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Abstract

We develop a twofold analysis of how the information provided by several economic

indicators can be used in Markov-switching dynamic factor models to identify the business

cycle turning points. First, we compare the performance of a fully non-linear multivariate

speci�cation (one-step approach) with the �shortcut�of using a linear factor model to obtain

a coincident indicator which is then used to compute the Markov-switching probabilities (two-

step approach). Second, we examine the role of increasing the number of indicators. Our

results suggest that one step is generally preferred to two steps, especially in the vicinity

of turning points, although its gains diminish as the quality of the indicators increases.

Additionally, we also obtain decreasing returns of adding more indicators with similar signal-

to-noise ratios. Using the four constituent series of the Stock-Watson coincident index, we

illustrate these results for US data.

Keywords: Business Cycles, Output Growth, Time Series.

JEL Classi�cation: E32, C22, E27.

�We are thankful to the editor and three anonymous referees for their comments that have greatly improved the

quality of the paper. We are indebted to Marcelle Chauvet for graciously sharing part of the real-time data vintages

used in the empirical application. M. Camacho and P. Poncela acknowledge support from projects ECO2010-19830

and ECO2012-32854, respectively. The Appendix is available at http://www.um.es/econometria/Maximo/. All

remaining errors are our responsibility. The views in this paper are those of the authors and do not represent the

views of the Bank of Spain or the Eurosystem.
yCorresponding Author: Universidad de Murcia, Facultad de Economia y Empresa, Departamento de Metodos

Cuantitativos para la Economia y la Empresa, 30100, Murcia, Spain. E-mail: mcamacho@um.es.

1



1 Introduction

Burns and Mitchell�s (1946) seminal work pointed out two business cycle characteristics: co-

movements and the existence of two business cycle phases. To capture the �rst feature of the

business cycle, Stock and Watson (SW, 1991), proposed a single-index linear dynamic factor

model for industrial production, employment, income and sales. These four series have a com-

mon element that can be modeled by an underlying unobserved variable representing the overall

economic activity, as in the Composite Index of Coincident Economic Indicators (CEI) of the

Bureau of Economic Analysis (currently published by the Conference Board). A recent extension

of this approach is the Aruoba, Diebold and Scotti (ADS, 2009) index of business conditions

and the Chicago Fed National Activity Index (CFNAI).1 To capture the second feature of the

business cycle, Hamilton (1989) proposed a two-state Markov switching process, whose dynamics

captures the two separate business cycle phases. Recent extensions of the model can be found

in Hamilton (2011).

To capture both comovements and business cycle asymmetries, two alternative approaches

have been used in the literature. The �rst approach was proposed in Diebold and Rudebusch

(1996) and consists of a two-step estimation procedure. The �rst step is based on computing

a coincident indicator by applying a linear factor model to a set of coincident indicators. In

the second step, univariate Markov-switching techniques are applied to the coincident indicator.

Examples of recent applications of Markov-switching techniques to linear factors are Diebold and

Rudebusch (1996) in the case of SW; Brave and Butters (2012) in the case of a high frequency

index such as ADS; Davig (2008) in the case of CFNAI; and Paap, Segers, and van Dijk (2009)

in the case of CEI.

The second approach, which was initially proposed by Kim and Yoo (1995), Chauvet (1998)

and Kim and Nelson (1998), is based on the natural extension of full dynamic-factor/Markov-

switching models, which are estimated in one step. In their Markov-Switching Dynamic Factor

Model (MS-DFM), comovements and business cycles are modeled with a nonlinear dynamic fac-

tor model whose common component is governed by an unobservable regime-switching variable

that controls the business cycle dynamics. Recently, Chauvet and Hamilton (2006) and Chau-

vet and Piger (2008) examined the empirical reliability of these models in computing real-time

inferences of the US business cycle.

1The Euro-STING model of Camacho and Perez Quiros (2010) is an European extension of these models.

2



Although inferring recession probabilities from the one-step approach is conceptually ap-

pealing, it is very tempting to �t a linear DFM to the economic indicators and a univariate

Markov-switching model to the resulting linear coincident indicator. One reason is that the

linear coincident indicators, such as ADS, CFNAI and CEI, are already constructed by several

agencies and it seems straightforward to use univariate Markov-switching �lters to compute state

probabilities from them. Another reason is that the numerical algorithms used to evaluate the

likelihood functions of the (one-step) MS-DFM usually su¤er from the curse of dimensionality.

If the analyst wants to perform business cycle analysis within a data rich environment (where

the number of indicators can be above 100), the two-step procedure might be the only feasible

procedure.

In spite of the coexistence of the two approaches, the analysis of their relative performance

has still not been addressed. To �ll in this gap, we examine the sources of misspeci�cation

of applying Markov-switching models to the common factor of a linear DFM when the data

generating process is a nonlinear MS-DFM. For a given number of series, the two-step procedure

faces greater di¢ culties to infer business cycle probabilities when the Kalman �lter used to

compute the linear factor model in the �rst step assigns large weights to past observations.

Using the Riccati equation for the misspeci�ed linear Kalman �lter, we show that this typically

occurs when the indicators are noisy. However, when the economic indicators are carefully

selected to have large signal-to-noise ratios, the empirical performance of the one-step procedure

is not expected to be highly superior to that of the two-step method. These theoretical results

are con�rmed by means of a Monte Carlo experiment.

