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Telomerase expression is restricted to a few cell types of the

adult organism, most notably germ cells and stem/progenitor

cells. Telomerase activity in germ cells is sufficient to prevent

telomere shortening with age. Stem cells, however, do not have

sufficient telomerase to prevent telomere shortening

associated with continuous tissue renewal with increasing age.

Indeed, telomerase levels in the adult organism are thought to

be rate-limiting for longevity. This is supported by rare human

syndromes caused by mutations in telomerase components,

which are characterized by premature loss of tissue renewal

and premature death. More recently, the role of telomerase and

telomere length in stem cells is starting to be elucidated.
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Introduction
The ends of chromosomes are formed by a special chro-

matin structure, known as the telomere, which is essential

to protect chromosome-ends from degradation and DNA

repair activities [1��,2]. Telomeric chromatin is formed by

tandem TTAGGG repeats and associated proteins

[1��,2]. Telomere repeats span �10–15 Kb in humans

and 25–40 Kb in mice [3]. The proteins that associate

with these repeats include the telomere repeat binding

factors TRF1 and TRF2 as well as their interacting

factors, which form a large protein complex recently

named ‘shelterin’ [1��]. This complex is proposed to

regulate both telomere length and telomere protection

[1��]. Importantly, telomeres are also bound by nucleo-

some arrays, which show histone modifications character-

istic of constitutive heterochromatin domains [3,4].

Constitutive heterochromatin is generally found at tran-

scriptionally inactive (‘silenced’) genomic regions of repe-

titive DNA, such as pericentric satellite repeats. Similar

to pericentric chromatin, telomeres are enriched for bind-

ing of the heterochromatin protein 1 (HP1) and contain
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high levels of trimethylated H3-K9 and H4-K20, two

histone modifications carried out by the histone methyl-

transferases (HMTases) suppressor of variegation 3–9

homolog (Suv39h) and suppressor of variegation 4-20

homolog (Suv4-20h), respectively [5,6��,7��]. The Retino-

blastoma proteins are also required for efficient H4-K20

trimethylation at both telomeres and centromeres through

direct interaction with the Suv4-20h HMTases [5,7��].
The heterochromatic nature of telomeres, therefore, sug-

gests that chromosome ends are in a compacted and

‘silenced’ chromatin conformation, which has to be finely

regulated in order to properly control telomere length.

Interestingly, during cell division telomeres lose

TTAGGG repeats as a result of the incomplete replica-

tion of linear chromosomes by conventional DNA poly-

merases, the so-called ‘end-replication problem’. This

progressive telomere shortening is proposed to be one

of the molecular mechanisms underlying organismal

aging, since critically short telomeres trigger chromosome

instability and loss of cell viability [3,8]. As an exception,

germ cells, certain populations of stem cells, and the vast

majority of cancer cells express high levels of telomerase

[3]. Telomerase is a reverse transcriptase encoded by the

Tert (telomerase reverse transcriptase) and Terc (telomer-

ase RNA component) genes, which adds telomeric

repeats onto the chromosome ends [2,8].

Defective telomerase activity and short telomeres have

been implicated in the pathobiology of several age-

related diseases and premature aging syndromes [3,8,9].

In contrast, telomerase is abnormally up-regulated in

>90% of human tumors, where it is though to sustain

tumor growth by maintaining telomeres above a threshold

length. In this review, we will discuss recent advances on

how telomerase is regulated, as well as on novel roles of

telomeres and telomerase in stem cell biology. These new

findings have profound implications for how telomerase

regulates the balance between aging and cancer.

Telomerase regulation
It is of great interest to understand how telomerase

activity is regulated in normal and pathological conditions

in order to evaluate its potential as a therapeutic target. A

number of different mechanisms have been shown to

regulate telomerase activity. Regulation of Tert mRNA

expression seems to be the most important and rate-

limiting step for telomerase activation [10]. Other

mechanisms for telomerase regulation include alternative

splicing [11], post-translational Tert modification [12–14]

and sub-cellular Tert localization [15]. The human Tert

(hTert) promoter regulatory region contains potential
www.sciencedirect.com
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binding sites for a number of positive and negative hTert

transcriptional regulators, among which the Myc/Mad

binding sites have been extensively studied (Table 1).

