Conditional Risk and Forcing Universes
 (Dedicated to the memory of Bernardo Cascales)

José Miguel Zapata
(University of Murcia)

XVI Encuentro Valencia-Murcia. 13-15 Dec 2018 - University of Murcia.

Partially based on joint work with Antonio Avilés (University of Murcia).

Duality theory of Risk Measure

Risk measures

Risk measures
One-period setup:

Risk measures
One-period setup:Today, say 0 , and tomorrow, say $T>0$.

Risk measures

One-period setup:Today, say 0 , and tomorrow, say $T>0$.

- The available market information at the future date T is modelled by a probability space $\left(\Omega, \mathcal{F}_{T}, P\right)$.

Risk measures

One-period setup:Today, say 0 , and tomorrow, say $T>0$.

- The available market information at the future date T is modelled by a probability space $\left(\Omega, \mathcal{F}_{T}, P\right)$.
- The different final pay-offs are modelled by a subspace

$$
\mathcal{X} \subset L_{T}^{0}:=L^{0}\left(\mathcal{F}_{T}\right)
$$

Risk measures

One-period setup:Today, say 0 , and tomorrow, say $T>0$.

- The available market information at the future date T is modelled by a probability space $\left(\Omega, \mathcal{F}_{T}, P\right)$.
- The different final pay-offs are modelled by a subspace

$$
\mathcal{X} \subset L_{T}^{0}:=L^{0}\left(\mathcal{F}_{T}\right)
$$

- A risk measure is a function

$$
\rho: \mathcal{X} \longrightarrow \mathbb{R}
$$

$\rho(x)$ quantifies the riskiness (today) of the payoff $x \in \mathcal{X}$.

Risk measures

One-period setup:Today, say 0 , and tomorrow, say $T>0$.

- The available market information at the future date T is modelled by a probability space $\left(\Omega, \mathcal{F}_{T}, P\right)$.
- The different final pay-offs are modelled by a subspace

$$
\mathcal{X} \subset L_{T}^{0}:=L^{0}\left(\mathcal{F}_{T}\right)
$$

- A risk measure is a function

$$
\rho: \mathcal{X} \longrightarrow \mathbb{R}
$$

$\rho(x)$ quantifies the riskiness (today) of the payoff $x \in \mathcal{X}$.

- Duality theory of risk measures is a fruitful area of research that was started by

> [P. Artzner, F. Delbaen, J. M. Eber, and D. Heath, 1999.]

Risk measures

One-period setup:Today, say 0 , and tomorrow, say $T>0$.

- The available market information at the future date T is modelled by a probability space $\left(\Omega, \mathcal{F}_{T}, P\right)$.
- The different final pay-offs are modelled by a subspace

$$
\mathcal{X} \subset L_{T}^{0}:=L^{0}\left(\mathcal{F}_{T}\right)
$$

- A risk measure is a function

$$
\rho: \mathcal{X} \longrightarrow \mathbb{R}
$$

$\rho(x)$ quantifies the riskiness (today) of the payoff $x \in \mathcal{X}$.

- Duality theory of risk measures is a fruitful area of research that was started by

> [P. Artzner, F. Delbaen, J. M. Eber, and D. Heath, 1999.]

The main tool is classical convex analysis.

Convex risk measures

Convex risk measures

- Let \mathcal{X} be a solid subspace of $L_{T}^{1}:=L^{1}\left(\mathcal{F}_{T}\right)$ with $\mathbb{R} \subset \mathcal{X}$.

Convex risk measures

- Let \mathcal{X} be a solid subspace of $L_{T}^{1}:=L^{1}\left(\mathcal{F}_{T}\right)$ with $\mathbb{R} \subset \mathcal{X}$.

A convex risk measure is a function $\rho: \mathcal{X} \rightarrow \mathbb{R}$ satisfying the following conditions for all $x, y \in \mathcal{X}$:
(1) convexity: $\rho(r x+(1-r) y) \leq r \rho(x)+(1-r) \rho(y)$ for all $r \in[0,1]$;
(2) monotonicity: if $x \leq y$ a.s., then $\rho(y) \leq \rho(x)$;
(3) cash invariance: $\rho(x+r)=\rho(x)-r$ for all $r \in \mathbb{R}$.