We also examine the extent to which inferences about the state of the economy from nonlinear

MS-DFM can be improved upon by including additional variables. In a linear framework, the

recent literature provides mixed evidence. Boivin and Ng (2006) were among the �rst to show

that the empirical forecasting performance of factor models does not necessarily improve with

the number of indicators. In the nonlinear context of this paper, we show that the precision

of the business cycle inference is expected to grow by including additional indicators, although

with diminishing returns. However, regarding the quality of the new indicators, the expected

gains from the additional indicators are progressively lower as the number of indicators already

included increases. In empirical applications, this result implies that the gains from using large

sets of indicators can be low compared to the computational complexity of dealing with nonlinear

models that use many indicators.
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Finally, we evaluate the empirical relevance of our results by using the four coincident eco-

nomic indicators used in Stock and Watson (1991). Our main results are the following. First,

as expected, since the indicators exhibit very high signal-to-noise ratios, the dynamics of the

coincident indicators estimated from the two procedures are both in close agreement. Second,

the two methods exhibit similar mean squared error measures when comparing the recession

probabilities with a dummy that takes the value of one in the NBER recessions. Interestingly,

when the analysis is restricted to the �rst month of the new state after a business cycle phase

shift, the one-step model achieves mean squared errors reductions of about 20% (about 30%

in the �rst month of each recovery). Third, we show the diminishing returns of adding more

variables. Fourth, the results are con�rmed in a real-time exercise, where the relative gains of

the one-step estimation procedure are even larger.

The structure of this paper is organized as follows. Section 2 describes the sources of mis-

speci�cation of a two-step estimation procedure when the data generating process is a nonlinear

MS-DFM. In addition, it examines the extent to which the model performance could be im-

proved by using additional indicators. Section 3 proposes a Monte Carlo experiment to analyze

the ability of the models in computing business cycle inferences. Section 4 shows the empirical

analysis of US business cycles. Section 5 concludes.

2 Two-step versus one-step approaches

This section examines the performance of two-step versus one-step estimation procedures of

dynamic factor models with Markov-switching to accurately detect the probability of a given

business cycle phase.2

2.1 Sources of misspeci�cation

This section examines the sources of misspeci�cation of the two-step estimation method when

the procedure is used to infer the probability of a given business cycle phase. For this purpose,

let us assume that the data generating process is a nonlinear MS-DFM but that an analyst

erroneously �ts a linear single-index DFM and tries to infer the recession probabilities from the

resulting common factor with univariate Markov-switching techniques.

2The Appendix that shows all the expressions of this section is available at

http://www.um.es/econometria/Maximo/.
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Let yt = (y1;t; :::; yN;t)0 be the vector of N economic indicators, which admits a single-index

factor decomposition into a non-observed common factor ft and N speci�c or idiosyncratic

components:

yt = � ft + ut

N � 1 N � 1 1� 1 N � 1
; (1)

where � = (�1; �2; :::; �N )0 is the vector of factor loadings. Let ut = (u1;t; :::; uN;t)0 � N(0;�u)

be multivariate Gaussian white noise. As in classical factor analysis, �u = diag(�21; �
2
2; :::; �

2
N )

is assumed to be a diagonal matrix.

To complete the speci�cation of the data generating process, the factor is assumed to be

governed by an unobserved regime-switching mean plus a noise

ft = �st + at; (2)

where at � N(0; �2a) is an univariate Gaussian white noise. Within this framework, one can label

st = 0 as expansions and st = 1 as recessions at time t if �0 > �1. The common dynamics of

the coincident economic indicators are expected to exhibit high (usually positive) growth rates

in expansions and low (usually negative) growth rates in recessions. In addition, st is assumed

to evolve according to an irreducible 2-state Markov chain whose transition probabilities are

de�ned by

p(st = jjst�1 = i; st�2 = h; :::; It�1) = p(st = jjst�1 = i) = pij ; (3)

where i; j = 0; 1, and It is the information set up to period t:

The noises from equations (1) and (2) are uncorrelated for all leads and lags, that is, for

all i = 1; :::; N; E(ui;ta� ) = 0;8t; � . This assumption is standard and necessary to separate

the common factors from the idiosyncratic noise, both in linear (see, among others, Stock and

Watson, 1991, Diebold and Rudebusch, 1996, Aruoba, Diebold and Scotti, 2009) and in non-

linear settings (see Kim and Yoo, 1995, Chauvet, 1998, and Kim and Nelson, 1998, among

others).3 The condition allows to decompose the variance of the observed series as the sum of

two matrices: a rank de�cient matrix, which is associated to the common factors, and a full rank

matrix, which refers to the idiosyncratic noises. Typically, the variance of the idiosyncratic noises

is either diagonal in small-N factor models or allows for for limited (weak) cross-correlation in

large-N factor models.4

3Large factor models use the same identi�cation condition (for instance, see Bai and Ng, 2013).
4See Heaton and Solo (2004) for identi�cation of dynamic factor models.
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Instead of �tting the one-step MS-DFM described above, let us assume that the analyst er-

roneously applies a two-step procedure as follows. In the �rst step, the analyst estimates a linear

DFM to the set of N economic indicators whose common factor is assumed to follow a simple

autoregressive process, which is assumed of order one to facilitate the analysis. Accordingly, the

analyst computes a misspeci�ed common factor, which is denoted with an asterisk,

f�t = d+ �f�t�1 + a
�
t : (4)

In this expression, a�t is a univariate white noise with zero mean and variance �
2
a� = 1, which

agrees with the standard identi�cation assumption. The intercept d is added to take into account

the possibility of a non-zero unconditional mean. The autoregressive parameter, �, captures the

serial correlation induced by the switching mean of the common factor described in (2).

Once f�tjt is estimated in the �rst step, the analyst applies a univariate Markov-switching

model to the common factor in the second step. Hence, the analyst estimates the nonlinear model

by approximate maximum likelihood techniques and obtains the �ltered state probabilities,

which are computed to extract informative insights about the business cycle. Following Hamilton

(1989), these probabilities can be expressed as

prob(st = jjI�t ) =
f(f�tjtjst = j; I�t�1)prob(st = jjI�t�1)

f(f�tjtjI
�
t�1)

; (5)

where I�t =
n
(f�� j� )

�=t
�=1

o
; f(f�tjtjst = j; I�t�1) is the conditional Gaussian density function

f(f�tjtjst = j; I�t�1) =
1p
2��2a

exp

8<:�12
 
f�tjt � �j
�2a

!29=; ; j = 0; 1 (6)

and f(f�tjtjI
�
t�1) is the mixture

f(f�tjtjI
�
t�1) =

1X
j=0

f(f�tjtjst = j; I�t�1)prob(st = jjI�t�1): (7)

Therefore, the two-step estimation procedure faces a misspeci�cation problem which might be of

potential considerable importance in the detection of business cycle turning points.5 Since f�tjt is

a linear combination of past and present values of yt, the density functions used in the univariate

Markov-switching model depend not only on the current state but on all past and present states.