In particular, hTert is a direct transcriptional target of c-

Myc, which up-regulates telomerase expression [16–20],

while the Myc antagonist Mad1 suppresses hTert expres-

sion [21,22]. In addition, a number of tumor suppressors

and oncogenic pathways have been shown to negatively

regulate hTert (Table 1). Among them, the Smad-

interacting protein 1 (SIP1) mediates TGF-b-induced

hTert repression, while Menin directly represses hTert

through inhibition of the trans-activation ability of several

transcription factors [23]. Other tumor suppressors, such as

RAK and BRIT1 [23] as well as p53 and MDM2 [24,25],

have been shown to regulate hTert expression. In addi-

tion, the transcription factor E2F-1 has been identified as a

repressor that down-regulates hTERT promoter activity

in human tumor cells. Interestingly, in contrast to its

repressive activity in human tumor cells, E2F-1 activates

the hTERT promoter in normal human somatic cells

[26,27]. Among the hTert promoter activators, estrogen

up-regulates telomerase in both mammary and ovarian

epithelial cells [28–30]. Similarly, the oncogenic variant

of human papillomavirus E6 [31] and the oncogenic con-

stituents of the RAS signaling pathway [32] have been

shown to up-regulate telomerase activity. Finally, a num-

ber of additional hTert transcriptional activators have been

described over recent years, including the transcription

factor activator protein 1 (AP-1) [33] and the signal trans-

ducer and activator of transcription 3 (STAT3) [34], as well

as hTert repressors MZF-2 and the Tax oncogene [35,36].

Besides these different transcriptional regulators, the

Tert promoter is also a target of epigenetic modifications,
Table 1

Transcription factors shown to regulate hTert gene expression.

Transcription factors Role References

AP-1 Repressor [33]

BRCA-1 Repressor [20]

Mad 1 Repressor [22]

Mdm2 Repressor [24]

Menin Repressor [23]

MZF-2 Repressor [35]

P53 Repressor [25]

RAK/BRIT1 Repressor [23]

SIP-1 Repressor [23]

Tax Repressor [36]

TGF-b Repressor [25]

Wt-1 Repressor [68]

E2F-1 Repressor in cancer cells [26]

E2F-1 Activator in normal cells [27]

Estrogen Activator [29,30]

Sp1 Activator [19]

STAT3 Activator [34]

C-Myc Activator [16,17]

U2F1/2 Activator [32]

Survivin Activator [69]
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which in turn can modulate promoter activity and hTert

expression [37�]. In particular, the hTert promoter con-

tains clusters of CpG dinucleotides [38], which can be

methylated by DNA methyltransferases. Indeed, the

hTert promoter is hypermethylated in untransformed,

differentiated and senescent cells that do not express

telomerase [39]. In contrast, some cancer cells show high

levels of telomerase activity despite having a densely

methylated promoter [40], highlighting the fact that

telomerase levels in the cell depend on both genetic

and epigenetic factors.

Besides the above-described genetic and epigenetic reg-

ulators of hTert expression, telomerase-mediated telo-

mere maintenance and elongation are also likely to

depend on telomere structure. Telomere structure is

regulated both by the telomere-binding proteins and

by specific chromatin modifications at telomeres

[3,5,6��,7��,41,42]. As mentioned above, telomeres show

histone modifications characteristic of heterochromatic

and ‘silenced’ chromatin domains, such as tri-methylation

of H3K9 and H4K20 and binding of HP1 [3,5,6��,7��].
Furthermore, loss of these heterochromatic marks at