Convex risk measures

- Let \mathcal{X} be a solid subspace of $L_{T}^{1}:=L^{1}\left(\mathcal{F}_{T}\right)$ with $\mathbb{R} \subset \mathcal{X}$.

A convex risk measure is a function $\rho: \mathcal{X} \rightarrow \mathbb{R}$ satisfying the following conditions for all $x, y \in \mathcal{X}$:
(1) convexity: $\rho(r x+(1-r) y) \leq r \rho(x)+(1-r) \rho(y)$ for all $r \in[0,1]$;
(2) monotonicity: if $x \leq y$ a.s., then $\rho(y) \leq \rho(x)$;
(3) cash invariance: $\rho(x+r)=\rho(x)-r$ for all $r \in \mathbb{R}$.

- The Köthe dual space of \mathcal{X} is defined to be

$$
\mathcal{X}^{\#}:=\left\{y \in L_{T}^{0}: \mathbb{E}[|x y|]<\infty \text { for all } x \in \mathcal{X}\right\} .
$$

Convex risk measures

- Let \mathcal{X} be a solid subspace of $L_{T}^{1}:=L^{1}\left(\mathcal{F}_{T}\right)$ with $\mathbb{R} \subset \mathcal{X}$.

A convex risk measure is a function $\rho: \mathcal{X} \rightarrow \mathbb{R}$ satisfying the following conditions for all $x, y \in \mathcal{X}$:
(1) convexity: $\rho(r x+(1-r) y) \leq r \rho(x)+(1-r) \rho(y)$ for all $r \in[0,1]$;
(2) monotonicity: if $x \leq y$ a.s., then $\rho(y) \leq \rho(x)$;
(3) cash invariance: $\rho(x+r)=\rho(x)-r$ for all $r \in \mathbb{R}$.

- The Köthe dual space of \mathcal{X} is defined to be

$$
\mathcal{X}^{\#}:=\left\{y \in L_{T}^{0}: \mathbb{E}[|x y|]<\infty \text { for all } x \in \mathcal{X}\right\} .
$$

- $\left\langle\mathcal{X}, \mathcal{X}^{\#}\right\rangle$ is a dual pair with the bilinear form $(x, y) \mapsto \mathbb{E}[x y]$.

Convex risk measures

- Let \mathcal{X} be a solid subspace of $L_{T}^{1}:=L^{1}\left(\mathcal{F}_{T}\right)$ with $\mathbb{R} \subset \mathcal{X}$.

A convex risk measure is a function $\rho: \mathcal{X} \rightarrow \mathbb{R}$ satisfying the following conditions for all $x, y \in \mathcal{X}$:
(1) convexity: $\rho(r x+(1-r) y) \leq r \rho(x)+(1-r) \rho(y)$ for all $r \in[0,1]$;
(2) monotonicity: if $x \leq y$ a.s., then $\rho(y) \leq \rho(x)$;
(3) cash invariance: $\rho(x+r)=\rho(x)-r$ for all $r \in \mathbb{R}$.

- The Köthe dual space of \mathcal{X} is defined to be

$$
\mathcal{X}^{\#}:=\left\{y \in L_{T}^{0}: \mathbb{E}[|x y|]<\infty \text { for all } x \in \mathcal{X}\right\} .
$$

- $\left\langle\mathcal{X}, \mathcal{X}^{\#}\right\rangle$ is a dual pair with the bilinear form $(x, y) \mapsto \mathbb{E}[x y]$.
- The Fenchel transform of ρ is defined to be

$$
\rho^{\#}(y):=\sup \{\mathbb{E}[x y]-\rho(x): x \in \mathcal{X}\} \quad \text { for } y \in \mathcal{X}^{\#} .
$$