5To facilitate the analysis, we assume that population parameters are known and that the only source of

misspeci�cation comes from the way the common factor is extracted. Our simulations con�rm that this is a very

reasonable assumption.
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Accordingly, the simple two-step method might underweight the signals of imminent changes in

business cycle phases, implying longer delays in signaling business cycle phase changes.

To understand this statement, recall that the �ltered linear common factor can be expressed

as a weighted sum of past and present observations

f�tjt = d0 +
tX

�=1

wt;�y� ; (8)

where d0 is included in the case that d 6= 0 and the weights wt;� are the N -dimensional row

vectors given by

wt;t =
1

ct
�0��1u ;

wt;� =
1

c�

1

V� j��1
�wt;�+1 = B��wt;�+1; (9)

for � = t � 1; :::; 1. In the last expression, V� j��1 is the mean squared error of the misspeci�ed

state at � with information up to � � 1, c� = 1
V� j��1

+�0��1u �, and B� =
1
c�

1
V� j��1

.

The misspeci�cation problem of the one-step estimation procedure is expected to be high

when the weights decay slowly. In these cases, the approximation of the univariate Markov-

switching model applied to the linear common factor will lead to important reductions in the

timely detection of current turning points since the information of a potential regime switch

contained in yt diminishes its impact on f�tjt. Hence, a good strategy to examine the sources of

misspeci�cation of the two-step estimation procedure is to analyze the sources of persistence of

the linear common factor which, according to expression (9), depends on B� and �.

Focusing on B� , the larger it is, the stronger the misspeci�cation of the two-step procedure

becomes. To �nd the coe¢ cients governing B� , it is worth noting that the linear �lter reaches

its steady state and Vtjt�1 = V since � < 1. Hence, the solution of the algebraic Riccati equation

for the misspeci�ed �lter is

V =

PN
i=1

�2i
�2i
� (1� �2) +

r�PN
i=1

�2i
�2i
� (1� �2)

�2
+ 4

PN
i=1

�2i
�2i

2
PN

i=1
�2i
�2i

; (10)

which implies that B� is

B� =
2PN

i=1
�2i
�2i
+ (1 + �2) +

r�PN
i=1

�2i
�2i
� (1� �2)

�2
+ 4

PN
i=1

�2i
�2i
)

: (11)
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This expression reveals that the greater the autoregressive parameter � and the sum
PN

i=1
�2i
�2i
,

the smaller B� . To interpret the ratios
�2i
�2i
, it is worth writing the common factor as

f�tjt =
1

ct

 
1

Vtjt�1
f�tjt�1 +

NX
i=1

�2i
�2i
(
yi;t
�i
)

!
; (12)

with ct = 1
Vtjt�1

+
PN

i=1
�2i
�2i
: This expression states that f�tjt is the weighted sum of two components.

The �rst component, f�tjt�1, is the estimation of the factor at time t with information up to time

t� 1, and it has a weight which is proportional to the precision of this estimation. The second

component is the weighted sum of the new information incorporated by the indicators observed

at t, yi;t�i .
6 The weights , �

2
i

�2i
; i = 1; :::; N , are called signal-to-noise ratios since they measure

the precision of the indicators (inverse of the conditional variances var(ftjyi;t), i = 1; :::; N).

Hence, the signal-to-noise ratios assign more weight to compute f�tjt to the less noisy economic

indicators. Then, when the signal-to-noise ratios are low, the weights to the past information,

wt;� , become large. Summing up, using economic indicators with low signal-to-noise ratio leads

the approximation of univariate Markov-switching dynamics of the common factor extracted

from a linear DFM estimation to become increasingly more inappropriate to detect business

cycle turning points in advance.

The in�uence of � on the weights is twofold. According to expression (9), this parameter

increases past weights directly. At the same time, it reduces the past weights through B� .

Hence, the net e¤ect of � on business cycle identi�cation is complex and we refer the readers to

the simulation experiment developed in Section 3 for a more detailed analysis. In spite of this

unclear e¤ect, Timmermann (2000) showed that

� =
(�0 � �1)2 �1�0(p00 + p11 � 1)

(�0 � �1)2 �1�0 + �2a
; (13)

where �i is the steady state probability of state i, such that �1 + �0 = 1, and

�i =
1� pjj

2� pii � pjj
; (14)

with i; j = 0; 1. Accordingly, the autoregressive parameter is an increasing function of the

di¤erence of the within-state means and the persistence of the business cycle states.7 Assuming

6Notice that yi;t
�i

is the conditional expectation of the common factor from the i-th indicator E(ftjyi;t):
7 It can be easily checked that for given probabilities, pii; i = 0; 1, the derivative of � with respect to (�0 � �1)

2

is always positive as long as p11+p00 � 1. This condition usually holds in empirical applications. In our empirical

analysis (Section 4), we obtained p00 = 0:98 and p11 = 0:89:
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that �0 > �1, this means that the larger the di¤erence between the two conditional means (i.e.,

�0 >> �1), the larger � should be and this could help to identify the business cycle regimes

since it separates the Gaussians of the mixture (see Chauvet and Hamilton, 2006).

The e¤ects of relaxing the assumptions about the dynamics of the idiosyncratic components,

ut, deserve a �nal comment. In expression (1), we assumed that the idiosyncratic components

followed a multivariate white noise. However, this assumption can be relaxed by appropriately

de�ning �u in the previous expressions. For instance, let us assume that the idiosyncratic

components follow the VAR(p) process with p = 1

ut = 	ut + �t; (15)

where var(�t) = diag(�21; :::; �
2
N ), and	 = diag( 1; :::;  N ). In this case,�u = diag(

�21
1� 21

; :::;
�2N
1� 2N

).

