
 

Quantifying the impact: Are coastal areas impoverished 

by marine pollution?* 
 

 
Genoveva Aparicio Maximo Camacho+ Mariluz Maté-Sánchez-Val 
Technical University of 

Cartagena 
University of Murcia 

Technical University of 

Cartagena 

genoveva.aparicio@upct.es mcamacho@um.es mluz.mate@upct.es 
 

Abstract 

We propose a methodological framework to assess the causal impact of Harmful Algal Bloom (HAB) 

events on economic indicators at a territorial level, with special consideration for spatial effects. Using the Mar 

Menor region in Spain as a case study, we empirically apply our framework. Our findings indicate a 

significantly negative causal effect of marine pollution resulting from HAB events on income per capita at the 

census section level. We observe that this effect is exacerbated by spatial interactions among neighboring 

census sections adjacent to those directly affected by seawater degradation. These results underscore the 

importance of implementing effective environmental regulations to mitigate seawater pollution and proactive 

measures to safeguard the well-being of local populations. Our research provides valuable insights for future 

studies in similar coastal regions. 
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1. Introduction 

Addressing the relationship between marine deterioration and income is of utmost 

significance, given that more than one-third of the global population resides in coastal areas 

(Barbier, 2017). According to Costanza et al. (1998), these coastal regions are immensely 

valuable as they provide a wide array of ecosystem services, encompassing various goods 

and services. Notably, Zamboni et al. (2021) emphasized that the conservation of marine and 

coastal ecosystems has resulted in a rapidly expanding assortment of economic valuations 

worldwide. 

The major threats to marine-coastal ecosystems are anthropogenic pressures, 

primarily arising from intensive agricultural activities and urban development along the 

coast. Moreover, climate change is worsening the situation, with more frequent floods and 

rising temperatures intensifying the impact of human activities on ecosystems. Of particular 

interest for this study is the environmental distortions caused by the excessive nutrient input 

from agriculture, which can result in eutrophication of seawaters. In extreme cases, 

eutrophicated ecosystems suffer from algae blooms, which have a wide range of negative 

consequences on marine environments. Certain types of harmful algal blooms (HABs) pose 

serious risks for human and animal health. At the same time, HABs cause the waters turned 

turbid and greenish, making them easily visible for residents and visitors of coastal 

destinations.  

Hoagland and Scatasta (2006) demonstrated that the occurrence of HABs imposes 

substantial economic burdens worldwide. In Europe, they estimated these costs at 

approximately 813 million euros annually, encompassing expenses related to public health, 

commercial fisheries, recreation, tourism, and monitoring and management. Therefore, it is 

imperative to understand the economic impact of environmental degradation to prioritize 

national and regional efforts and advocate for the implementation of ecosystem protection 

measures, some of which remain underdeveloped (Groeneveld et al., 2018). 

In this context, it is crucial to develop robust methodologies for comprehensively 

assessing the economic effects of marine pollution, including HABs. By addressing this 

challenge, the aim is not only to grasp the magnitude of economic losses but also to inform 

environmental management decision-making and public policy to mitigate and prevent these 

impacts. This study proposes a methodological approach to evaluate the economic impact of 



HABs and marine pollution, aiming to provide an analytical framework that can be applied 

in diverse coastal contexts.  

To accomplish this objective, we adopt the approach proposed by Dubé et al. (2014) to 

modify the difference-in-differences (DID) framework, allowing for the incorporation of 

spillover effects resulting from spatial characteristics (SDID). By employing this method, 

we aim to capture the potential influence of neighboring areas on economic indicators. The 

rationale behind extending the traditional DID framework to incorporate spatial effects stems 

from the interconnected nature of coastal ecosystems. These ecosystems function as 

integrated systems and can experience disruptions in their equilibrium due to HABs, thereby 

affecting adjacent regions.  

Factors such as economic interdependencies, the interconnectivity of coastal ecosystems, 

and water circulation patterns collectively contribute to the potential spread and 

amplification of the pollution's impact. By examining not only the direct effects but also the 

spatial spillovers, we can more accurately assess the actual causal effect of coastal 

deterioration on economic indicators. This is crucial as examining only direct effects may 

underestimate the actual extent of the causal effect. 

In order to test the adequacy of our proposal, we develop an empirical application 

focused in the Mar Menor, in Spain, utilizing micro-territorial data obtained for census 

sections. While previous studies have identified a positive association between the economic 

values of ecosystem services and gross domestic product (Zamboni et al., 2021), to the best 

of our knowledge, we are the first to attempt quantifying the impact of marine deterioration 

on income per capita. 

The interest in the Mar Menor stems from its ongoing and critical eutrophication 

crisis. Our empirical findings suggest a significantly negative influence on annual income 

per capita for the census sections affected by the HAB in comparison to the non-coastal 

territories following the contamination of the Mar Menor. The presence of marine pollution 

is associated with a direct decrease of 6.7% in income per capita. Additionally, when the 

affected coastal section is surrounded by other territories impacted by seawater pollution, 

there is an additional decrease of 11.4% in income per capita. This indicates that pollution 

spillover from neighboring areas intensifies the negative economic consequences on the 

affected coastal census sections. Considering both the direct and indirect effects, the total 

causal effect of the 2016 harmful algal bloom event is estimated to be a substantial decrease 



of 18.1% in income per capita. In monetary terms, this translates to a substantial total income 

loss of 97.21 million euros the Mar Menor HAB. 

The following section presents a literature review that examines the economic impact of 

HABs and provides an overview of the case of eutrophication in the Mar Menor. Section 3 

describes the methodological approach employed in this study. Section 4 presents the case 

study of Mar Menor, including the datasets and empirical results. Finally, Section 5 delves 

into the discussion, conclusions, and policy recommendations. 

