0.1, d=0.1, A=0.75) 
 
 

Correlation 
within 

categories ρl 

Same number of series in each 
category 

Over sampling one 
category 

a
pMSE  a

rMSE  dMSE  a
bMSE  a

rMSE  dMSE  a
bMSE  

 Correlation across categories ρs=0  

0 0.097 0.182 0.411 0.461 0.180 0.435 0.506 

0.1 0.097 0.182 0.413 0.455 0.180 0.437 0.481 

0.5 0.097 0.183 0.427 0.464 0.181 0.453 0.486 

0.9 0.097 0.182 0.477 0.489 0.180 0.566 0.541 

 Correlation across categories ρs=0.1  

0 0.112 0.195 0.427 0.468 0.192 0.446 0.488 

0.1 0.112 0.195 0.429 0.469 0.193 0.448 0.488 

0.5 0.112 0.196 0.443 0.477 0.194 0.463 0.496 

0.9 0.112 0.195 0.491 0.500 0.191 0.567 0.545 

 Correlation across categories ρs=0.5  

0 0.230 0.290 0.538 0.575 0.289 0.536 0.572 

0.1 0.230 0.291 0.539 0.578 0.286 0.537 0.573 

0.5 0.230 0.291 0.551 0.577 0.288 0.550 0.574 

0.9 0.232 0.289 0.593 0.561 0.286 0.608 0.569 

 Correlation across categories ρs=0.75  

0 0.406 0.425 0.682 0.729 0.432 0.674 0.721 

0.1 0.406 0.425 0.684 0.729 0.430 0.675 0.721 

0.5 0.406 0.425 0.693 0.722 0.426 0.685 0.713 

0.9 0.406 0.425 0.727 0.717 0.427 0.722 0.712 

Notes. See notes of Table 1. 
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Table 4. Forecasting accuracy (T=50, c=0.1, d=0.1, A=0.1) 
 

Correlation 
within 

categories ρl 

Persistency of 
the target 
series γ 

Same number of series in each 
category 

Oversampling one category 

a
pMSFE a

rMSFE dMSFE  a
bMSFE  a

rMSFE  dMSFE  a
bMSFE  

Correlation across categories ρs =0 

0 0 1.107 1.215 1.212 2.097 1.171 1.238 2.099 

 0.3 1.101 1.202 1.215 2.095 1.218 0.301 2.097 

 0.8 1.086 1.172 1.200 2.074 1.178 1.229 2.075 

0.9 0 1.107 1.354 1.301 2.094 1.378 1.388 2.104 

 0.3 1.101 1.146 1.304 2.093 1.166 1.388 2.100 

 0.8 1.086 1.273 1.295 2.069 1.318 1.374 2.076 

Correlation across categories ρs =0.5 

0 0 1.197 1.280 1.294 2.011 1.371 1.296 2.008 

 0.3 1.200 1.248 1.298 2.006 1.324 1.299 2.003 

 0.8 1.154 1.222 1.286 1.989 1.288 1.287 1.986 

0.9 0 1.197 1.324 1.362 2.001 1.248 1.386 2.004 

 0.3 1.200 1.320 1.366 1.996 1.441 1.388 1.999 

 0.8 1.154 1.320 1.358 1.978 1.394 1.375 1.982 

Notes. The estimated model is 1 1t t t yty F y e     . See notes of Table 1. 
 
 
 

Table 5. Forecasting accuracy (T=50, c=0.1, d=0.1, A=0.5) 
 

Correlation 
within 

categories ρl 

Persistency of 
the target 
series γ 

Same number of series in each 
category 

Oversampling one category 

a
pMSFE a

rMSFE dMSFE a
bMSFE a

rMSFE  dMSFE  a
bMSFE  

Correlation across categories ρs =0 

0 0 1.169 1.299 1.260 2.097 1.279 1.281 2.099 

 0.3 1.121 1.203 1.253 2.090 1.289 1.274 2.091 

 0.8 1.222 1.363 1.225 2.178 1.411 1.248 2.179 

0.9 0 1.169 1.300 1.347 2.086 1.302 1.429 2.090 

 0.3 1.121 1.313 1.341 2.079 1.306 1.418 2.082 

 0.8 1.222 1.328 1.318 2.167 1.204 1.408 2.170 

Correlation across categories ρs =0.5 

0 0 1.220 1.290 1.342 2.104 1.291 1.343 2.102 

 0.3 1.299 1.357 1.335 2.097 1.433 1.336 2.094 

 0.8 1.218 1.382 1.313 2.186 1.374 1.313 2.182 

0.9 0 1.220 1.259 1.416 2.089 1.238 1.435 2.091 

 0.3 1.299 1.395 1.410 2.082 1.397 1.426 2.084 

 0.8 1.218 1.357 1.396 2.170 1.293 1.415 2.172 
Notes. See notes of Tables 1 and 4. 
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Table 6. Forecasting accuracy (T=50, c=0.1, d=0.1, A=0.75) 
 