Notice that in this case, the conditional densities of the observed series depend on the hidden

state both contemporaneously and through its �rst lag. We examine the case of idiosyncratic

autoregressive noises in the simulations presented in Section 3.

2.2 The role of N

Empirical applications of MS-DFM frequently exhibit the typical curse of dimensionality prob-

lems of nonlinear models. This precludes the analysts from considering the case of large values

of N . In spite of this comment, the question of how many economic indicators are useful to

compute accurate inferences of business cycle turning points still holds. If an analyst starts with

a set of N � 1 economic indicators that provides reasonable turning point signals, the prob-

lem reduces to the question of under which circumstances the additional N -th variable may be

incorporated into the model leaving the dimension of the resulting nonlinear model manageable.

For this purpose, we consider that the set of N indicators is preferred to the set of N � 1

indicators if the former su¢ ciently increases the ability to appropriately detect true turning

points and reduces the rate of false signals. Let us denote the set of N � 1 indicators by I1;t =

fy1;1; :::; y1;t; y2;1; :::; y2;t; :::; yN�1;1; :::; yN�1;tg, and the N -th indicator by I2;t = fyN;1; :::; yN;tg.

Hence, we �nd it useful to include the last indicator in inferring the state of the economy at

time t whenever prob(st = 1jI1;t; I2;t) > prob(st = 1jI1;t) when st = 1 (for instance, recessions)

and prob(st = 1jI1;t; I2;t) < prob(st = 1jI1;t) when st = 0 (for instance, expansions). Since

it is straightforward to show that if prob(st = ijI1;t) = 1, then prob(st = ijI1;t) = prob(st =

ijI1;t; I2;t) = 1, let us assume that 0 < prob(st = ijI1;t) < 1:
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To start with, let us consider that the quality of the N -th indicator is similar to that of the

set that contains the N � 1 �rst indicators, i.e., that it is not a noisier time series. Let us focus

the analysis on the identi�cation of a given regime, for example on st = 1.8 According to the

Markov-chain properties of the model described in (1) to (3), prob(st = 1jI1;t; I2;t) = prob(st =

1jy1;t; :::; yN;t) and prob(st = 1jI1;t) = prob(st = 1jy1;t; :::; yN�1;t): Then, the inference computed

from the set of N indicators can be expressed as

prob(st = 1jI1;t; I2;t) =
prob(st = 1; yN;tjI1;t)

f(yN;tjI1;t)

=
f(yN;tjst = 1; I1;t)

f(yN;tjI1;t)
prob(st = 1jI1;t)

= wtprob(st = 1jI1;t); (16)

where wt =
f(yN;tjst=1;I1;t)
f(yN;tjI1;t) : Therefore, the information of the new indicator yN;t will be useful

to compute inferences about the business cycle at time t if wt > 1 given that the true regime is

st = 1.

It is useful to express wt as

wt =
f(yN;tjst = 1; I1;t)

f(yN;tjst = 1; I1;t)prob(st = 1jI1;t) + f(yN;tjst = 0; I1;t)(1� prob(st = 1jI1;t))
: (17)

Then, there exists informational content in the N -th indicator if

f(yN;tjst = 1; I1;t) > f(yN;tjst = 1; I1;t)prob(st = 1jI1;t)+f(yN;tjst = 0; I1;t)(1�prob(st = 1jI1;t)):

(18)

This occurs whenever
f(yN;tjst = 1; I1;t)
f(yN;tjst = 0; I1;t)

> 1: (19)

Since the inequality in (19) does not necessarily hold for all possible values of yN;t (for

instance, in the case of overlapping density functions) it will be useful to evaluate if this con-

dition holds on average. Taking natural logarithms of this expression, the set of N indicators

outperforms on average the set of N � 1 indicators if

ln f(yN;tjst = 1; I1;t)� ln f(yN;tjst = 0; I1;t) > 0 (20)

when st = 1. Under conditional Gaussianity

f(yN;tjst = i; I1;t) =
1q

2��2N j1

exp

 
� 1

2�2N j1

�
yN;t � y(i)N;tjt

�2!
; i = 0; 1

8The treatment of regime st = 0 is symmetric.
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where y(i)N;tjt and �2N j1 are the mean and variance of the conditional density function, given

in the Electronic Appendix. Taking into account all possible outcomes of yN;t when st = 1,

the expected value of the di¤erence between the two conditional densities under conditional

Gaussianity is given byZ
ln f(yN;tjst = 1; I1;t)f(yN;tjst = 1; I1;t)dyN;t (21)

�
Z
ln f(yN;tjst = 0; I1;t)f(yN;tjst = 1; I1;t)dyN;t > 0:

Therefore, one could evaluate if condition (19) is ful�lled on average.

The next proposition, quanti�es the expected gains in terms of business cycle identi�cation

of adding a new economic indicator yN;t when st = 1 to a given set of N � 1 indicators. The

magnitude of the change is a measure of the averaged informational content of yN;t about the two

states (its ability to separate them) and uses the concept of conditional entropy (or Kullback-

Leibler divergence).

Proposition 1 Under conditional Gaussianity, the Kullback-Leibler (KL) divergence of f(yN;tjst =

0; I1;t) with respect to f(yN;tjst = 1; I1;t) under the MS-DFM assumptions described in (1) to

(3), is given by

KL =
�2N (�0 � �1)2

2�2N

1
�2a

1
�2a
+
PN�1

i=1
�2i
�2i

1
�2a

1
�2a
+
PN

i=1
�2i
�2i

: (22)

This expression implies that (i) if there are separate business cycles regimes, in the sense

that �1 6= �0 and �
2
a <1; and (ii) if the new indicator is informative, in the sense that �N 6= 0

and �2N <1, then the divergence is strictly positive. This implies that adding a new indicator

is (on average) always useful in terms of business cycle identi�cation.