Robust representation of convex risk measures

The following robust representation theorem was first time proved for $\mathcal{X}=L_{T}^{\infty}$ by Jouini, Schachermayer, and Touzi in 2006:

Robust representation of convex risk measures

The following robust representation theorem was first time proved for $\mathcal{X}=L_{T}^{\infty}$ by Jouini, Schachermayer, and Touzi in 2006:

Theorem (K. Owari, 2014)
Let $\rho: \mathcal{X} \rightarrow \mathbb{R}$ be a convex risk measure. Then ρ is lower semi-continuous w.r.t. $\sigma\left(\mathcal{X}, \mathcal{X}^{\#}\right)$ if and only if ρ is representable, i.e.

$$
\rho(x)=\sup \left\{\mathbb{E}[x y]-\rho^{\#}(y): y \in \mathcal{X}^{\#}\right\} \quad \forall x \in \mathcal{X}
$$

In that case, the following conditions are equivalent:
(1) ρ attains the representation for each $x \in \mathcal{X}$;
(2) ρ has the Lebesgue property, i.e.

$$
\lim _{n} x_{n}=x \text { a.s., }\left|x_{n}\right| \leq y, y \in \mathcal{X} \text { implies } \lim _{n} \rho\left(x_{n}\right)=\rho(x) ;
$$

(3) $\rho^{\#}$ is inf-compact w.r.t. $\sigma\left(\mathcal{X}^{\#}, \mathcal{X}\right)$.

Multi-period Risk Measures

Multi-period Risk Measures

Multi-period setup:

Multi-period Risk Measures

Multi-period setup: $0<t<T$.

Multi-period Risk Measures

Multi-period setup: $0<t<T$.

- $\mathcal{F}_{t} \subset \mathcal{F}_{T}$ encodes the available market information at t.

Multi-period Risk Measures

Multi-period setup: $0<t<T$.

- $\mathcal{F}_{t} \subset \mathcal{F}_{T}$ encodes the available market information at t.
- A conditional risk measure is a function

$$
\rho_{t}: \mathcal{X} \longrightarrow L_{t}^{0}
$$

where $\rho_{t}(x)$ quantifies the riskiness (at t) of the payoff $x \in \mathcal{X}$.

Multi-period Risk Measures

Multi-period setup: $0<t<T$.

- $\mathcal{F}_{t} \subset \mathcal{F}_{T}$ encodes the available market information at t.
- A conditional risk measure is a function

$$
\rho_{t}: \mathcal{X} \longrightarrow L_{t}^{0}
$$

where $\rho_{t}(x)$ quantifies the riskiness (at t) of the payoff $x \in \mathcal{X}$.

- D. Filipovic, M. Kupper and N. Vogelpoth (2009) proposed a module-based approach to this problem.

Multi-period Risk Measures

Multi-period setup: $0<t<T$.

- $\mathcal{F}_{t} \subset \mathcal{F}_{T}$ encodes the available market information at t.
- A conditional risk measure is a function

$$
\rho_{t}: \mathcal{X} \longrightarrow L_{t}^{0}
$$

where $\rho_{t}(x)$ quantifies the riskiness (at t) of the payoff $x \in \mathcal{X}$.

- D. Filipovic, M. Kupper and N. Vogelpoth (2009) proposed a module-based approach to this problem.

Namely, they consider as a model space a solid L_{t}^{0}-submodule

$$
L_{t}^{0} \subset \mathscr{X} \subset L_{T}^{0}
$$

Multi-period Risk Measures

Multi-period setup: $0<t<T$.

- $\mathcal{F}_{t} \subset \mathcal{F}_{T}$ encodes the available market information at t.
- A conditional risk measure is a function

$$
\rho_{t}: \mathcal{X} \longrightarrow L_{t}^{0}
$$

where $\rho_{t}(x)$ quantifies the riskiness (at t) of the payoff $x \in \mathcal{X}$.

- D. Filipovic, M. Kupper and N. Vogelpoth (2009) proposed a module-based approach to this problem.

