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Abstract: This paper extends the Markov-switching vector autoregressive models to 

accommodate both the typical lack of synchronicity that characterizes the real-time 

daily flow of macroeconomic information and economic indicators sampled at different 

frequencies. The results of the empirical application suggest that the model is able to 

capture the features of the NBER business cycle chronology very accurately. 

 

 

 

 

JEL Classification: E32, C22, E27. 

Keywords: Business Cycles, Output Growth, Time Series. 

                                                 
*
 M. Camacho, Departamento de Métodos Cuantitativos para la Economía y la Empresa. Facultad de 

Economía y Empresa. Campus de Espinardo, 30100 Universidad de Murcia, Spain. Phone: +34 968 

367982 Fax: +34 968 367905. E-mail: mcamacho@um.es 



 2 

1. Introduction 

Early proposed by Sims (1980), the Vector Autoregression (VAR) specification 

is one of the most successful, flexible and easy to use models for the analysis of 

multivariate time series. Since the influential work of Hamilton (1989) many authors 

have used Markov-switching extensions of these models to capture the business cycle 

regime shifts typically observed in economic data. Some examples of Markov-

Switching VAR (MS-VAR) models are Krolzig (1997), Camacho and Perez Quiros 

(2002) and Paap, Sergers and van Dijk (2009). 

Although economic data are rarely collected at the same instances in time, these 

standard MS-VAR applications are restricted to use economic indicators that must be 

available at the same frequency. In addition, these applications also rely on the 

unrealistic assumption that the real-time data flow of all the variables involved in the 

empirical analyses occurs at the same time.  

To overcome these drawbacks, this paper develops a model that extends to a 

Markov-switching context the Mixed Frequency VAR (MF-VAR) model proposed by 

Mariano and Murasawa (2011). I call this model Markov-Switching Mixed Frequency 

VAR (MS-MF-VAR). The extension offers the interesting additional information of 

converting the business cycle signals provided by several quarterly and monthly 

economic indicators into recession probabilities. 

I apply the method to US coincident indicators to compute inferences of the US 

business cycles. The component indicators, used by Mariano and Murasawa (2011) in a 

linear MF-VAR model to construct a monthly index of the economic activity, are 

quarterly real GDP and the four monthly coincident indicators that make up the 

coincident indicator currently released by the Conference Board. Using these indicators 

in a Markov-switching MF-VAR model, the inferred monthly probabilities of recession 

suggest that the nonlinear extension of the model is capable of identifying the US 

business cycles with very high accuracy. 

 

2. MF-VAR models with Markov-switching 

 2.1. Specification  

Let Xt, be a vector of � economic indicators that may include �1 quarterly 

indicators, Xt,1, and �2 monthly indicators, Xt,2. Let me assume that ln Xt, contains a unit 

root. To start with, let me assume that all the indicators are observed every month, 

although I will relax this assumption soon.  

If the sample mean of the within quarter activity can be well approximated by 

the geometric mean, Mariano and Murasawa (2003) show that the quarter-over-quarter 

growth rate of quarterly indicators computed at each month of the sample, ,1

q

tY , can be 

expressed as the averaged sum of previous month-over-month growth rates 

                          ,1 ,1 1,1 2,1 3,1 4,1

1 2 2 1

3 3 3 3

q m m m m m

t t t t t tY Y Y Y Y Y− − − −= + + + + .                           (1) 
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The month-over-month growths of the economic indicators, ( ),1 ,2', ' 'm m m

t t tY Y Y= , 

are then assumed to follow a Markov-switching VAR(p) process. Therefore, the 

constant terms, the autoregressive coefficients and the covariance matrix are driven by 

an unobservable two-state variable st 

                              1, 1 ,...
t t t

m m m

t s s t p s t p tY Y Y− −= η + φ + + φ + ε ,………         …………(2) 

where ( )~ 0,
tt si�ε Σ . The state variable is assumed to evolve according to an 

irreducible 2-state Markov chain whose transition probabilities are defined by 

                             ( ) ( )1 2 1 1, ,...,t t t t t t ijp s j s i s h p s j s i p− − − −= = = ϕ = = = = ,              (3) 

where i,j=0,1, and tϕ  refers to the information set up to period t. In short, this model 

endogenously permits the model parameters to switch as the date and regime changes. 

The MF-VAR specification this model can be easily stated in state space 

representation and estimated by using the Kalman filter. Let me assume that p≤5, for 
instance p=1.