Interestingly, each additional indicator does not increase the Kullback-Leibler divergence

in the same proportion. The informational content of the additional N -th indicator increases

with the signal-to-noise ratio of this indicator. Hence, the accuracy of the model to provide

clear business cycle signals increases with the quality of the new indicator. However, assuming

that the signal-to-noise ratio is the same for all the economic indicators, the divergence is a

decreasing function of the number of indicators. Therefore, the gains of adding new indicators

can be lower than proportional to the number of indicators that have already been included to

infer the business cycle probabilities. Hence, the decreasing ability to improve upon the accuracy

of the model cannot always be compensated with the quality of the new indicator. This implies
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that the gains from using large sets can be low compared with the computational complexity of

handling with many indicators in empirical applications of nonlinear models.

Figure 1 helps us to assess the size of the gains as a function of both the signal-to-noise ratio

of the new indicator and the number of indicators already included in the model. To facilitate

comparisons we set �0��1 =
p
2 and �2a = 1, and we assume that the signal-to-noise indicators

included in I1;t is 1 for all of its N � 1 indicators. Using these assumptions, the �gure plots

the KL divergence of f(yN;tjst = 0; I1;t) with respect to f(yN;tjst = 1; I1;t) when the additional

indicator exhibits potential signal-to-noise ratios from 0:1 to 40. Given a number of indicators,

for instance N = 2, the �gure shows that the divergence increases rapidly when the new indicator

exhibits signal-to-noise ratios of up to about six times the signal-to-noise ratios of the existing

indicators. However, the divergence becomes hump-shaped at these values, implying that using

less noisy indicators does not help to increase the divergence by a large amount.

To evaluate the role of the number of indicators, the �gure also plots the results from

repeating the previous exercise when number of indicators also increases up to N = 5 and

N = 8. The �gure shows that the divergence functions are shifted down by increasing N . This

implies that although enlarging the original set of indicators with a new indicator of �xed signal-

to-noise ratio leads improves the accuracy to infer the business cycle phases, the gains are low

when the initial set of indicators becomes large.

These �ndings resemble those suggested by Poncela and Ruiz (2012) in a linear framework.

They show that, when the parameters are known, the �lter uncertainty is a non-increasing func-

tion of the cross-sectional dimension, although it only decreases marginally in many empirical

situations when the number of time series becomes modestly large.

3 Monte Carlo simulations

In this section, we set up several Monte Carlo experiments to study how the data might a¤ect

the empirical performance of one-step versus two-step estimation procedures as well as the role

of N to infer business cycle probabilities. For this purpose, we generate a total of M = 1000

sets of N idiosyncratic components umt of length T = 200 and equal variances �2i = �2. The

dynamics of these time series are assumed to follow autoregressive processes of order one with

autoregressive parameters equal to 0:3. In addition, we generate M = 1000 dummy variables

bmt of zeroes and ones of length T = 100, which are used to simulate di¤erent sequences of
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expansions and recessions. To ensure that the dummies share the US business cycle properties,

we assume that bmt follows Markov chains with p00 = 0:9 and p11 = 0:7.9 Hence, we generate

M = 1000 common factors that follow Markov-switching processes fmt by using the business

cycle sequences bmt and by assuming that �2a = 1. Using factor loadings equal to one for all the

series, we add the idiosyncratic components to the switching mean factors to generateM = 1000

sets of time series ymt . Then, we apply both the two-step and one-step estimation procedures

to extract the �ltered probabilities of state 1, pmt;i, with i = I; II in the cases of using one-step

and two-step estimation procedures, respectively. The Monte Carlo experiment is developed

for N = 3 indicators. We generate indicators of di¤erent di¤erences of the within-state means

(�0 � �1 = 1; 2; 4 and 10), and di¤erent variances (�2 = 0:5; 1:5 and 4:5).

To examine the relative accuracy of these approaches in situations of empirical interest,

we assume that the model parameters are unknown and have to be estimated by maximum

likelihood.10 The model is written in state space form and the unobserved components are

estimated by using the Kalman �lter. Since each iteration of the �lter produces a 2-fold increase

in the number of cases to consider, we make the Kalman �lter operable by following Kim (1994).

Therefore, we collapse terms by computing a weighted average of the updating procedures by the

probabilities of the Markov state, in which the mixture of four Gaussian densities is collapsed,

after each observation, into a mixture of two densities.

For each m-th replica, we quantify the ability of these two estimation procedures to detect

the actual state of the business cycle by computing the Quadratic Probability Score (QPS):

QPSi =
1

M

MX
m=1

1

T

TX
t=1

(pmti � bmt )2; (23)

where i = I for the one-step estimation procedure, and i = II for the two-step estimation

procedure. This measure can be interpreted as the average over the M replications of the

squared deviation from the generated business cycles.

To examine the sources of misspeci�cation of the two-step estimation method, Table 1 dis-

plays the QPS statistics, which are computed for the di¤erent scenarios described above. In

addition, since turning point detection is a key business cycle question, the table shows in brack-

9Using the NBER dates, these �gures are the percentage of quarters classi�ed as expansions that are followed

by expansions and the percentage of quarters classi�ed as recessions that are followed by recessions in the period

1959.3-2010.3.
10We repeated the analysis by assuming that the parameters were known. For reasonable values of these

parameters we obtained qualitative similar results, which have been omitted to save space.
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ets the scores when QPS is calculated only for those t that refer to the �rst period after the

phase shifts.

The main message of this table is that the one-step estimation procedure unequivocally

performs better than the two-step procedure. However, the relative performance gains depend

on the quality of the indicators used in the business cycle analysis. For a given idiosyncratic

variance, higher di¤erences of within-state means (from 1 to 10) improve the performance of

both one-step and two-step estimation procedures. When these di¤erences become large enough,

although the one-step approach improves proportionally more than the two-step procedure, the

gains are statistically important but not economically meaningful since the misspeci�ed two-

step approach is already very accurate. For example, for a variance of �2 = 1:5, the ratio of

the QPS statistics between the two-step and the one-step procedures when �0 � �1 = 1 is 1:24

(QPSII = 0:250 versus QPSI = 0:202) while the ratio is more than 5000 when �0 � �1 = 10

(QPSII = 0:023 versus QPSI = 4:22E-06). However, the QPS of the two-step approach

was very low already (0:023).11 The results also hold for the turning point detection whose

corresponding outcomes are displayed in brackets in Table 1. In this case, the table also shows

that when the set of indicators included in the analysis are very precise in terms of signal-to-

noise ratios, there is less room for the one-step method to improve the empirical performance

of the two-step procedure. If the indicators are not so good, the empirical performance of the

one-step procedure can signi�cantly outperform that of the two-step procedure.