2. Background literature 

2.1. Harmful algal blooms 

Over the past four decades, there has been a notable increase in the frequency, severity, 

and extent of eutrophication worldwide (Ho et al., 2019). According to Sandifer et al. (2021), 

eutrophication is primarily attributed to the extensive use of nitrogen and phosphorus 

fertilizers in intensive agricultural and livestock activities. Alongside nutrient pollution from 

urban areas, these practices have been identified as the main threats to both freshwater and 

marine ecosystems (Gilbert and Burford, 2017). Under exceptional circumstances, 

eutrophicated ecosystems experience algae blooms in inland and coastal waters. Algae 

blooms refer to the excessive growth of microalgae in marine or saltwater environments, 

which can result in marine anoxia, massive fish mortality, seafood toxicity, and even human 

health issues (UNESCO/IOC Project, 2021). 

2.2. The economic impact of HAB 

Extensive literature states that healthier seawater ecosystems strength the economic activity 

in surrounding coastal regions. However, Hoagland and Scatasta (2006) observed that there 

is a relatively fewer number of studies focusing on the economic costs associated with 

HABs. This is surprising considering the significant expenses that can arise from HAB 

events. For instance, HABs can pose public health risks (Young et al., 2020), particularly 

through the consumption of contaminated seafood or exposure to algal toxins via inhalation 

or skin contact (Berdalet et al., 2016). Furthermore, HABs can impede recreational and 

tourist activities (Morgan et al., 2009), increase the costs of water monitoring and treatment 

(Park et al., 2013), disrupt commercial uses such as fisheries (Weir et al., 2022), and result 

in the loss of aesthetic and cultural value (Willis et al., 2018). 



Hoagland and Scatasta (2006) identified four primary reasons that explain this research 

deficiency: a lack of data on HAB events, the infrequency of their occurrence in many areas, 

the limited scale of their economic effects, and the high costs associated with conducting 

appropriate studies, often involving survey design. Consequently, Groeneveld et al. (2018) 

highlighted that most existing studies aiming to estimate the economic losses of HABs rely 

on value assessments based on stated preferences of respondents. Examples of such studies 

include Dyson and Huppert (2010), Zhang et al. (2022), and Boudreaux et al. (2023). 

Conversely, studies that examine the costs of HABs using actual observational data are 

much less common. A few notable examples include Larkin and Adams (2007), who utilized 

time series information from the Florida Department of Revenue (FDOR) to analyze the 

impact of HAB events on business revenues in the restaurant and lodging sectors along the 

northwest coast of Florida between 1996 and 1999. Their findings revealed a direct reduction 

of 29% to 35% in average monthly revenues attributed to these events. Additionally, Zhang 

et al. (2022), leveraging nationwide data on property values in the United States, discovered 

robust evidence for the Upper Midwest and South regions, demonstrating that the frequency 

of cyanoHABs diminishes the capitalized value of amenity and recreation services for near-

shore homes. Sampat et al. (2021) examines the economic impacts of harmful algal blooms 

(HABs) caused by nutrient pollution from livestock waste, proposing a computational 

framework to quantify these impacts. They highlight the importance of assessing the 

environmental and socioeconomic effects of phosphorus pollution in affected regions, such 

as the case of the Upper Yahara watershed area in Wisconsin. The study reveals that every 

excess kilogram of phosphorus runoff from livestock waste in this region results in total 

economic losses of 74.5 USD, driving the need to manage waste in a sustainable manner to 

effectively reduce nutrient pollution. 

3. Methodological proposal  

We utilize a quasi-natural experiment approach, leveraging longitudinal data from 

designated treatment and control groups. The objective is to estimate the causal effect of 

seawater pollution on an economic variable, with a specified break date. By harnessing the 

extensive dataset available, we can accurately evaluate the impact of marine pollution on 

income in coastal regions. 

3.1. Difference-in-Differences Model in the HAB context 



Difference-in-Differences (DID) is a robust econometric approach commonly used to 

evaluate causal effects of interventions or events on a specific outcome variable. In our 

proposal, we consider two distinct groups: the treatment group, which comprises territories 

directly affected by the HAB event, and the control group, consisting of unaffected or less 

affected regions. Additionally, we introduce the occurrence of an event that could further 

differentiate between the control and treatment groups. The standard DID model is structured 

as follows: 

𝑌𝑌𝑖𝑖𝑖𝑖  =  𝛼𝛼0  +  𝛼𝛼1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖  + 𝛼𝛼2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖  + 𝛼𝛼3(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖) + 𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽 + 𝜀𝜀𝑖𝑖𝑖𝑖, (1) 

 

where 𝑌𝑌𝑖𝑖𝑖𝑖 is the economic variable which causal effect is examined in the territory 𝑇𝑇, with 

𝑇𝑇 = 1, … ,𝑁𝑁, at time period 𝑇𝑇.  

In this expression, the intercept 𝛼𝛼0 signifies the average value of the explanatory 

variable in the control group before the treatment. The coefficient 𝛼𝛼1  captures how much 

the average outcome of the control group has changed in the post-event period. Additionally, 

𝛼𝛼2 indicates the difference between the treatment and control groups before the HAB event. 

The row vector 𝑋𝑋𝑖𝑖𝑖𝑖 represents the set of control variables, and the column vector 𝛽𝛽 

determines whether these covariates on the explanatory variable 𝑌𝑌𝑖𝑖𝑖𝑖. The error term 𝜀𝜀𝑖𝑖𝑖𝑖 is 

assumed to be independently and identically distributed with a normal distribution with 

mean zero and finite variance 𝜎𝜎2. Of particular importance for this analysis is the interaction 

term 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖, which is a dummy variable that takes a value of 1 exclusively for the 

treatment group during the post-event period. The coefficient 𝛼𝛼3 associated with this term 

captures the causal effect of the examined event on the economic variable. A statistically 

significant and negative coefficient would indicate a detrimental impact of the HAB event 

on the economic variable in the treatment group compared to the control group. 

As noted by Rubin (1978, 1990), a key assumption needed for identification of causal 

effects in the linear DID stated in (1) is the stable unit treatment value assumption (SUTVA). 