Namely, they consider as a model space a solid L_{t}^{0}-submodule

$$
L_{t}^{0} \subset \mathscr{X} \subset L_{T}^{0}
$$

Multi-period Risk Measures

A conditional risk measure is a function $\rho: \mathscr{X} \rightarrow L_{t}^{0}$ which satisfies the following conditions for all $x, y \in \mathscr{X}$:
(1) L_{t}^{0}-convexity: $\rho(\eta x+(1-\eta) y) \leq \eta \rho(x)+(1-\eta) \rho(y)$ a.s. for all $\eta \in L_{t}^{0}$ with $0 \leq \eta \leq 1$;
(2) monotonicity: $x \leq y$ a.s. implies $\rho(y) \leq \rho(x)$ a.s.;
(3) L_{t}^{0}-cash invariance: $\rho(x+\eta)=\rho(x)-\eta$ for all $\eta \in L_{t}^{0}$.

Multi-period Risk Measures

A conditional risk measure is a function $\rho: \mathscr{X} \rightarrow L_{t}^{0}$ which satisfies the following conditions for all $x, y \in \mathscr{X}$:
(1) L_{t}^{0}-convexity: $\rho(\eta x+(1-\eta) y) \leq \eta \rho(x)+(1-\eta) \rho(y)$ a.s. for all $\eta \in L_{t}^{0}$ with $0 \leq \eta \leq 1$;
(2) monotonicity: $x \leq y$ a.s. implies $\rho(y) \leq \rho(x)$ a.s.;
(3) L_{t}^{0}-cash invariance: $\rho(x+\eta)=\rho(x)-\eta$ for all $\eta \in L_{t}^{0}$.

We want to study the dual representation of ρ.

Multi-period Risk Measures

A conditional risk measure is a function $\rho: \mathscr{X} \rightarrow L_{t}^{0}$ which satisfies the following conditions for all $x, y \in \mathscr{X}$:
(1) L_{t}^{0}-convexity: $\rho(\eta x+(1-\eta) y) \leq \eta \rho(x)+(1-\eta) \rho(y)$ a.s. for all $\eta \in L_{t}^{0}$ with $0 \leq \eta \leq 1$;
(2) monotonicity: $x \leq y$ a.s. implies $\rho(y) \leq \rho(x)$ a.s.;
(3) L_{t}^{0}-cash invariance: $\rho(x+\eta)=\rho(x)-\eta$ for all $\eta \in L_{t}^{0}$.

We want to study the dual representation of ρ.

- New developments in functional analysis:

Multi-period Risk Measures

A conditional risk measure is a function $\rho: \mathscr{X} \rightarrow L_{t}^{0}$ which satisfies the following conditions for all $x, y \in \mathscr{X}$:
(1) L_{t}^{0}-convexity: $\rho(\eta x+(1-\eta) y) \leq \eta \rho(x)+(1-\eta) \rho(y)$ a.s. for all $\eta \in L_{t}^{0}$ with $0 \leq \eta \leq 1$;
(2) monotonicity: $x \leq y$ a.s. implies $\rho(y) \leq \rho(x)$ a.s.;
(3) L_{t}^{0}-cash invariance: $\rho(x+\eta)=\rho(x)-\eta$ for all $\eta \in L_{t}^{0}$.

We want to study the dual representation of ρ.

- New developments in functional analysis:
- Lo ${ }^{0}$ Convex Analysis [D. Filipović, M. Kupper, and N. Vogelpoth, 2009];

Multi-period Risk Measures

A conditional risk measure is a function $\rho: \mathscr{X} \rightarrow L_{t}^{0}$ which satisfies the following conditions for all $x, y \in \mathscr{X}$:
(1) L_{t}^{0}-convexity: $\rho(\eta x+(1-\eta) y) \leq \eta \rho(x)+(1-\eta) \rho(y)$ a.s. for all $\eta \in L_{t}^{0}$ with $0 \leq \eta \leq 1$;
(2) monotonicity: $x \leq y$ a.s. implies $\rho(y) \leq \rho(x)$ a.s.;
(3) L_{t}^{0}-cash invariance: $\rho(x+\eta)=\rho(x)-\eta$ for all $\eta \in L_{t}^{0}$.