From Table 2, which examines the role of N in the one-step estimation procedure perfor-

mance, there are two noteworthy �ndings that deserve comments. First, the table shows that

the number of indicators used to infer the business cycle phases matters since increasing the

number of time series leads to business cycle identi�cation improvements, i.e., QPS reductions.

However, the usefulness of new indicators in terms of business cycle identi�cation re�nements

dramatically decreases when the number of indicators already used becomes large. For example,

for �2 = 1:5, a model of N = 1 indicator exhibits QPSN=1I = 0:168, and adding two more

indicators implies an improvement of 26% (QPSN=3I = 0:124). Nevertheless, the improvement

falls to 12% when the set of indicators is extended from N = 3 to N = 5, and it is only 9% when

the number of indicators is enlarged from N = 5 to N = 7. Second, the table highlights that the

quality of the indicators matters when one is interested in quantifying the expected gain from

11To make the QPS results more readable, recall that the inference that gives probability of recession equals

to zero for all t leads to a QPS of 0:20.
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enlarging the model. In that sense, when the indicators are very precise (for instance, �2 = 0:5),

the gain of enlarging the model from N = 3 to N = 7 indicators is only 9%. However, when

the indicators are not very precise (for instance, �2 = 4:5), using N = 7 instead of N = 3 indi-

cators increases the expected accuracy by more than 27%. The intuition for this result is that

the model with N = 3 noiseless indicators is able to infer the business cycle with considerable

accuracy and does not leave too much room for any improvement when the number of indicators

is enlarged. In the case of computing business cycle inferences from noisier indicators, there are

larger potential accuracy gains from a model with increased dimension.

4 Empirical results

The purpose of this section is to examine the empirical performance of the one-step versus the

two-step estimation procedures and the role of combining information from a set of economic

indicators by using an updated real-time version of the data set previously used by Stock and

Watson (1991), Chauvet (1998) and Chauvet and Piger (2008). The indicators are monthly

industrial production index (IP), nonfarm payroll employment (EMPL), real personal income

less transfer payments (INC) and real manufacturing and trade sales (SALES) from 1967:01 to

2010:11.12

To start with, we �t a linear factor model to one hundred times the change in the natural

logarithm of these four macroeconomic variables.13 The maximum likelihood estimates, which

are displayed in the top panel of Table 3, show that the signal-to-noise ratios are in line with

the values used in our simulations. In particular, the signal-to-noise ratio of IP, EMPL, INC

and SALES are 1:83; 0:65; 0:09; and 0:37, which would (roughly) correspond in the simulations

to the cases of �2 = 0:5 (IP), �2 = 1:5 (EMPL) and �2 = 4:5 (INC and SALES) since they were

computed with � = 1. The fact that the magnitude of the parameters chosen in some of the

simulations exercise matches the data reinforces the �ndings of the simulations exercise whose

results can directly be applicable to the empirical analysis. The common factor obtained from

the two-step approach is depicted in Figure 2 (left scale).

Then, we �t a Markov-switching model to the estimated factor. The maximum likelihood

12 In the empirical analysis, we take it as given that the NBER correctly identi�es the dates of business cycle

turning points.
13Following Stock and Watson (1991), all the linear autoregressive processes are estimated with two lags.

Following Camacho and Perez Quiros (2007), the nonlinear factor is estimated with no lags.
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estimates, which are also reported in the top panel of Table 3, show that the transition proba-

bilities are very persistent (p00 = 0:98, p11 = 0:89) and that the within-state means are separate

from each other (�0 = 0:32, �1 = �1:78). According to our simulation results, the high signal-to-

noise ratios and the separate within-state means would help the two-step estimation procedure

to compute accurate inferences of the US business cycle dates. Figure 2 also plots the proba-

bilities that the coincident indicator is in the negative growth rate (right scale), which are in

striking accord with the professional consensus as to the history of US business cycles.

In contrast to this two-step procedure, we also �t a multivariate dynamic factor model

with regime switching in which the two key features of the business cycle are encompassed

and estimated in one step. The maximum likelihood estimates of this model are reported in the

bottom panel of Table 3 along with their standard errors. Figure 3 plots the nonlinear coincident

indicator (left scale), which also tracks the business cycle well, with pronounced drops that

synchronously correspond to the NBER-designated recessions. The �ltered probabilities that

the coincident indicator is in the negative growth rate (right scale) also show remarkable success

in matching the NBER reference dates.

Although the �ltered probabilities seem to indicate that both estimation procedures repro-

duce the NBER chronology very closely, Table 4 displays the QPS statistics, which evaluate

formally the performance of the models.14 The entries of the table reveal the high performance

score of both models (QPSI = QPSII = 0:05), which implies that there is a similar correspon-

dence between the probabilities inferred from the models and the business cycle realizations.