1
 Calling ( ),1 ,2', ' 'q m

t t tY Y Y= , the measurement equation, 
tt s t tY H E= β + , 

where ( )~ 0,tE i� R , can be defined as 
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,     (4) 

where Et=0 and R=0. The transition equation, 1t tt s s t tF V−β = µ + β + , with 

( )~ 0,
tt sV i� Q , can be stated as  

                     

1, 1
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where  

                                                 
1
 Modifying the expressions for higher lag orders is straightforward. 
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 =
 
 
 
 

.                                      (6) 

2.2. Estimation and signal extraction 

The Kalman filter can be used to estimate model’s parameters and to infer 

unobserved components. Starting the algorithm with initial values 0|0β  and 0|0P , the 

prediction equations when st-1=i and st=j are 

                                                   
( ),

| 1 1| 1

i j i

t t j j t tF− − −β = µ + β ,                                                     (7) 

                                                
( ),

| 1 1| 1 '
i j i

t t j t t j jP F P F Q− − −= + ,                                                   (8) 

where 
( ),

| 1

i j

t t−β  is an inference on tβ  conditional on information up to t-1 given the states st-

1=i and st=j, 
( ),

| 1

i j

t tP −  is its covariance matrix, 1| 1

i

t t− −β  is an inference on 1t−β  based on 

information up to t-1 given the state st-1=i and 1| 1

i

t tP− −  is its covariance matrix. 

These expressions can be used to compute prediction errors and their covariance 

matrix 

                                                    
( ) ( ), ,

| 1 | 1

i j i j

t t t j t tv Y H− −= − β ,                                                      (9) 

                                                    
( ) ( ), ,

| 1 | 1 '
i j i j

t t j t t jH P H− −Ω = ,                                                   (10) 

which can be used to evaluate the log likelihood function 

                                 
( )( ) ( ) ( )( ) ( )

2 2 1
, , , ,

| 1 | 1 | 1 | 1

1 1

1
ln 2 '

2

i j i j i j i j

t t t t t t t t t

j i

l v v
−

− − − −
= =

 = − π Ω + Ω
  

∑∑ .                     (11) 

At each iteration, one can use the nonlinear filter proposed by Hamilton (1989), to 

compute the joint probabilities ( )1,t t tp s j s i−= = ϕ  and the filtered probabilities 

( )t tp s j= ϕ . 

Once the observed variables are realized at the end of time t, in each iteration the 

state vector and its covariance matrix are updated as follows 

                                                 
( ) ( ) ( ) ( )( ) ( )1
, , , , ,

| | 1 | 1 | 1 | 1'
i j i j i j i j i j

t t t t t t j t t t tP H v
−

− − − −β = β + Ω                              (12) 

                                              
( ) ( ) ( ) ( )( ) ( )1
, , , , ,

| | 1 | 1 | 1 | 1'
i j i j i j i j i j

t t t t t t j t t j t tP P P H H P
−

− − − −= − Ω .                        (13) 

As noted by Kim (1994), the above Kalman filter produces 2-fold increases in 

the total number of cases to consider. Thus, if the filter does not reduce the number of 

terms at each time t, it becomes computationally unfeasible. In line with this author, I 

propose to collapse the Kalman filter to a single posterior at each t and substitute (12) 

and (13) by 

                                             

( ) ( )

( )

2
,

1 |

1
|

,
i j

t t t t t
j i
t t

t t

p s j s i

p s j

−
=

= = ϕ β
β =

= ϕ

∑
,                                  (14) 
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( ) ( ) ( )( ) ( )( )
( )

2
, , ,

1 | | | | |

1
|

, '
i j i j i jj j

t t t t t t t t t t t t t
j i

t t

t t

p s j s i P

P
p s j

−
=

 = = ϕ + β −β β −β
 

=
= ϕ

∑
,          (15) 

respectively. 

Once parameters are estimated, the smoothed probabilities, which are based on 

all the information available in the sample, can be estimated iteratively from the filtered 

probabilities as follows 

( ) ( ) ( ) ( )
( )

2
1 1

1 1

t T t t t t

t T

k t t

p s k p s j p s k s j
p s j

p s k

+ +

= +

= ϕ = ϕ = =
= ϕ =

= ϕ∑ .                 (16) 

The smoothed probabilities are very useful to evaluate the in-sample accuracy of a 

Markov-switching model to capture the business cycles. 