We want to study the dual representation of ρ.

- New developments in functional analysis:
- L0-Convex Analysis [D. Filipović, M. Kupper, and N. Vogelpoth, 2009];
- Conditional analysis [S. Drapeau, A. Jamneshan, M. Karliczek, and M. Kupper, 2016].

Multi-period Risk Measures

A conditional risk measure is a function $\rho: \mathscr{X} \rightarrow L_{t}^{0}$ which satisfies the following conditions for all $x, y \in \mathscr{X}$:
(1) L_{t}^{0}-convexity: $\rho(\eta x+(1-\eta) y) \leq \eta \rho(x)+(1-\eta) \rho(y)$ a.s. for all $\eta \in L_{t}^{0}$ with $0 \leq \eta \leq 1$;
(3) monotonicity: $x \leq y$ a.s. implies $\rho(y) \leq \rho(x)$ a.s.;
(0) L_{t}^{0}-cash invariance: $\rho(x+\eta)=\rho(x)-\eta$ for all $\eta \in L_{t}^{0}$.

We want to study the dual representation of ρ.

- New developments in functional analysis:
- Lo -Convex Analysis [D. Filipović, M. Kupper, and N. Vogelpoth, 2009];
- Conditional analysis [S. Drapeau, A. Jamneshan, M. Karliczek, and M. Kupper, 2016].
- Every single module or conditional analogue of a classical theorem needs an adaptation of a classical proof.

Multi-period Risk Measures

A conditional risk measure is a function $\rho: \mathscr{X} \rightarrow L_{t}^{0}$ which satisfies the following conditions for all $x, y \in \mathscr{X}$:
(1) L_{t}^{0}-convexity: $\rho(\eta x+(1-\eta) y) \leq \eta \rho(x)+(1-\eta) \rho(y)$ a.s. for all $\eta \in L_{t}^{0}$ with $0 \leq \eta \leq 1$;
(3) monotonicity: $x \leq y$ a.s. implies $\rho(y) \leq \rho(x)$ a.s.;
(0) L_{t}^{0}-cash invariance: $\rho(x+\eta)=\rho(x)-\eta$ for all $\eta \in L_{t}^{0}$.

We want to study the dual representation of ρ.

- New developments in functional analysis:
- Lo -Convex Analysis [D. Filipović, M. Kupper, and N. Vogelpoth, 2009];
- Conditional analysis [S. Drapeau, A. Jamneshan, M. Karliczek, and M. Kupper, 2016].
- Every single module or conditional analogue of a classical theorem needs an adaptation of a classical proof.
- Transfer method between two duality theories:

Convex Risk Measures \Longrightarrow Conditional Risk Measures.

A transfer method from duality theory of convex risk measures to duality theory of conditional risk measures

Forcing universes: Historical background

Forcing universes: Historical background

- Cantor stated the Continuum hypothesis (CH): every infinite set of reals can be bijected either with \mathbb{N} or \mathbb{R} (1878).

Forcing universes: Historical background

- Cantor stated the Continuum hypothesis (CH): every infinite set of reals can be bijected either with \mathbb{N} or \mathbb{R} (1878).
- Gödel proved the consistency of CH with ZFC (1939).

Forcing universes: Historical background

- Cantor stated the Continuum hypothesis (CH): every infinite set of reals can be bijected either with \mathbb{N} or \mathbb{R} (1878).
- Gödel proved the consistency of CH with ZFC (1939).
- Cohen proved that CH is independent of ZFC by means of the forcing method (1963).

Forcing universes: Historical background

- Cantor stated the Continuum hypothesis (CH): every infinite set of reals can be bijected either with \mathbb{N} or \mathbb{R} (1878).
- Gödel proved the consistency of CH with ZFC (1939).
- Cohen proved that CH is independent of ZFC by means of the forcing method (1963).
- Scott, Solovay, and Vopěnka created the Boolean-valued models or forcing universes to simplify the Cohen's method of forcing (1967).

