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Risk measures
One-period setup:Today, say 0, and tomorrow, say T > 0.

@ The available market information at the future date T is modelled by
a probability space (2, Fr, P).
@ The different final pay-offs are modelled by a subspace

X c L% = 1OF7).

o A risk measure is a function
p: X —R.

p(x) quantifies the riskiness (today) of the payoff x € X.

@ Duality theory of risk measures is a fruitful area of research that was
started by

[P. Artzner, F. Delbaen, J. M. Eber, and D. Heath, 1999.]

The main tool is classical convex analysis.
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Convex risk measures
o Let X be a solid subspace of L% := [1(F7) with R C X.

A convex risk measure is a function p : X — R satisfying the following
conditions for all x,y € X:

@ convexity: p(rx+ (1 —r)y) < rp(x) + (1 — r)p(y) for all r € [0,1];

@ monotonicity: if x <y a.s., then p(y) < p(x);

@ cash invariance: p(x + r) = p(x) — r for all r € R.

@ The Kothe dual space of X is defined to be

x# = {y e L% E[lxy[] < oo forall x € X'} .

o (X, X*) is a dual pair with the bilinear form (x,y) — E[xy].
@ The Fenchel transform of p is defined to be

p(y) == sup{E[xy] — p(x): x € X} fory € X7,
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Robust representation of convex risk measures

The following robust representation theorem was first time proved for
X = LT by Jouini, Schachermayer, and Touzi in 2006:

Theorem (K. Owari, 2014)

Let p: X — R be a convex risk measure. Then p is lower semi-continuous
w.r.t. o(X,X7) if and only if p is representable, i.e.

p(x) = sup{Ely] — p¥(y): y € X¥} VxeX.

In that case, the following conditions are equivalent:
© p attains the representation for each x € X;

@ p has the Lebesgue property, i.e.
limx, = x a.s., |xp| <y, y € X implies lim p(x,) = p(x);
n n

© p” is inf-compact w.r.t. o(X7%,X).
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A conditional risk measure is a function p : 2~ — L9 which satisfies the
following conditions for all x,y € 2"

Q LP-convexity: p(nx + (1 —n)y) < np(x) + (1 —n)p(y) as.
forallme O with0<n<1,

@ monotonicity: x < y a.s. implies p(y) < p(x) a.s.;
© L[%-cash invariance: p(x +n) = p(x) — 7 for all n € LY.

We want to study the dual representation of p.
@ New developments in functional analysis:

» [9-Convex Analysis [D. Filipovi¢, M. Kupper, and N. Vogelpoth, 2009];
» Conditional analysis [S. Drapeau, A. Jamneshan, M. Karliczek, and
M. Kupper, 2016].

@ Every single module or conditional analogue of a classical theorem
needs an adaptation of a classical proof.

@ Transfer method between two duality theories:

Convex Risk Measures = Conditional Risk Measures.




A transfer method from duality theory of convex
risk measures to duality theory of conditional risk
measures
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Forcing universes: Historical background

o Cantor stated the Continuum hypothesis (CH): every infinite set of
reals can be bijected either with N or R (1878).

e Godel proved the consistency of CH with ZFC (1939).

@ Cohen proved that CH is independent of ZFC by means of the forcing
method (1963).

@ Scott, Solovay, and Vopénka created the Boolean-valued models or
forcing universes to simplify the Cohen’s method of forcing (1967).

“We must ask whether there is any interest in these nonstandard models
aside from the independence proof; that is, do they have any mathematical
interest? The answer must be yes, but we cannot yet give a really good

argument.”

Dana Scott, 1969.
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The Forcing Universe associated to F; is a class V; of functions

% :dom(x) — F; such that dom(x) C V;.

V0 =10
Ve = {x: x is F-valued and 38 < « such that dom(x) C V/};
V.= U Ve

aecOrd

@ Any member x of V; is understood as a “fuzzy set”

R
y,y’ € dom(x)
x(y) ﬂ(y/)
y y'
o If p(u1,...,u,) is a logic formula (with uy, ..., u, free variables) and
21, ...,%, € V; we define the Boolean truth value (%1, ..., %,)] € F:.