This implies that potential outcomes for territory i are unrelated to the treatment status of 

other territories. Due to the design of our quasi-experiment, the HAB event specifically 

affects territories delineated by geographic boundaries. Consequently, there are reasons to 

expect that the treatment effects may spill over onto neighboring units in closer proximity. 

Firstly, coastal areas often share economic interdependencies, such as tourism, fisheries, and 

recreational activities. When seawater pollution occurs in a specific coastal territory, 



neighboring units may experience indirect economic repercussions. For example, a decline 

in tourism or a decrease in fishery productivity in one area can have adverse effects on the 

tourist services provided by nearby census sections.  

Secondly, seawater pollution can trigger ecological feedback mechanisms that 

exacerbate the spread of pollution. For instance, excessive nutrient inputs can fuel algal 

blooms, which in turn deplete oxygen levels in the water, leading to further ecological 

degradation. These cascading effects can extend to neighboring units and contribute to the 

propagation of spillover effects. Thirdly, coastal territories often share water bodies, such as 

bays or estuaries, which can facilitate the transport of pollutants. Seawater pollution in one 

area can be carried by water currents or tidal movements to adjacent regions, leading to 

contamination and environmental degradation in these neighboring units. 

Thus, the presence of these potential spatial spillovers in this analysis would violate 

the SUTVA assumption. To ensure the validity of our findings, it is necessary to explicitly 

consider space in this context and integrate spatial relationships directly into the traditional 

DID approach. With this purpose, we use a weighting matrix 𝑊𝑊 of known constants, which 

represents the spatial connectivity structure among the examined territories. In the case we 

compare two pre and post event years, then 𝑊𝑊 is the row standardized version of a 2𝑁𝑁 × 2𝑁𝑁 

binary matrix where the 𝑤𝑤(𝑖𝑖,𝑗𝑗) element is set to 1 if 𝑗𝑗 is one of the 𝐾𝐾 nearest neighbors of 𝑇𝑇, 

indicating spatial adjacency; otherwise, it is set to 0.1 

3.2. Spatial DID model in the HAB event. 

In spatial econometric literature, several spatial specifications have been developed to 

account for spatial spillover effects (Pace and LeSage, 2009; Elhorst, 2014). These 

specifications aim to address the spatial correlations caused by dependent variables, the error 

term, and independent variables in the model. The models that incorporate these spatial 

effects are commonly known as the spatial autoregression (SAR) model, the spatial error 

model (SEM), and the spatial Durbin model (SDM), respectively. Following, for example, 

Chagas et al. (2016), Diao et al. (2017), Qiu and Tong (2021) or Sunak and Madlener (2016), 

we consider these three specifications of spatial difference in differences models (SDID) that 

account for treatment effects estimation in settings with spatial dependence.  

The first version of SDID that we consider is based on SAR models: 

 
1 As is customary in spatial analysis, it is assumed that the diagonal entries of 𝑊𝑊 are zero. 



𝑌𝑌𝑖𝑖𝑖𝑖 =  𝛼𝛼0  +  𝛼𝛼1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖  +  𝛼𝛼2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖  +  𝛼𝛼3(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖) + 𝜌𝜌(𝑊𝑊𝑌𝑌)𝑖𝑖𝑖𝑖 + 𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽 + 𝜀𝜀𝑖𝑖𝑖𝑖, (2) 

where 𝜌𝜌 ∈ [−1,1]. This specification incorporates the spatially weighted dependent variable 

as an endogenous regressor on the right-hand side of the standard DID equation (𝜌𝜌(𝑊𝑊𝑌𝑌)𝑖𝑖𝑖𝑖). 

It assumes that the economic indicator of the territory 𝑇𝑇 is directly influenced by the spatially 

weighted dependent variable of neighboring territories denoted as 𝑗𝑗. The error term 𝜀𝜀𝑖𝑖𝑖𝑖 is 

assumed as in (1). 

The second version of SDID that we consider relies on SEM models: 

𝑌𝑌𝑖𝑖𝑖𝑖  =  𝛼𝛼0  +  𝛼𝛼1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖  +  𝛼𝛼2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖  +  𝛼𝛼3(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖) +  𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽 + 𝑢𝑢𝑖𝑖𝑖𝑖, 

𝑢𝑢𝑖𝑖𝑖𝑖 = 𝛿𝛿(𝑊𝑊𝑢𝑢)𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖. 
(3) 

In this equation, 𝑢𝑢 represents a vector that combines the error terms across all the census 

sections 𝑇𝑇 = 1, … ,𝑁𝑁, for pre and post HAB event years 𝑇𝑇. Unlike equation (2), specification 

(3) explicitly incorporates the modeling of spatial autocorrelation between the disturbances, 

quantified by the scalar parameter 𝛿𝛿. In this case, the spatial correlation between territories 

would be caused by unobserved characteristics, which are independent of the included 

covariates. The error term 𝜀𝜀𝑖𝑖𝑖𝑖 is assumed as in (1). 

Finally, we explore a third approach that incorporates spatial dependence in the DID 

framework, based on the SDM model: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼0 + 𝛼𝛼1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝛼𝛼2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖+𝛼𝛼3(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖) + 𝜌𝜌(𝑊𝑊𝑌𝑌)𝑖𝑖𝑖𝑖 + 𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽

+ (𝑊𝑊𝑋𝑋)𝑖𝑖𝑖𝑖𝛾𝛾 + 𝜀𝜀𝑖𝑖𝑖𝑖, 
(4) 

where 𝑋𝑋 is the 𝑇𝑇𝑁𝑁 × K matrix stacking the covariates across all the territories for pre and 

post event years 𝑇𝑇 and 𝐾𝐾 represent the number of explicative variables. This specification 

extends the SAR model by including spatially lagged covariates. Apart from the spatially 

weighted dependent variable, it allows for the inclusion of both direct effects 𝛽𝛽 of the 

covariates and indirect spillover effects 𝛾𝛾 from the neighboring census sections' covariates. 

As in (1), 𝜀𝜀𝑖𝑖𝑖𝑖 follows an independent normal distribution with a mean of zero and a finite 

variance of 𝜎𝜎2. 