telomeres [5,6��,7��] leads to a less compacted chromatin

and to abnormal telomere elongation, suggesting a

higher-order control of telomere length by the state of

telomeric chromatin. The current view is that the action

of telomerase at individual chromosome ends is likely to

be controlled by a balance between the molecular inter-

actions that recruit telomerase to telomeres and the

negative feedback mechanisms that maintain telomeres

within a set size range and that involve changes in

telomere structure. In support of this notion, it has been

reported that telomerase does not elongate all telomeres

at the same time but selectively acts on the shortest

telomeres [43��]. In particular, yeast telomerase only

elongates a subset of telomeres (40%) within a single cell

cycle, showing a strong preference (around six-fold) for

the shortest ones [43��]. Similarly, telomerase re-intro-

duction in telomerase-deficient mice with critically short

telomeres specifically elongates the shortest telomeres

[44,45]. These observations imply that telomere length

influences whether the chromatin at telomeres is in a

‘closed’ or ‘open’ conformation for telomerase, which in

turn depends on both histone modifications and the

telomere-binding proteins. In this regard, shelterin, a

protein complex formed by six telomere-specific binding

factors — TRF1, TRF2, TIN2, Rap1, TPP1 and POT1

— is proposed to modulate the access of telomerase to

telomeres [1��,42]. In support of this, decreased TRF1

binding to telomeres by inhibition of TRF1 ADP-

ribosylation has been shown to reduce the affinity of

telomerase for telomeres and to enhance the efficacy of

telomerase inhibitors in human cancer cells [46]. All

together, these findings underline the importance and

complexity of telomerase regulation in order to achieve a

fine balance between the need to maintain telomeres
Current Opinion in Cell Biology 2006, 18:254–260
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within a functional length and the need to prevent

aberrant telomere elongation.

Telomerase and stem cell behavior
Telomerase is up-regulated in cells that undergo rapid

expansion, such as lymphocytes or keratinocytes, and

notably in germ cells and in different stem cell compart-

ments, even within tissues with a low cell turnover such as

the brain [47]. The fact that telomerase activity is largely

restricted to stem cells suggests that telomerase levels in

these cells may be determinant for organism fitness.

Indeed, mutations in the telomerase core components,

Tert and Terc, are present in patients suffering from

aplastic anemia and dyskeratosis congenita. Both diseases

are characterized by skin abnormalities and bone marrow

failure, the latter resulting from defects in maintaining the

hematopoietic stem cell compartment [48–50]. Moreover,

cancer and aging, two biological processes in which telo-

merase activity has been implicated, are increasingly seen

as stem cell diseases [3,51]. In particular, cancer may often

originate from the transformation of normal stem cells,

while aging has been associated with a progressive decline

in the number and/or functionality of certain stem cells [3].

During the past few years the specific role of telomerase

in different stem cell compartments has started to be

elucidated, mostly in well-characterized stem cell sub-

types such as hematopoietic stem cells (HSCs), epidermal

stem cells (ESCs) and neural stem cells (NSCs). In

particular, HSCs derived from human and mice lose

telomeric DNA with age despite the presence of detect-

able telomerase activity [52,53]. This progressive telo-

mere shortening is proposed to act as a developmental

barrier for HSCs, which may limit hematopoietic regen-

eration. In support of this notion, HSCs from telomerase-

deficient mice with short telomeres show a reduced

ability to repopulate irradiated mice [54,55]. Interest-

ingly, stabilization of telomere length in these cells by

Tert over-expression throughout the hematopoietic sys-

tem is not sufficient to extend their transplantation capa-

city, suggesting that additional telomere-independent

barriers limit HSC regeneration capacity [56].

The use of loss-of-function and gain-of-function mouse

models for telomerase has also served to establish the role

of telomere length and telomerase activity on ESC beha-

vior. Telomere shortening in the context of telomerase-

deficient mice has been shown to result in decreased

functionality of their skin ESC compartment [57��]. In

particular, mobilization (proliferation and migration) of

ESCs out of the hair follicle niche upon mitogen-induced

proliferation is partially inhibited in mice with a slight

reduction in telomere length (G1 Terc�/� mice) and

strongly inhibited in mice with critically short telomeres

(G3 Terc�/� mice) [57��]. The immediate consequences

of such mobilization defects are lower rates of prolifera-

tion in the hair follicle stem cell niche and in the adjacent
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transient-amplifying compartments, resulting in defec-

tive hair growth and a stunted hyperplasic response [57��].

Interestingly, transgenic mice with constitutive Tert

over-expression in the epidermis including the ESC

compartment (K5-mTert mice) present increased ESC

mobilization upon treatment with proliferation stimuli.

This increased ESC mobilization is concomitant with

increased keratinocyte proliferation, enhanced hair

growth and augmented skin hyperplasia [57��]. Similar

results regarding ESC activation and hair growth have

been reported using a different transgenic mouse in

which Tert is over-expressed in a conditional manner

[58��]. Interestingly, in the later study, the hair-growth-

promoting effects of Tert were found to be independent

of the telomerase RNA component and therefore of

telomerase activity, suggesting a non-canonical role for

Tert in addition to its known role in telomere synthesis.