Correlation 
within 

categories ρl 

Persistency 
of the target 

series 
γ 

Same number of series in each 
category 

Oversampling one category 

a
pMSFE  a

rMSFE dMSFE  a
bMSFE  a

rMSFE dMSFE  a
bMSFE  

Correlation across categories ρs =0 

0 0 1.133 1.275 1.385 2.607 1.213 1.400 2.613 

 0.3 1.132 1.216 1.350 2.489 1.212 1.365 2.495 

 0.8 1.151 1.345 1.301 2.773 1.27 1.321 2.776 

0.9 0 1.133 1.201 1.462 2.286 1.273 1.515 2.284 

 0.3 1.132 1.212 1.425 2.228 1.205 1.477 2.225 

 0.8 1.151 1.243 1.387 2.511 1.27 1.461 2.504 

Correlation across categories ρs =0.5 

0 0 1.329 1.371 1.455 2.296 1.414 1.457 2.295 

 0.3 1.373 1.449 1.419 2.238 1.498 1.420 2.237 

 0.8 1.315 1.379 1.389 2.522 1.454 1.390 2.520 

0.9 0 1.329 1.401 1.521 2.606 1.378 1.531 2.613 

 0.3 1.373 1.410 1.485 2.487 1.428 1.494 2.494 

 0.8 1.315 1.326 1.468 2.772 1.231 1.485 2.776 

Notes. See notes of Tables 1 and 4. 
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Table 7. Data description 
 

Category name 
Number 

of 
series 

Averaged 
cross-

correlation

Representative series of the 
category 

Highest 
averaged cross-

correlation 

1. Real output and income 19 0.422 Industrial production: total index 0.570 

2. Employment and hours 25 0.323 
Employees on nonagricultural 

Payrolls: total 
0.475 

3. Real retail, 
manufacturing and trade 
sales 

9 0.381 Manufacturing & trade: total 0.623 

4. Consumption 5 0.403 Personal consumption expend, total 0.640 

5. Housing starts and sales 7 0.559 
Housing starts: total farm & 

nonfarm 
0.740 

6. Real inventories and 
inventory-sales ratios 

11 0.272 
Manufacturing & trade inventories: 

total 
0.426 

7. Orders and unfilled 
orders 

16 0.363 
Mfg new orders: mfg industries 

with unfilled orders 
0.435 

8. Stock prices 7 0.476 
S&P's common stock price index: 

composite 
0.635 

9. Exchange rates 5 0.515 
United States effective exchange 

rate 
0.701 

10. Interest rates 15 0.427 
Spread US treasury bills, secondary 

market 10-years and federal fund 
rate 

0.517 

11. Money and credit 
quantity aggregates 

7 0.286 Money stock: M2 0.345 

12. Price indexes 18 0.214 Cpi-u: all items 0.288 

13. Average hourly 
earnings 

2 0.313 
Average hourly earnings of 

production workers: manufacturing 
0.313 

Total 146  13  

 
Notes. The dataset, the definition of the thirteen categories, and the distribution of the 
indicators across these categories follows the Stock and Watson (2002a). The 
representative series of each category is the economic indicator that exhibits the largest 
averaged correlation with the series of the same category. The last column reports these 
correlations. 
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Table 8. Forecasting real variables  

 

 Industrial production Nonagricultural employment 

 Forecast horizon  Forecast horizon 

 h=1 h=6 h=12 h=1 h=6 h=12 
Forecast method RMSFE RMSFE 

AR 0.007  0.031 0.049 0.002  0.009 0.017 

 Relative (to the AR) RMSFE Relative (to the AR) RMSFE 

 Aggregate information 

Largest corr., r=1 0.96 0.96 0.92 0.92 0.89 0.86 

Boivin-NG, r=1 0.98 0.99 1.03 0.98 1.28 1.21 

Random, r=1 1.35 1.09 1.10 1.33 1.31 1.24 

Largest corr., r* BIC 0.87 0.73 0.52 0.91 0.78 0.63 

Boivin-NG, r* BIC 0.97 0.89 1.33 0.94 1.35 0.93 

Random, r* BIC 1.47 1.09 1.15 1.42 1.31 1.29 

 Disaggregate information 

r=1 0.88 0.81 0.85 0.76 0.88 0.88 

r* Bai-Ng 0.87 0.79 0.75 0.76 0.79 0.76 

 
Notes. The sample period is 1959:03-1998:12 and the out-of-sample forecast period is 
1971:01-1998:12. The competing models are the autoregressive model, and the 
autoregressive model extended with factors as follows. First, the factors use the aggregate 
information of the 13 indicators that exhibit the largest average autocorrelation with the 
series of the same category, of the 13 indicators selected as in Boivin and Ng (2006), and 
of randomly picking one series from each category. Second, the factors use all the 
disaggregate information of the 146 indicators. In some cases, the number of factors is 
restricted to be r=1 while in others the optimal number of factors r* is determined by 
using BIC or Bai and Ng (2002). 
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Table 9. Forecasting nominal variables  
 

 Consumer price index Producer price index 

 Forecast horizon  Forecast horizon 

 h=1 h=6 h=12 h=1 h=6 h=12 
Forecast method RMSFE RMSFE 

AR 0.002 0.010 0.021 0.008 0.026 0.046 

 Relative (to the AR) RMSFE Relative (to the AR) RMSFE 

 Aggregate information 

Largest corr., r=1 0.99 0.80 0.75 0.94 0.91 0.90 

Boivin-NG, r=1 1.31 2.22 2.45 0.97 1.36 1.47 

Random, r=1 1.87 1.87 1.80 1.01 1.15 1.22 

Largest corr., r* BIC 0.99 0.92 0.86 1.00 0.95 0.88 

Boivin-NG, r* BIC 1.43 1.79 2.21 0.99 1.22 1.28 

Random, r* BIC 1.77 1.88 1.76 0.98 1.15 1.31 

 Disaggregate information 

r=1 0.94 0.96 0.87 0.86 0.84 0.91 

r* Bai-Ng 0.98 0.96 0.90 0.87 0.82 0.91 

 
Notes. See notes of Table 9.  
 
 

 