It is widely recognized that direct interpretations of impacts through partial 

derivatives are not valid in spatial analyses (LeSage and Pace, 2009). To illustrate this, let's 

consider the Durbin-related version of SDID models as a reference, expressed in matrix 

form: 

𝑦𝑦 =  𝜌𝜌Wy + 𝑋𝑋∗𝛽𝛽∗ + W 𝑋𝑋∗γ∗ + ε. (5) 

 



In equation (5), 𝑋𝑋∗expands 𝑋𝑋 by adding four columns: a column vector of ones, a 

vector stacking the values of the time dummy variable, a stacked vector of the treatment 

dummy variable, and a stacked vector of the multiplicative dummy. In a spatial Durbin 

model, a change in a particular explanatory variable 𝑘𝑘 in census section 𝑇𝑇  has a direct effect 

on that census section, but also an indirect effect on the census sections. 

 

Specifically, the matrix of partial derivatives of 𝑦𝑦 at the census section i at time t with 

respect to the 𝑘𝑘th explanatory variable of 𝑋𝑋∗ at the census section j at time t can be obtained 

as: 

 

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑦𝑦1
𝜕𝜕𝜕𝜕1𝑘𝑘

…
𝜕𝜕𝑦𝑦1
𝜕𝜕𝜕𝜕2𝑛𝑛𝑘𝑘

⋮ ⋱ ⋮
𝜕𝜕𝑦𝑦𝑛𝑛
𝜕𝜕𝜕𝜕1𝑘𝑘

…
𝜕𝜕𝑦𝑦𝑛𝑛
𝜕𝜕𝜕𝜕2𝑛𝑛𝑘𝑘⎦

⎥
⎥
⎥
⎤

= (𝐼𝐼2𝑁𝑁 − 𝜌𝜌𝑊𝑊)−1 �
𝛽𝛽𝑘𝑘∗ ⋯ 𝜔𝜔1,2𝑛𝑛𝛾𝛾𝑘𝑘
⋮ ⋱ ⋮

𝜔𝜔2𝑛𝑛,1𝛾𝛾𝑘𝑘 ⋯ 𝛽𝛽𝑘𝑘∗
�, (6) 

where I2N is an 2N-dimensional identity matrix. The coefficient 𝛽𝛽𝑘𝑘∗ captures the direct effect, 

quantifying the change in the economic variable 𝑦𝑦 in the territory 𝑇𝑇 resulting from a specific 

change. However, there is an additional effect to consider: the average effect on the territory 

𝑇𝑇 due to changes in the explanatory variables of the territories 𝑗𝑗 (where 𝑗𝑗 ≠ 𝑇𝑇). This indirect 

effect is represented by the coefficients 𝜔𝜔𝑖𝑖,𝑗𝑗 and 𝛾𝛾𝑘𝑘, where 𝜔𝜔(𝑖𝑖,𝑗𝑗) represents the (𝑇𝑇, 𝑗𝑗) element 

of the weight matrix 𝑊𝑊. The total effect is obtained by summing the direct and indirect 

effects.2 

4. Empirical application: The case of Mar Menor 

The Mar Menor (Spain), the largest coastal hypersaline lagoon in the Mediterranean basin, 

suffers from eutrophication due to the nutrients that receives from intensive agriculture at 

the Campo de Cartagena watershed (Álvarez-Rogel et al., 2020) and, to a lesser extent, from 

urban wastewater altering its ecological state (Ruiz-Fernández, 2019). Studies have shown 

negative economic impacts, such as decreasing housing prices and the risk of business failure 

in the area (Lamas et al., 2023; Mate-Sanchez-Val and Aparicio-Serrano, 2023). Marine 

pollution has led to a reduction in Airbnb rental prices and tourists' willingness to switch to 

less contaminated municipalities (Fernández Ferrero et al., 2022). The importance of 

 
2 In SEM models, the matrix of the right-hand term of (6) is a diagonal matrix with elements equal to 𝛽𝛽𝑘𝑘∗. In 
SAR models, the main diagonal of this matrix contains null elements. 



implementing effective environmental regulations to mitigate pollution in the Mar Menor 

and protect the local economy is emphasized (Alcon et al., 2021; Alcon et al., 2022). 

4.1. Data 

In this section, we introduce the study case in the Mar Menor. In particular, we 

investigate the causal effect of seawater deterioration on the income per capita using a SDID 

approach. In addition we collect spatial data and quantitative variables. The spatial data 

allows us to identify the specific territorial units affected by seawater deterioration, which 

we classify as treatment spatial units. We select census section as the level of disaggregation 

in this analysis. This choice allows for detailed analysis of smaller geographical areas and 

facilitates data comparability, targeted policy development, and social issue identification. 

4.1.1. Treatment and control group  

We have limited our sample to the Region of Murcia as the Mar Menor lagoon falls 

administratively within this region, excluding other coastal regions in Spain that might be 

affected by distinct pollution events (see Figure 1). The impact of seawater pollution affects 

mainly the coastal census sections of the Mar Menor lagoon, which are identified as the 

treatment group. The census sections located further inland are not exposed to treatment and 

belong the control group. 

We distinguish the observations belonging to the treatment group, encompassing 

areas directly affected by the seawater deterioration event, by generating a binary dummy 

variable termed 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖. This variable takes a value of 1 to indicate the presence of treatment 

or exposure to the seawater pollution, while a value of 0 denotes the absence of pollution 

affects. To visualize the geographical distribution of census sections in the treatment group 

(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = 1) distinct from the control group (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = 0), we have highlighted the census 

sections that belong to the treatment group in light blue color on Figure 2. 

4.1.2. Turning point date 

To implement a DID approach with a temporary event determined by deterioration of the 

Mar Menor lagoon, we require to consider both pre and post stages surrounding the 

occurrence of the seawater pollution event. This necessitates establishing a specific period 

to demarcate the transition between these two stages. 