 

2.3. Dealing with missing observations 

So far, we have assumed that all the variables included in the model are always 

available at monthly frequencies for all time periods. However, this assumption is quite 

unrealistic when using the model to compute real-time inferences of the business cycles 

for two reasons. The first reason has to do with mixing quarterly and monthly 

frequencies. Since quarterly data is only observed in the third month of the respective 

quarter, quarterly indicators exhibit two missing observations in the first two months of 

each quarter. The second reason has to do with the flow of real-time data, which 

implies that the publication lag of the indicators is different. Therefore, the data 

vintages typically exhibit missing data at the end of the sample of the indicators with 

larger publication delays. 

As described in Mariano and Murasawa (2003), the system of equations remains 

valid with missing data after a subtle transformation. These authors propose replacing 

the missing observations with random draws tr , whose distribution cannot depend on 

the parameter space that characterizes the Kalman filter.
2
 Then, the measurement 

equation are transformed conveniently in order to allow the Kalman filter to skip the 

missing observations when updating. 

Let Yit be the i-th element of the vector Yt and Rii be its variance. Let Hist be the 

i-th row of the matrix Hst, which has 5� columns, and let 05� be a row vector of 5� 

zeroes. The measurement equation can be replaced by the following expressions 

                                    
if  is observable

otherwise

it it

it

t

Y Y
Y

r

+ 
= 


,                                    (17) 

                                               
5

if  is observable

0 otherwise

t

t

is it

is

�

H Y
H + 

= 


,                                  (18) 

                                                
if  is observable

otherwise

it it

it

t

E Y
E

r

+ 
= 


,                                    (19) 

                                                 
2
 We assume that ( )2~ 0,t rr � σ  for convenience but replacements by constants would also be valid. 
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2

if  is observable

otherwise

t

t

iis it

is

r

R Y
R

σ
+ 

= 


,                                    (20) 

and 
tsµ+ , which is a column vector with the drifts 

tsη +  in the first 5 cells and 4� zeroes 

elsewhere, where 

                                                
if  is observable

0 otherwise

t

t

is it

is

Yη
η + = 


.                                    (21) 

This substitution leads to a time-varying state space model with no missing observations 

so the Kalman filter can be directly applied to itY + , 
tsµ+ , 

tisH + , itE + , 
tisR+ . 

 

3. Application  

The purpose of this section is to show how the regime-switching MF-VAR 

described in the previous section works in empirical applications. Toward this end, I 

extend the empirical analysis of Mariano and Murasawa (2010), who construct a 

coincident index of the US economic activity from a linear MF-VAR, to additionally 

compute inferences of the US business cycles from a MS-MF-VAR. Following these 

authors, the component indicators are quarterly growth rates of real GDP and the four 

monthly coincident indicators that make up the Coincident Indicator released by the 

Conference Board: Employees on non-agricultural payrolls, Personal income less 

transfer payments, Index of industrial production and Manufacturing and trade sales, all 

of them in monthly growth rates.  

The data vintage was downloaded on July, 18th 2013 and the sample period is 

from January 1960 to June 2012. It is worth noting that many missing data appear in 

this data vintage. According to the release calendar of the indicators used in the 

analysis, several outliers appear at the end of the time series. In particular, the latest 

figures of the indicators are March 2013 for GDP, March 2013 for sales, May 2013 for 

income and June 2013 for industrial production and employment. In addition, the 

quarterly GDP is observable every third period only. 

Following Mariano and Murasawa (2010), I select a lag length p=1. Following 

Hamilton (1989) and Chauvet (1998) who consider that the shifts do not depend on the 

dynamics of the autoregressive process or the covariance matrices, only the drifts are 

allowed to switch. Figure 1 compares the monthly estimates of the US economic 

activity that are obtained from the linear MF-VAR model and from my Markov-

switching extension. Both indicators are in consonance with the NBER-referenced 

business cycles, which are plotted as shaded areas. The positive growth rates are 

sometimes interrupted by broad changes of direction that seem to mark quite well the 

US recessions.  

In spite of the similar performance of the linear and nonlinear approaches to 

construct monthly indicators of the US economic activity, the latter approach offers the 

interesting additional information of converting the business cycle signals provided by 

the economic indicators into recession probabilities. To assert the accuracy of the model 

to account for the business cycles, Figure 2 plots the values of the smoothed recession 

probabilities of state st=1. According to the reasonable matching between the quarters of 

high probabilities of state 1 and the NBER recessions, it is easy to interpret state 1 as 

recession and the series plotted in this figure as probabilities of being in recession. The 
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probabilities are close to either zero or one, suggesting that the model is capturing well 

the underlying pattern of the dichotomous shifts between expansions and recessions. 