However, the potential involvement of Tert independent

of Terc in other in vivo proliferative responses is still

unclear, since it has been recently shown that absence of

Terc abrogates the enhanced skin tumorigenesis and

wound healing responses shown by transgenic mice that

constitutively over-express Tert in the skin [59]. These

different requirements for Terc in epidermal growth

versus hair growth may be explained by the existence

of distinct cell populations involved in these processes.

Indeed, recent data indicate the existence of distinct stem

cells populations within the epidermis, which are sepa-

rately involved in regenerating either the hair follicles or

the epidermis [60–62].

Besides the skin, other tissues with a high cell turnover,

such as bone marrow, intestine and testis, show atrophies

in telomerase-deficient mice with critically short telo-

meres [63,64], supporting the notion that telomere length

is a determinant for tissue fitness in the wide context of

the organism.

Finally, it is important to note that the effects of telomere

length and telomerase activity on different stem cell

compartments (ESC, HSC and adult NSC) are cell-

autonomous, as demonstrated using in vitro clonogenicity

assays [54,57��,65]. This fact is relevant for designing

potential therapeutic strategies based on telomerase reac-

tivation, since it indicates that the effects of telomerase

and telomere length on stem cell behavior are intrinsic to

the stem cells and do not depend on physiological niche

micro-environments.

Terc as an optimal target for telomerase
inhibition in cancer
As discussed above, Terc is required for the tumor-

promoting effects of transgenic Tert over-expression in
vivo [59], as well as to maintain the enhanced proliferative

response of Tert-transgenic ESCs in vitro [57��]. Simi-

larly, it has recently been reported that Terc is needed to
www.sciencedirect.com
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maintain cell growth in different human cancer cell lines

that over-express Tert [66,67]. In particular, Terc knock-

down rapidly inhibits the growth of human cancer cells in

the absence of bulk telomere shortening or telomere

uncapping [66,67]. These results uncover novel roles

for telomerase independent of telomere maintenance,

which require Terc, therefore highlighting Terc as an

optimal target for telomerase-mediated therapeutic inter-

vention, even when telomeres are sufficiently long.

Conclusions and perspectives
Despite great progress having been made on how telo-

mere length and telomerase activity are regulated by

genetic and epigenetic factors, additional biochemical
Figure 1

A general model for cancer and aging based on telomeres, telomerase and

compartments, SC telomeres progressively shorten as we advance in life. In c

and to regenerate different organs. Decreased SC mobilization also reduces t

a mechanism for cancer protection. The ultimate consequence of impaired

(b). (c) In contrast, SCs that possess high telomerase activity (high number

than normal, which may increase cell numbers in tissues and therefore the

of higher mobilization tissue fitness would be maintained for longer times, th

effects are detected months before any sign of premature aging or spontan

functionality could be used to predict the fate of individuals.
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and genetic studies are required to fully understand these

processes during normal development and disease.

Further knowledge on how telomerase is regulated

should provide new avenues for targeting telomerase in

cancer patients as well as in premature aging pathologies

associated with short telomeres.

Importantly, the fact that telomerase is specifically

expressed in highly proliferative stem/progenitor com-

partments has opened the possibility that telomerase may

be viewed as a ‘stem cell’ factor. In fact, both telomere

length and telomerase levels have profound effects on

stem cell behavior. However, the precise role of telo-

meres and telomerase in specific stem/progenitor
stem cell (SC) behavior. (a) Despite the presence of telomerase in SC

onsequence, SCs gradually lose their ability to mobilize out of the niche

he probability of accumulating abnormal cells in tissues, which provides

mobilization, however, will be organ failure due to tissue degeneration

of functional Tert/Terc complexes) mobilize their SCs more efficiently

risk of tumor formation. On the other hand, under these conditions

erefore increasing life span. Finally, since all the ESC mobilization

eous tumor formation occurs in telomerase mutant mice, stem cell

Current Opinion in Cell Biology 2006, 18:254–260
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compartments is still emerging. Novel areas have yet to

be explored, such as the different signalling networks

that connect telomerase activity and telomere state with

stem cell functionality. A careful analysis of telomere

biology in stem cells will help us to refine our current

model of how we age or suffer from diseases such as

cancer (Figure 1).
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