For this purpose, our study focuses specifically on the concentration of chlorophyll-

a as a crucial indicator for monitoring phytoplankton and assessing the ecological status of 



water bodies. Elevated chlorophyll-a levels often indicate the presence of cyanobacteria 

blooms, which are instrumental in understanding the overall health of marine ecosystems. 

Previous research by Aguilar et al. (2016) has demonstrated a notable increase in 

chlorophyll-a concentration during the 2000s in the Mar Menor. However, a significant 

turning point occurred in the summer of 2016, marking a distinct transformation in the Mar 

Menor. Since then, the seawater has exhibited diverse dynamics of water quality, 

characterized by varying appearances of greenish and turbid conditions. 

Monitoring the water quality in the Mar Menor lagoon has greatly benefited from the 

detection of chlorophyll-a concentration using satellite imagery (Mate-Sanchez-Val and 

Aparicio-Serrano, 2023). Leveraging sensing data from the European Space Agency's 

Sentinels-2 and 3 satellites, Figure 3 showcases an August 2016 satellite image that vividly 

illustrates the exceptional levels of chlorophyll-a concentration in the Mar Menor starting in 

2016. This situation of an abnormal content of chlorophyll-a and turbidity in the Mar Menor 

waters persisted until 2018 (IEO, 2020). 

Given this evidence, we designate the period 2016-2018 as the pivotal turning period 

for our DID model. To account for this issue in a DID model, we create a binary indicator 

(variable 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇), which captures the temporal effect by indicating whether the observation 

is in the post-event stage (Time = 1) or pre-event stage (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0). 

4.1.3. Income per capita and control variables 

To gather data on income per capita at a detailed level of census section disaggregation, we 

utilize the Household income distribution map dataset provided by the National Institute of 

Statistics of Spain (INE). This dataset contains annual data starting from 2015 and allows us 

to examine income patterns at the census section level. Our dependent variable is the natural 

logarithm of the income per capita in Euros (variable income). 

As control variables, we choose a set of demographic and economic factors that are 

available at census section level. Specifically, we use the percentage of residents of foreign 

nationality (variable foreign); the natural logarithm of the population per square kilometer 

(variable density); the Gini index expressed as a percentage, which measures income 

inequality (variable gini); the working population, measured as the percentage of people 

between 16 and 64 years old (variable working); and the proportion of the labor force that is 

unemployed (variable unemployment). By including these control variables in the analysis, 



the aim is to account for potential confounding factors that may influence income and to 

isolate the specific impact of Mar Menor pollution on income.  

By merging the available data, we construct a dataset comprising 1,914 observations for two 

distinct time periods: pre-event (2015) and post-event (2019), with the HAB event occurring 

in 2016. This temporal division enables us to compare income levels before and after the 

occurrence of the harmful algal bloom. Table 1 provides a summary of the selected variables, 

making distinction between the census sections of the control group and those of the 

treatment group. The mean and standard deviations serve as statistics to provide a descriptive 

overview, providing insights into the characteristics of the dataset and facilitating a 

preliminary understanding of the income dynamics associated with the studied time periods. 

4.2. Results 

4.2.1. Exploratory spatial data analysis 

In order to examine potential spatial patterns in the distribution of income per capita among 

the census sections of the Spanish autonomous community of Region de Murcia, we 

conducted an exploratory spatial data analysis. This analysis holds significance as the 

identification of spatial patterns would question the assumptions made by the classical DID 

model and provide rationale for incorporating a spatial version of this methodology. 

To begin, we present in Figure 4 a choropleth map displaying the income per capita 

distribution across census sections, with territories categorized into quartiles based on their 

income levels. This visual representation effectively showcases the spatial distribution of 

income, highlighting regions with high, medium, and low income per capita. By examining 

the quartiles, we discern clear indications of spatial association in the distribution of income 

per capita across the study area. 

Furthermore, we rigorously examine the significance of the spatial distribution by 

conducting tests for spatial autocorrelation in income per capita and other explanatory 

variables. Spatial autocorrelation measures the extent to which values of a variable exhibit 

correlation with neighboring values. This analysis enables us to identify the presence of 

spatial associations, indicating that territories with similar levels of the analyzed variable are 

geographically clustered. To accomplish this, we employ the Moran’s I test, utilizing 

different spatial weighting matrices defined through the k-nearest neighbor’s approach. 

Table 2 shows that the Moran’s I statistic not only for the dependent but also for the 

control variables is statistically significant at the 1% level. This indicates the presence of 



spatial correlation among income per capita, the proportion of foreign residents, population 

density, inequality, the proportion of working population, and unemployment across census 

sections within the region. In terms of the sign of the statistic, we observe that all variables 

exhibit positive spatial correlation. Notably, income per capita, the dependent variable, 

displays the strongest spatial correlation in terms of magnitude. These findings provide a 

strong justification for estimating the SDID model. 

4.2.2. Spatial Difference in Differences model (SDID) results 

Despite the spatial patterns detected with the exploratory spatial data analysis, to enable a 

comprehensive comparison and further validate our findings, we present in this section the 

results of both DID and SDID approaches. Including DID can evaluate the differential 

effects and examine whether the spatial component significantly improves the model's 

explanatory power, which enables a more informed interpretation of the results. Both, DID 

and SDID models, are estimated at census section territorial level of aggregation considering 

the HAB event during the period 2016-2018 and as pre and post stages during the years 2015 

and 2019, respectively.  

The standard DID estimator is assessed in the second column of Table 3. The estimated 

treatment effect, represented by the parameter capturing the interaction between the 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 dummies, suggests a negative influence of approximately 7% on income per 

capita for the census sections affected by the HAB in comparison to the control group 

following the contamination of the Mar Menor. However, it is crucial to note that this impact 

does not reach statistical significance based on the standard specification. 