@ A full set-theoretic reasoning is possible.
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Transfer principle

Theorem (Transfer principle)

If p is a ZFC theorem,
then the assertion “[ o]

Q" is again a ZFC theorem.

Suppose that we want to study a mathematical object X:

@ Suppose that X can be seen as a “representation” of a simpler
well-known mathematical object X7 inside V;.

L\

Universe V Universe V;

o If we manage to interpret a theorem about X7 as a statement about
the original object X, we will have proved a new theorem about X.
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Application to conditional risk

We want to apply this idea to conditional risk.
Let p: 2 — L9 be a conditional risk measure.

o The Ké&the dual L9-module of 27 is defined to be

XH# = {y e L% E[lxy| | Fe] < o0 as. forall x e 27} .

@ The Fenchel transform of p is defined to be

p7(y) == ess.sup{E[xy|F:] — p(x): x € '} fory e 27,

@ We say that p is representable if

p(x) = ess.sup{E[xy|F:] — p#(y): y € %#} forall x € 2.
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The pairing (27, 2°) allows for the definition of a module analogue of
the weak topologies, that we call stable weak topologies and denote by

os(2, Z%) and  oo(2H,X).

e pis Fi-lower semi-continuous w.r.t. o5(2", Z7) if:
For any n € L9, {p <n}is closed w.r.t. o5(2°, 27);
o pis Fi-inf-compact w.r.t. os(X, X7) if:

For any n € L9, {p < n} satisfies the following compactness condition:
Any «stable» filter base % on {p < n} has a cluster point
x € {p <n} wrt. o5(X,X%).

@ p has the Lebesgue property if

limx, = x a.s., |xp| < z, z € Z implies lim p(x,) = p(x) a.s..
n n
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Theorem

Let p: 2 — L9 be a conditional risk measure. Then, inside of V;, there
exists a convex risk measure pl so that:

Q p is representable if and only if [p? is representable] = Q.
@ p is Fi-lower semi-continuous if and only if [p1 is I.s.c.] = Q.
© p is Fi-inf-compact if and only if [p1 is inf-compact] = Q.
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Robust representation of conditional risk measures

Recall the general version of the Jouini-Schachermayer-Touzi theorem:
Theorem

Let p: X — R be a convex risk measure. Then p is lower semi-continuous
w.r.t. o(X,X7) if and only if p is representable, i.e.

p(x) = sup{E[xy] — p*(y): y € X¥} VxeX.

In that case, the following conditions are equivalent:
@ p attains the representation for each x € X;

@ p has the Lebesgue property, i.e.
limx, = x a.s., |xp| <y, y € X implies lim p(x,) = p(x);
n n

Q p7 is inf-compact w.r.t. o(X%,X).




Robust representation of conditional risk measures

Thanks to the transfer principle we derive the following robust
representation theorem:

Theorem
Letp: & — L? be a conditional risk measure. Then p is F;-lower

semi-continuous w.r.t. os(Z , %) if and only if p admits a representation

p(x) = ess.sup {[E[xy|.7-'] —p"(y): y e %#} Vx e Z.

In that case, the following conditions are equivalent:
© p attains the representation for each x € X ;

@ p has the Lebesgue property, i.e.

limx, = x a.s., |xo| <y, y € Z implies lim p(xn) = p(x) a.s.;
n n

Q o7 is Fi-inf-compact w.r.t. os( 27, Z).
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Examples of model spaces

@ L°° type modules:

L3 = {xEL 3n € L9 such that x| <n}.

@ LP type modules (1 < p < 00):
L7y ={xe LY E[lx| | Fe] < 0 as.}.

@ Orlicz type modules: Suppose that ¢ : [0,00) — [0, 00] is a Young
function

t ;i={xel%:3eell e>0as, E[p(e|x|)|Fe] < o0 as.}.

@ Orlicz-heart type modules: Suppose that ¢ : [0,00) — [0,00] is a
Young function

Hip={xelG:Vee ) e>0as, E[p(c"|x|)|Fe] < 0 as.}.
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Thank you for your attention!
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