Since the previous results are computed as averages over the entire sample, the analysis

may fail to identify the ability of the forecasting models to evaluate the odds of the occurrence

of important events such as the turning point dates. To gain some insight into how quickly

the business cycle turning points are identi�ed, the probability scores are also computed on a

restricted sample that only includes the �rst month of each expansion and the �rst month of

each recession. The results are also displayed in Table 4 and show that the highest performance

score is now achieved by the full Markov-switching dynamic-factor model, which assesses QPS

reductions of about 20% (QPSII = 0:39 versus QPSI = 0:31).15 These results are in accordance

14 In the empirical analysis, QPS is de�ned as in the Monte Carlo analysis with M = 1.
15The improvements are even clearer when the analysis is restricted to the �rst month after the trough. In this

case, the reductions are of almost 30% (QPSII = 0:50 versus QPSI = 0:36), although they are omitted from

Table 4 to save space. This result could be connected with rapid growth in the recoveries documented by Sichel

(1994), Kim and Nelson (1999), and Morley and Piger (2006).
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with the theoretical analysis of Section 2 and the simulations of Section 3.16

As we stated in the theoretical and Monte Carlo analyses, we now address the role of the

signal-to-noise ratio (SNR) and the number of indicators used to compute the business cycle

inferences. To consider the role of the signal-to-noise ratios, we start by �tting a model that

includes only the two indicators with intermediate SNR, i.e., SALES and EMP. In this case,

the model achieves a QPS of 0:089. Enlarging the model with the indicator that exhibits the

highest SNR, IP, implies QPS reductions of 38% (QPS = 0:055). However, enlarging the

model with the indicator that shows the lowest SNR, INC, implies QPS reductions of only 25%

(QPS = 0:067).

To illustrate the diminishing returns of adding more indicators, we examine the e¤ect of

enlarging di¤erent combinations of indicators with IP, the indicator with the largest SNR.

When a model that uses EMP and INC is enlarged with IP, the QPS reduction is of 42%

(QPS = 0:096 versus QPS = 0:056). However, when IP is added to a model that uses EMP,

INC and SALES the reduction is of only 22% (QPS = 0:067 versus QPS = 0:052). In addition,

when low SNR is combined with the diminishing returns to adding more variables, the usefulness

of new indicators in terms of business cycle identi�cation re�nements dramatically decreases.

For example, the model with the two indicators that exhibit the largest SNR, IP and EMP

achieves a QPS of 0:091. Adding the indicator with the following SNR, SALES, achieves a

QPS of 0:056, which implies a reduction of 38%. However, when the noisier indicator (INC)

is added, the model that uses the four indicators reaches a QPS of 0:052, which implies an

additional reduction of only 7%.

To address what might happen by including a lot more observables, we perform a two-

step estimation of the large data base used by Stock and Watson (2012).17 The sample runs

from 1967:03 to 2011:06 and the series were processed as indicated by these authors. The �rst

16To verify the robustness of these results, we repeated the analysis for the �ve monthly time series of the Euro-

STING model proposed in Camacho and Perez-Quiros (2010) that are available for the longer sample (1991:04 to

2014:03). The series are Economic Sentiment Indicator of the European Commission, Belgium overall business

indicator, German IFO and growth rates of Industrial Production and Exports. Each series reaches a QPS of

0:19, 0:21, 0:20, 0:18 and 0:17, respectively. The one-step and two-step procedures provide QPSs of 0:15 and

0:17, respectively.
17We thank a referee for this suggestion. The data were downloaded from

http://www.princeton.edu/~mwatson/publi.html
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latent factor and the �ltered probabilities of recession inferred from the factor are plotted in

Figure 4. The QPS is 0:100, which doubles the QPS obtained from our four indicators.18

Removing IP from this large data implies that QPS increases only 5% (QPS = 0:105) while

removing the whole category of industrial production data implies that QPS increases only 15%

(QPS = 0:115).

Finally, the real-time performance in tracking the US business cycle is now evaluated by

using a real-time data set. That is, the inferences are computed monthly over the past 35 years

by using only the data that would have been available at the month being considered. This is

accomplished by estimating the models recursively with new data vintages and evaluating the

evidence for a new turning point at the one-period ahead forecast in every period, following

Chauvet and Piger (2008). This method provides a more realistic assessment of how the models

would have performed, as it does not assume the knowledge of data revisions that were not

available at the time the model would have been used. The real-time forecasts are computed for

the period 1976.10-2010.11.

Figures 5 and 6 show that the real-time results are of the same nature as the in-sample results.

Overall, the two-step and the one-step procedures exhibit similar forecasting accuracy. However,

there is a reduction of about 5% in QPS when the analysis is restricted to examining the ability

of the models to compute turning points inferences from the one-step method with respect to

the two-step method.19 Again, the overall relative real-time performance of multivariate models

with respect to univariate models reveals that the former outperform the latter. According to

Table 4, the QPS increase from 0:06 in the case of multivariate models to 0:08, 0:12, 0:16,

and 0:09 in the case of univariate Markov-switching models of IP, EMPL, INC, and SALES,

respectively. The real-time gains of combining information from several economic indicators are

of the same order of magnitude as the in-sample gains.

5 Conclusions

We show that mixing information helps to compute business cycle inferences even in a real-

time analysis. There are two ways of mixing this information. The �rst one is to compute

18According to Poncela and Ruiz (2012), the performance of the models can diminish when the number of

parameters to be estimated increases dramatically.
19The reductions in QPS are of more than 40% (QPSII = 0:30 versus QPSI = 0:16, not included in Table 4)

when the analysis is restricted to the periods right after the troughs.
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Markov-switching probabilities from a coincident indicator, which is the outcome of a linear

dynamic factor model. The second one is to compute the probabilities directly from a full

Markov-switching dynamic-factor model. Although the �rst approach is computationally easier

to implement, the second strategy is conceptually more appealing. In this paper, we examine

the circumstances under which one is preferred to the other.

We �nd that the full Markov-switching dynamic-factor model exhibits higher business cycle

performance, especially at the turning points. However, we show that the larger the quality of

the business cycle indicators used in the analysis, the closer the ability of the two approaches to

track the business cycles. This implies that, when the set of indicators included in the analysis are

good indicators of the business cycle, the overall di¤erences between the two approaches diminish

considerably. Even in this case, the superior ability of the full Markov-switching dynamic-factor

model appears in the turning points. In addition, we also show that the more variables included

in the model, the better the �t. However, the improvements of adding new indicators in terms of

business cycle identi�cation dramatically decrease with the number of indicators already used,

even in the case of incorporating indicators with high signal-to-noise ratios.