All control variables exhibit statistical significance at the 1% and their signs align with 

our expectations. A higher proportion of foreign-born individuals is associated with a 

decrease in average income per capita, as evidenced by a decrease of 0.7% for every 1% 

increase in the percentage of foreign-born residents. This negative relationship is in line with 

previous literature on the labor market, which has found that foreign residents often hold 

lower-wage positions. This is because individuals from foreign backgrounds frequently 

encounter barriers to accessing higher-paying employment opportunities due to factors such 

as language proficiency, recognition of foreign qualifications, or discrimination in the labor 

market (Kerr and Kerr, 2011; Ubalde and Alarcón, 2020). Therefore, the higher proportion 

of foreign-born residents within these coastal regions may contribute to downward pressure 

on the average per capita income of the surveyed territory, reflecting the prevalence of lower-

paying positions held by this demographic group.  



Conversely, population density displays a positive association with income per capita. 

The coefficient for the Gini index regression reveals that a one-unit increase in the Gini 

Index is associated with a 0.91% increase in residents' income. This suggests that a more 

unequal distribution of income is associated with a higher overall income level. Income 

inequality and a higher overall income level can coexist within a community. For example, 

consider a small town with two residents: Person A earns $10,000 per year, and Person B 

earns $50,000 per year. Despite the income disparity between Person A and Person B, the 

total income for the community is $60,000, resulting in an average income of $30,000. In 

this scenario, the unequal distribution of income, with Person B earning significantly more 

than Person A, contributes to the higher overall income level within the population. Lastly, 

as anticipated, unemployment is significantly and negatively associated with income per 

capita. 

To evaluate the need for spatial extensions in the Difference-in-Differences (DID) 

model, the first column of Table 4 presents the Lagrange Multiplier (LM) tests and their 

robust versions (RLM). These tests assess whether the inclusion of spatial terms significantly 

enhances the model's fit by comparing the likelihood of a model with spatial dependence to 

a model without spatial dependence. Specifically, the table displays the Lagrange Multiplier 

test results for spatial lag dependence (LMlag and RLMlag) and spatial error dependence 

(LMerr and RLMerr). The significance of these tests confirms the existence of a spatial 

dependence structure in the DID model, indicating the necessity for spatial extensions.3 

Building upon the findings, Table 3 presents the estimation outcomes of the SDID model 

incorporating a spatial Durbin structure (SDM). This model specification serves as an 

appealing initial framework for spatial econometric modeling due to its ability to facilitate a 

top-down model selection approach (Floch and LeSaut, 2018). By employing likelihood 

ratio tests, we can effectively identify the most suitable model specification to capture the 

dataset's characteristics. 

The SDID model with spatial Durbin structure encompasses the other well-established 

specifications in the literature as special cases. When 𝛾𝛾 = 0, the model reduces to the spatial 

lag model (SAR), while a simplification of SDM arises when 𝛾𝛾 = −𝜌𝜌𝛽𝛽, leading to the spatial 

error model (S EM). Furthermore, the model accommodates the DID specification that does 

not account for spatial patterns when 𝜌𝜌 = 0 and 𝛾𝛾 = 0. Specifically, an examination of the 

first four rows of results presented in Table 4 overwhelmingly suggest the effectiveness of 

 
3 Throughout this section, we present the results using a weighting matrix based on the 4-nearest neighbor’s 
approach. It is important to note that the findings remain robust across k values ranging from 1 to 5. 



employing. In addition, the findings in the last four rows strongly favor the use of the spatial 

Durbin structure. 

The third column of Table 3 presents the empirical results of the SDID model 

incorporating a spatial Durbin structure. The spatial autoregressive parameter 𝜌𝜌 is estimated 

to be precisely 0.675. This positive and statistically significant estimate firmly confirms the 

presence of spatial autocorrelation in income among the census sections. In addition, the 

spatial lags of these explanatory variables are also significant. These findings underscore the 

significance of incorporating spatial effects when examining the causal impact of the 2016 

HAB event on income per capita, enhancing the accuracy and validity of the analysis.  

The SDID estimation provides robust evidence that marine pollution induced by the 

HAB event in 2016 has a detrimental causal impact on income per capita due to the negative 

sign estimated for the parameter of the multiplicative dummy 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. The positive 

coefficients associated with the Time and Treat dummies signify a favorable average change 

in income per capita over time for the control group and a positive average difference in 

income per capita between the treatment and control groups before the occurrence of the 

HAB event, respectively. Furthermore, the parameters of the control variables exhibit the 

anticipated signs and all of them are statistically significant, reinforcing their role in 

influencing income per capita. These results align with the expectations established by the 

standard DID model.  

4.2.3. Direct and indirect marginal effects 

The marginal effects are not directly interpretable from the previous SDID model given the 

significance of the spatial structures (Pace and Le Sage, 2009). Applying equation (6), we 

compute the direct and indirect marginal effects to be able to interpretate the coefficients. 

The direct impacts quantify the changes in income per capita within the same census district 

resulting from variations in a specific explanatory variable. These effects provide insights 

into the immediate influence of the variable on income per capita within the focal district. In 

contrast, the indirect impacts assess the repercussions on income per capita in neighboring 

census districts due to changes in the explanatory variable. These effects capture the 

spillover or diffusion effects, reflecting how variations in the corresponding explanatory 

variable spill over to impact income per capita in nearby districts. To obtain a holistic 

understanding of the overall impact, the total impacts are computed as the combined sum of 

both direct and indirect effects. 



Table 5 shows marginal effects to capture the comprehensive consequences on income 

per capita. These results indicate that marine pollution has had a significant impact on the 

income per capita in the Mar Menor coastal census sections. Specifically, the direct effect of 

the causal term, captured by the interaction between 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 dummy variables, 

reveals that the presence of marine pollution has led to a decrease of 6.7% in the income per 

capita in the affected areas. Moreover, our analysis reveals an interesting indirect effect when 

considering the spatial context. When the coastal section affected by marine pollution is 

surrounded by territories also impacted by seawater pollution, the income per capita 

experiences an additional decrease of 11.4%. This suggests that the spillover effects of 

pollution from neighboring areas exacerbate the negative economic consequences on the 

affected coastal census sections. 