Forcing universes: Historical background

- Cantor stated the Continuum hypothesis (CH): every infinite set of reals can be bijected either with \mathbb{N} or \mathbb{R} (1878).
- Gödel proved the consistency of CH with ZFC (1939).
- Cohen proved that CH is independent of ZFC by means of the forcing method (1963).
- Scott, Solovay, and Vopěnka created the Boolean-valued models or forcing universes to simplify the Cohen's method of forcing (1967).
"We must ask whether there is any interest in these nonstandard models aside from the independence proof; that is, do they have any mathematical interest? The answer must be yes, but we cannot yet give a really good argument."

The Forcing Universe associated to \mathcal{F}_{t}

The Forcing Universe associated to \mathcal{F}_{t} The Forcing Universe associated to \mathcal{F}_{t} is a class V_{t} of functions

The Forcing Universe associated to \mathcal{F}_{t} The Forcing Universe associated to \mathcal{F}_{t} is a class V_{t} of functions

The Forcing Universe associated to \mathcal{F}_{t}

 The Forcing Universe associated to \mathcal{F}_{t} is a class V_{t} of functions$$
\mathfrak{x}: \operatorname{dom}(\mathfrak{x}) \rightarrow \mathcal{F}_{t} \quad \text { such that } \quad \operatorname{dom}(x) \subset V_{t} .
$$

The Forcing Universe associated to \mathcal{F}_{t}

 The Forcing Universe associated to \mathcal{F}_{t} is a class V_{t} of functions$$
\mathfrak{x}: \operatorname{dom}(x) \rightarrow \mathcal{F}_{t} \quad \text { such that } \quad \operatorname{dom}(x) \subset V_{t} .
$$

$V_{t}^{0}:=\emptyset ;$

The Forcing Universe associated to \mathcal{F}_{t}

 The Forcing Universe associated to \mathcal{F}_{t} is a class V_{t} of functions$$
x: \operatorname{dom}(x) \rightarrow \mathcal{F}_{t} \quad \text { such that } \quad \operatorname{dom}(x) \subset V_{t} .
$$

$V_{t}^{0}:=\emptyset ;$ $V_{t}^{\alpha}:=\left\{\mathrm{x}: \mathrm{x}\right.$ is \mathcal{F}_{t}-valued and $\exists \beta<\alpha$ such that $\left.\operatorname{dom}(\mathrm{x}) \subset V_{t}^{\beta}\right\} ;$

The Forcing Universe associated to \mathcal{F}_{t}

 The Forcing Universe associated to \mathcal{F}_{t} is a class V_{t} of functions$$
x: \operatorname{dom}(x) \rightarrow \mathcal{F}_{t} \quad \text { such that } \quad \operatorname{dom}(x) \subset V_{t} .
$$

$V_{t}^{0}:=\emptyset$; $V_{t}^{\alpha}:=\left\{\mathrm{x}: \mathrm{x}\right.$ is \mathcal{F}_{t}-valued and $\exists \beta<\alpha$ such that $\left.\operatorname{dom}(\mathrm{x}) \subset V_{t}^{\beta}\right\} ;$ $V_{t}=\bigcup_{\alpha \in \mathrm{Ord}} V_{t}^{\alpha}$.

The Forcing Universe associated to \mathcal{F}_{t}

 The Forcing Universe associated to \mathcal{F}_{t} is a class V_{t} of functions$$
\mathfrak{x}: \operatorname{dom}(x) \rightarrow \mathcal{F}_{t} \quad \text { such that } \quad \operatorname{dom}(x) \subset V_{t} .
$$

$V_{t}^{0}:=\emptyset$;
$V_{t}^{\alpha}:=\left\{\mathrm{x}: \mathrm{x}\right.$ is \mathcal{F}_{t}-valued and $\exists \beta<\alpha$ such that $\left.\operatorname{dom}(\mathrm{x}) \subset V_{t}^{\beta}\right\} ;$
$V_{t}=\bigcup_{\alpha \in \mathrm{Ord}} V_{t}^{\alpha}$.