Using the four constituent indicators of the Stock and Watson (1991) coincident index,

production, employment, income and sales, we examine the empirical performance of the models

to assess the US business cycle. Since these indicators are of very high quality, we expected a

high business cycle performance of the two methods. Consistent with this, we show that the

business cycle dates obtained from their respective �ltered probabilities are in both cases almost

identical to the o¢ cially recognized US business cycle chronology. However, we obtain some

relative gains of the full Markov-switching dynamic-factor model when the analysis is focused

on turning points detection, one of the main goals of Markov-switching models. We con�rm this

result in a real-time analysis of the models�performance over the past 35 years.
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Table 1. Two-step versus one-step estimation procedures 
 

 One step  Two steps 

2 
0-1

1 2 4 10 1 2 4 10 

0.5 
0.201 

(0.332) 
0.097 

(0.255) 
0.016 

(0.070)
5.09E-08 

(1.29E-08) 
0.229 

(0.357)
0.099 

(0.261)
0.045 

(0.240) 
0.018 

(0.121) 

1.5 
0.202 

(0.326) 
0.124 

(0.275) 
0.027 

(0.095)
4.22E-06 

(2.67E-05) 
0.250 

(0.363)
0.131 

(0.292)
0.056 

(0.272) 
0.023 

(0.146) 

4.5 
0.204 

(0.320) 
0.171 

(0.307) 
0.061 

(0.169)
4.02E-04 

(1.47E-03) 
0.279 

(0.394)
0.201 

(0.366)
0.087 

(0.331) 
0.031 

(0.191) 
 
Notes. Entries show the average over the replications of the averaged squared deviation of 
filtered probabilities of low-mean state from the 1000 generated business cycle sequences. 
The results when the analysis is restricted to the first month after phase shifts are in 
brackets. “One step” refers to MS-DFM and “two steps” refers to MS applied to a linear 
common factor. The replications use three indicators (N=3). Parameters are estimated. 
 
 
 

Table 2. The role of N on MS-DFM 
 

2 
N 

1 3 5 7 

0.5 0.122 0.097 0.092 0.088 

1.5 0.168 0.124 0.109 0.099 

4.5 0.202 0.171 0.141 0.124 

 
Notes. Entries show the average over the replications of the averaged squared deviation of 
filtered probabilities of low-mean state from the 1000 generated business cycle sequences. 
N denotes the number of variables included in the model, and 2 the variance of the 
idiosyncratic shocks. The model has been generated with 0-1=2. Parameters are 
estimated. 
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Table 3. Maximum likelihood estimates 

 
Two-step procedure 

  Factor IP Empl Inc Sales 

DMF 

i - 
0.69 

(0.03)
0.50 

(0.03) 
0.28 

(0.03) 
0.45 

(0.03) 

1 
0.43 

(0.06) 
-0.26 
(0.07)

0.23 
(0.03) 

-0.20 
(0.02) 

-0.36 
(0.04) 

2 
0.22 

(0.05) 
-0.21 
(0.08)

0.53 
(0.04) 

-0.05 
(0.04) 

-0.15 
(0.05) 

2
i  1 

0.26 
(0.04)

0.24 
(0.02) 

0.85 
(0.03) 

0.59 
(0.03) 

MS 

1 2 
2

*a
  p00 p11 

0.32 
(0.04) 

-1.78 
(0.14)

0.80 
(0.05) 

0.98 
(0.01) 

0.89 
(0.04) 

One-step procedure 

   IP Empl Inc Sales 

Indicators 

i 
0.69 

(0.03)
0.42 

(0.02) 
0.28 

(0.04) 
0.46 

(0.03) 

1 
-0.18 
(0.08)

0.24 
(0.03) 

-0.20 
(0.02) 

-0.34 
(0.04) 

2 
-0.16 
(0.08)

0.54 
(0.04) 

-0.05 
(0.04) 

-0.15 
(0.05) 

2
i  0.26 

(0.04)
0.27 

(0.02) 
0.85 

(0.03) 
0.57 

(0.03) 

Factor 
1 2 

2
*a

  p00 p11 

0.32 
(0.07) 

-2.00 
(0.20)

1 
0.98 

(0.01) 
0.85 

(0.05) 
 

Note: Standard errors are in brackets. 
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Table 4. Empirical performance 
 

 1-step 2-steps IP Empl Inc Sales 

In sample (1967.01-2010.11) 

Total 0.05 0.05 0.07 0.12 0.13 0.09 

Turning points 0.31 0.39 0.54 0.67 0.42 0.33 

Real time (1976.10-2010.11) 

Total 0.06 0.06 0.08 0.12 0.16 0.09 

Turning points 0.36 0.54 0.49 0.73 0.39 0.36 

 
Note. Entries labeled as “total” refer to QPS statistics. In the case of entries labeled as 
“turning points”, the QPS is computed by using the first month after the phase shifts. 



Figure 1. KL divergence
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N-1 indicators) to infer the probability of recession when a recession occurs as a
function of its signal-to-noise ratio.

Figure 2. Two-step method
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Notes: This graph plots the common factor (left scale) and the filtered probabilities of 
recession (right scale) computed from the two-step procedure. Shaded areas correspond 
to recessions as documented by the NBER. 
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Figure 3. One-step method
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Notes: This graph plots the common factor (left scale) and the filtered probabilities of
recession (right scale) computed from the one-step procedure. Shaded areas correspond to
recessions as documented by the NBER.

5

10

15 1

Figure 4. Stock and Watson (2012) data base
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Notes: This graph plots the first factor (left scale) and the filtered probabilities of
recession (right scale). Shaded areas correspond to recessions as documented by the
NBER.

26



1

Figure 5. One-period-ahead real-time forecasts from one-step model
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Note: The graph shows the one-period ahead real-time forecasts of the probability of
b i i i Sh d d d i d d b h NBERbeing in recession. Shaded areas correspond to recessions as documented by the NBER.
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Figure 6. One-period-ahead real-time forecasts from two-step model
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Note: The graph shows the one-period ahead real-time forecasts of the probability of
being in recession. Shaded areas correspond to recessions as documented by the NBER.
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