Taking into account both the direct and indirect effects, the total effect of the harmful 

algal bloom event in 2016 is estimated to be a substantial decrease of 18.1% in income per 

capita, when comparing the coastal census sections of the treatment group with the inland 

census sections of the control group before and after the seawater event. This highlights the 

significant economic implications of the HAB event on the well-being of the local population 

and underscore the importance of addressing and mitigating marine pollution to preserve and 

protect the economic vitality of the Mar Menor coastal region. Implementing targeted 

measures to reduce pollution not only benefits the affected areas directly but also helps 

prevent the spillover effects on neighboring territories, thereby safeguarding the overall 

economic well-being of the coastal communities. 

In relation to the explanatory variables, the coefficient for the time effect suggests a 

positive trend in income per capita of 10.6% in the absence of the treatment, which aligns 

perfectly with the observed data patterns. The coefficient for the treatment effect indicates a 

total average difference of 10.1% in income per capita between the census districts located 

along the coast of Mar Menor and the control group of other census districts prior to the 

occurrence of seawater pollution. Although this difference is not statistically significant.  

While of secondary importance to the analysis conducted in this study, the findings 

presented in Table 5 shed light on additional insights. Specifically, a higher proportion of 

foreign-born residents is found to have a negative association with the overall income level, 

highlighting the dominance of lower-wage positions among this demographic group. 

The unemployment variable also presents significant and negative marginal effects, 

supporting the results from previous research (Paul and Bagchi, 2023). The negative sign of 

the indirect effect of these variables suggests that an increase in the percentage of 



unemployment or/and foreign-born residents among neighboring census sections leads to a 

decrease in income for the census section under examination. Conversely, variables such as 

population density and the Gini Index present a positive impact on income. 

The central question addressed in this paper is whether and by how much marine 

pollution has led to the economic impoverishment of the surrounding population. To answer 

this question, we have examined the direct, indirect, and overall effects of the 2016 HAB. 

The total income reduction experienced by the Mar Menor population in comparison to the 

control area is 18.1%, equating to a loss of 97.21 million euros, with 35.98 million from the 

direct impact and 61.23 million from the indirect impact. This represents a significant loss, 

particularly when considering that the total annual gross income of the census sections 

exposed to the HAB amounts to 537.05 million euros, resulting in a loss of 5,190 euros per 

affected household. 

 

5. Discussion and conclusions 

The tradeoff between environmental sustainability and economic development is a persistent 

challenge faced worldwide. This dilemma is particularly relevant in coastal regions, where 

the delicate balance between preserving the environment and fostering economic growth is 

of utmost importance. The Mar Menor coastal lagoon, situated along the Mediterranean 

Spanish coast, serves as an emblematic example of this global issue. In this context, our 

study aims to examine the causal impact of the eutrophication crisis, commonly referred to 

as 'the green soup,' which occurred during the summer of 2016 and persisted until 2018, on 

the income of residents in the Region of Murcia, SE Spain. By exploring spatial extensions 

of difference-in-differences models our research seeks to provide insights into the causal 

economic implications for this local seawater population and contribute to the broader 

understanding of sustainable economic development in coastal areas. 

Our findings reveal a substantial total decrease in income per capita of approximately 

18.1% in the area affected by marine pollution resulting from the 2016 algae bloom, which 

marked a break date in the deterioration in the coastal environment. In other words, marine 

pollution is causing the impoverishment of the population, resulting in a loss of 97.21 million 

euros in annual gross income or 5,190 euros per affected household. 

Moreover, the analysis uncovers significant spatial dependence in terms of income 

distribution among neighboring territories. While being located at the Mar Menor's coast the 

seawater deterioration directly affected residents' income by -6.7%, the indirect impact was 



even more pronounced. Specifically, if a territory was situated on the Mar Menor coast and 

shared boundaries with other territories affected by the deteriorating seawater conditions, 

the income per capita experienced an additional decline of 11.4%.  

In line with Larkin and Adams (2007), the economic consequences of in the deterioration 

in coastal environments can even surpass those caused by other environmental events. This 

agrees other findings that the seawater deterioration in the Mar Menor implied economic 

consequences in decreasing Airbnb accommodation prices (Fernández Ferrero et al., 2022), 

tourist arrivals (Mate-Sanchez-Val and Aparicio-Serrano, 2022) and firm’ probability of 

survival (Maté Sánchez-Val and Aparicio-Serrano, 2023).  

Our results underscore the necessity of implementing comprehensive policy measures to 

address both the environmental degradation and economic repercussions stemming from this 

issue. In addition to the proposed agricultural measures aimed at mitigating diffuse pollution 

(Alcon et al., 2022), other policy initiatives could include investing in sustainable 

agricultural practices, enforcing stricter regulations on pollutant discharge, promoting the 

restoration of natural habitats, and fostering social awareness campaigns on environmental 

conservation (IEO, 2020). Furthermore, targeted efforts should be made to enhance the 

income opportunities for local populations in affected coastal areas, such as through skills 

training programs, job creation initiatives, and support for small-scale sustainable 

enterprises. Collaborative efforts between national, regional, and local governmental bodies, 

as well as at the supranational EU level, are essential to effectively address the 

interconnected challenges posed by environmental degradation and its socio-economic 

impacts. 
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Table 1. Descriptive statistics. 

 Full sample  Treatment Group  Control Group 
Observations 1,914  48  1,866 

 Mean SD  Mean SD.  Mean SD 

Income 9.384 0.272  9.288 0.160  9.386 0.273 

Foreign 11.184 11.96  26.400 14.96  10.793 9.964 

Density 11.834 13.265  3.309 1.59  12.069 13.342 

Gini 3.412 0.117  3.522 0.11  3.409 0.115 

Working 66.510 6.028  66.240 6.892  66.520 6.006 

Unemployment 7.512 2.267  7.163 2.474  7.521 2.194 
 

Note: the table shows the mean and standard deviation (SD) for the complete sample, 

the treatment group, and the control group. 