- Any member $火$ of V_{t} is understood as a "fuzzy set"

The Forcing Universe associated to \mathcal{F}_{t}

The Forcing Universe associated to \mathcal{F}_{t} is a class V_{t} of functions

$$
x: \operatorname{dom}(x) \rightarrow \mathcal{F}_{t} \quad \text { such that } \quad \operatorname{dom}(x) \subset V_{t} .
$$

$V_{t}^{0}:=\emptyset ;$
$V_{t}^{\alpha}:=\left\{\mathfrak{x}: \mathfrak{x}\right.$ is \mathcal{F}_{t}-valued and $\exists \beta<\alpha$ such that $\left.\operatorname{dom}(\mathrm{x}) \subset V_{t}^{\beta}\right\} ;$
$V_{t}=\bigcup_{\alpha \in \mathrm{Ord}} V_{t}^{\alpha}$.

- Any member $火$ of V_{t} is understood as a "fuzzy set"

$$
y, y^{\prime} \in \operatorname{dom}(x)
$$

The Forcing Universe associated to \mathcal{F}_{t}

The Forcing Universe associated to \mathcal{F}_{t} is a class V_{t} of functions

$$
x: \operatorname{dom}(x) \rightarrow \mathcal{F}_{t} \quad \text { such that } \quad \operatorname{dom}(x) \subset V_{t} .
$$

$V_{t}^{0}:=\emptyset ;$
$V_{t}^{\alpha}:=\left\{\mathfrak{x}: \mathfrak{x}\right.$ is \mathcal{F}_{t}-valued and $\exists \beta<\alpha$ such that $\left.\operatorname{dom}(\mathrm{x}) \subset V_{t}^{\beta}\right\} ;$
$V_{t}=\bigcup_{\alpha \in \mathrm{Ord}} V_{t}^{\alpha}$.

- Any member $火$ of V_{t} is understood as a "fuzzy set"

- If $\varphi\left(u_{1}, \ldots, u_{n}\right)$ is a logic formula (with u_{1}, \ldots, u_{n} free variables) and $x_{1}, \ldots, x_{n} \in V_{t}$ we define the Boolean truth value $\llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \in \mathcal{F}_{t}$.

The Forcing Universe associated to \mathcal{F}_{t}

The Forcing Universe associated to \mathcal{F}_{t} is a class V_{t} of functions

$$
x: \operatorname{dom}(x) \rightarrow \mathcal{F}_{t} \quad \text { such that } \quad \operatorname{dom}(x) \subset V_{t} .
$$

$V_{t}^{0}:=\emptyset ;$
$V_{t}^{\alpha}:=\left\{\mathfrak{x}: \mathfrak{x}\right.$ is \mathcal{F}_{t}-valued and $\exists \beta<\alpha$ such that $\left.\operatorname{dom}(\mathrm{x}) \subset V_{t}^{\beta}\right\} ;$
$V_{t}=\bigcup_{\alpha \in \mathrm{Ord}} V_{t}^{\alpha}$.

- Any member $火$ of V_{t} is understood as a "fuzzy set"

$$
y, y^{\prime} \in \operatorname{dom}(x)
$$

- If $\varphi\left(u_{1}, \ldots, u_{n}\right)$ is a logic formula (with u_{1}, \ldots, u_{n} free variables) and $x_{1}, \ldots, x_{n} \in V_{t}$ we define the Boolean truth value $\llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \in \mathcal{F}_{t}$.
- A full set-theoretic reasoning is possible.

Transfer principle

Transfer principle

Theorem (Transfer principle)
If φ is a ZFC theorem, then the assertion " $\llbracket \varphi \rrbracket=\Omega$ " is again a ZFC theorem.

Transfer principle

Theorem (Transfer principle)
If φ is a ZFC theorem, then the assertion " $\lfloor\varphi \rrbracket=\Omega$ " is again a ZFC theorem.