In spite of the high correlation between the probabilities of recession and the 

NBER referenced recessions, the question is whether or not my new extension 

outperforms existing models. The natural competitor is the MS-VAR model of Krolzig 

(1997), Camacho and Perez Quiros (2002) and Paap, Sergers and van Dijk (2009). In 

addition, I check the relative performance of the model with the Markov-Switching 

Dynamic Factor (MS-DF) model proposed by Kim and Yoo (1995) and Chauvet 

(1998).
3
 To quantify the relative ability of these models to detect the actual state of the 

business cycle, I compute Quadratic Probability Score (QPS), which is the mean 

squared deviation of the different probabilities of recession from a NBER-referenced 

recessionary dummy. 

Table 1 shows that MF-MS-VAR outperforms MS-VAR and MS-DF, although 

the improvements with respect to MS-VAR are larger. The p-values of the null of 

different accuracy (Diebold and Mariano, 1995) show that the improvements are 

statistically significant in the case of MF-MS-VAR versus MS-VAR, but one cannot 

reject the null of equal predictive accuracy of MF-MS-VAR and MS-DF at any 

reasonable significance level. However, this analysis is in-sample and omits the effect 

of the asynchronous releases that characterizes the real-time flow of macroeconomic 

information. 

To perform a more realistic assessment of the actual empirical reliability of MF-

MS-VAR, I develop a pseudo real-time analysis as suggested by, among others, 

Giannone, Reichlin and Small (2008). Towards this end, I use the latest available 

dataset to construct data vintages that are recursively updated monthly in the middle of 

each month. The first data vintage of our experiment refers to September 15, 1976 and 

the last data vintage refers to July 15, 2013. 

Since the publications dates of the indicators exhibit relatively stable calendars, 

the successive vintages can easily replicate the publication lags that characterize real-

time analyses. It implies that the pseudo real-time probabilities inferred from MS-VAR 

and MS-DF must be computed as two-month-ahead forecasts since sales exhibit 

publication delays of about two months.
4
 According to Table 1, MF-MS-VAR 

outperforms both MS-VAR and MS-DF since it exhibits lower QPS than these models. 

According to the Diebold-Mariano tests, the gains are statistically significant in both 

cases, although at significance levels greater than 0.05 in the latest case. 

 

4. Conclusion 

Nowadays, there has been a great deal of interest in modeling the business cycle 

features of multivariate time series. The MS-VAR models used in the empirical 

analyses are only of limited usefulness in practice since they are restricted to use 

economic indicators that must be sampled at the same frequencies and that cannot 

exhibit publication delays. The MF-VAR models are restricted to linear analysis and do 

not provide recession probabilities. To overcome these drawbacks, this paper extends 

the MS-VAR models to deal with the problem of mixed sampling frequencies and to 

account for asynchronously published economic indicators and the MF-VAR models to 

account for regime switching business cycle asymmetries.  

                                                 
3
 In contrast to these authors, I do not impose a single-index factor structure in the model. 

4
 All the model use parameters estimated from the latest available sample. Re-estimating the models is 

unfeasible since it would imply estimating large numbers of parameters with short samples. 
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Table 1. Analysis of the relative performance 

 
In-sample 

1960.06-2013.06 

Pseudo real-time 

1976.08-2013.06 

 Quadratic probability score 

MS-MF-VAR 0.08 0.06 

MS-VAR 0.18 0.18 

MS-DF 0.09 0.08 

 p-value of no different accuracy test 

MS-MF-VAR vs MS-VAR 0.00 0.00 

MS-MF-VAR vs MS-DF 0.36 0.05 

Notes. Quadratic probability score measures the mean squared deviation of the different 

types of inferences from a recessionary dummy that is constructed from the NBER 

business cycles. The test of no different accuracy is the Diebold and Mariano (1995) 

test. 
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Figure 1. Monthly indicators of quarterly growth rate 

 

 

 

 

 

 

 

Notes. Dotted (straight) line refers to the monthly index of quarterly GDP 

growth rate from Markov-switching (lineal) mixed-frequency VAR model. Shaded 

areas correspond to recessions as documented by the NBER. The sample goes from 

1960.06 to 2013.06. 

 

Figure 2. Smoothed probabilities of state 1 

 

 

 

 

 

 

 

Notes. Shaded areas correspond to recessions as documented by the NBER. The sample 

goes from 1960.06 to 2013.06. 
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