 

  



Table 2. Global Moran’s index of dependent and explanatory variables in different spatial weighting matrices 
variable k = 1 k = 2 k = 3 k = 4 

Income 27.767*** 
(0.000) 

37.220*** 
(0.000) 

44.592*** 
(0.000) 

50.098*** 
(0.000) 

Foreign 12.088*** 
(0.000) 

14.075*** 
(0.000) 

17.136*** 
(0.000) 

19.567*** 
(0.000) 

Density 23.575*** 
(0.000) 

29.686*** 
(0.000) 

34.620*** 
(0.000) 

38.330*** 
(0.000) 

Gini  19.475*** 
(0.000) 

24.951*** 
(0.000) 

29.896*** 
(0.000) 

33.043*** 
(0.000) 

Working  4.951*** 
(0.000) 

6.211*** 
(0.000) 

7.844*** 
(0.000) 

8.177*** 
(0.000) 

Unemployment 23.258*** 
(0.000) 

30.758*** 
(0.000) 

36.609*** 
(0.000) 

41.252*** 
(0.000) 

Note: *p<0.10; **p<0.05; ***p<0.01 indicate statistical significance at the 10%, 5% and 1%, respectively; 

p-values in brackets. For the weighted matrix specification, we employ the k-nearest neighbours’ approach 

with k values ranging from 1 to 4. 
 

 

  



Table 3. Baseline regression results for DID and SDID 
  DID   SDID 
  Log income   Log income 
Time  0.092*** 

(0.000)  
0.024*** 
(0.000) 

Treat  -0.027 
(0.476)  

0.032 
(0.207) 

Time*Treat  -0.071 
(0.177)  

-0.058* 
(0.097) 

Foreign  -0.007*** 
(0.000)  

-0.004*** 
(0.000) 

Density 0.031*** 
(0.000)  

0.005*** 
(0.000) 

Gini  0.914*** 
(0.000)  

0.483*** 
(0.000) 

Working 0.0001 
(0.803)  

0.001** 
(0.000) 

Unemployment -0.065*** 
(0.000)  

-0.049*** 
(0.000) 

Lag. foreign        
  

-0.000** 
(0.057) 

Lag. density 
  

0.014*** 
(0.000) 

Lag. Gini  
  

0.024 
(0.614) 

Lag. working 
  

-0.003*** 
(0.000) 

Lag. unemployment 
  

0.023*** 
(0.000) 

Constant 6.743***  
(0.000)  

1.741*** 
(0.000) 

Rho  
  

0.675*** 
(0.000) 

Adjusted R-squared 0.553   

AIC   -2401.800 

Jarque Bera test in error terms    
 

Note: *p<0.10; **p<0.05; ***p<0.01 indicate statistical significance at the 10%, 5% and 1%, 
respectively; p-values in brackets. W is based on the k-closest neighbours. We consider k=4 closest 
neighbours to each census area. Our results were significant under changes in the k values. The 
estimates were calculated using the maximum likelihood estimation method. 

 

  



Table 4. Test statistics for spatial dependence 
  DID   SDID 

LMlag     1307.300*** 
    (0.000) 

LMerr    1164.800*** 
    (0.000) 

RLMlag     261.730*** 
    (0.000) 

RLMerr    119.180*** 
    (0.000)  

LR Test (OLS-SDM)     1201.400*** 
(0.000) 

LR Test (SAR-SDM)   127.330*** 
(0.000) 

LR Test (SEM-SDM)   241.55*** 
(0.000) 

 

Note: *p<0.10; **p<0.05; ***p<0.01 indicate statistical significance at the 10%, 5% and 1%; p-value
s in brackets. W is based on the k-closest neighbours. We consider k=4 closest neighbours to each cen
sus area. Our results were significant under changes in the k values. 
 

  



 

Table 5. Marginal effects 

 Direct Indirect Total 

Time  
0.039*** 

(0.000) 
0.066*** 

(0.000) 

0.106*** 

(0.000) 

Treat  
0.037 

(0.396) 

0.063 

(0.399) 

0.101 

(0.397) 

Time*Treat  
-0.067* 

(0.067) 

-0.114* 

(0.068) 

-0.181* 

(0.067) 

Foreign 
-0.005*** 

(0.000) 

-0.010*** 

(0.000) 

-0.015*** 

(0.000) 

Density 
0.008*** 

(0.000) 
0.035*** 

(0.000) 

0.043*** 

(0.000) 

Gini  
0.514*** 

(0.000) 

0.931*** 

(0.000) 

1.445*** 

(0.000) 

Working  
0.001 

(0.270) 

-0.005*** 

(0.001) 

-0.004** 

(0.029) 

Unemployment 
-0.051*** 

(0.000) 

-0.027*** 

(0.000) 

-0.079*** 

(0.000) 

Note: *p<0.10; **p<0.05; ***p<0.01 indicate statistical significance at the 10%, 5% and 1%.  p-values 

in brackets. 

  



 

Figure 1. Location of the Mar Menor coastal lagoon 

 
a. Map of Spain (peninsula). Map drawn by 
census sections. 

 

 
c. The Mar Menor coastal lagoon. Satellite image of 

Sentinel 2, date of the image: 2016-08-09 

 
b. Location of study area, Region of Murcia, by 

census sections. 

Source: Authors’ own elaboration using QGIS Desktop version 3.18.1 (a, b) and SNAP 8.0 (c). 

 

  



 

Figure 2. Map of the Mar Menor coastal area with census section 

administrative division. The treatment and control groups are coloured 

in light blue and dark blue, respectively. 

 
Source: Authors’ own elaboration using RStudio version 2023.06.0. 

 

  



 

Figure 3. Chlorophyll concentration map in the Mar Menor 

 

Source: Authors’ construction. Note: The Chlorophyll Concentration Maps of the 
Mediterranean Spanish coast is drawn by Ocean and Land Colour Instrument (OLCI) 
processing tool from ESA with SNAP 8.0. Date of the image: 2016/08/07. 

 

  



Figure 4. Map of the Region de Murcia at a census section administrative division. Income per capita by 
quartiles in the Region of Murcia.  

  

Source: Authors’ own elaboration with RStudio version 2023.06.0. 

 