Transfer principle

Theorem (Transfer principle)
If φ is a ZFC theorem, then the assertion " $\llbracket \varphi \rrbracket=\Omega$ " is again a ZFC theorem.

Suppose that we want to study a mathematical object X :

Transfer principle

Theorem (Transfer principle)
If φ is a ZFC theorem, then the assertion " $\lfloor\varphi \rrbracket=\Omega$ " is again a ZFC theorem.

Suppose that we want to study a mathematical object X :

- Suppose that X can be seen as a "representation" of a simpler well-known mathematical object $X \uparrow$ inside V_{t}.

Transfer principle

Theorem (Transfer principle)
If φ is a ZFC theorem, then the assertion " $\lfloor\varphi \rrbracket=\Omega$ " is again a ZFC theorem.

Suppose that we want to study a mathematical object X :

- Suppose that X can be seen as a "representation" of a simpler well-known mathematical object $X \uparrow$ inside V_{t}.

Transfer principle

Theorem (Transfer principle)
If φ is a ZFC theorem, then the assertion " $\lfloor\varphi \rrbracket=\Omega$ " is again a ZFC theorem.

Suppose that we want to study a mathematical object X :

- Suppose that X can be seen as a "representation" of a simpler well-known mathematical object $X \uparrow$ inside V_{t}.

- If we manage to interpret a theorem about $X \uparrow$ as a statement about the original object X, we will have proved a new theorem about X.

Real numbers in the forcing universe V_{t}

[Takeuti, 1978] found a representation of the real numbers inside V_{t} :

Von Neumann Universe V

Forcing universe V_{t}

Real numbers in the forcing universe V_{t}

[Takeuti, 1978] found a representation of the real numbers inside V_{t} :

Von Neumann Universe V
Forcing universe V_{t}

Real numbers in the forcing universe V_{t}

[Takeuti, 1978] found a representation of the real numbers inside V_{t} :

Von Neumann Universe V
Forcing universe V_{t}

Real numbers in the forcing universe V_{t}

[Takeuti, 1978] found a representation of the real numbers inside V_{t} :

Von Neumann Universe V
Forcing universe V_{t}

Application to conditional risk

Application to conditional risk

We want to apply this idea to conditional risk.

Application to conditional risk

We want to apply this idea to conditional risk.
Let $\rho: \mathscr{X} \rightarrow L_{t}^{0}$ be a conditional risk measure.

Application to conditional risk

We want to apply this idea to conditional risk.
Let $\rho: \mathscr{X} \rightarrow L_{t}^{0}$ be a conditional risk measure.

- The Köthe dual L_{t}^{0}-module of \mathscr{X} is defined to be

$$
\mathscr{X}^{\#}:=\left\{y \in L_{T}^{0}: \mathbb{E}\left[|x y| \mid \mathcal{F}_{t}\right]<\infty \text { a.s. for all } x \in \mathscr{X}\right\} .
$$

Application to conditional risk

We want to apply this idea to conditional risk.
Let $\rho: \mathscr{X} \rightarrow L_{t}^{0}$ be a conditional risk measure.

- The Köthe dual L_{t}^{0}-module of \mathscr{X} is defined to be

$$
\mathscr{X}^{\#}:=\left\{y \in L_{T}^{0}: \mathbb{E}\left[|x y| \mid \mathcal{F}_{t}\right]<\infty \text { a.s. for all } x \in \mathscr{X}\right\} .
$$

- The Fenchel transform of ρ is defined to be

$$
\rho^{\#}(y):=\operatorname{ess} . \sup \left\{\mathbb{E}\left[x y \mid \mathcal{F}_{t}\right]-\rho(x): x \in \mathscr{X}\right\} \quad \text { for } y \in \mathscr{X}^{\#} .
$$

Application to conditional risk

We want to apply this idea to conditional risk.
Let $\rho: \mathscr{X} \rightarrow L_{t}^{0}$ be a conditional risk measure.

- The Köthe dual L_{t}^{0}-module of \mathscr{X} is defined to be

$$
\mathscr{X}^{\#}:=\left\{y \in L_{T}^{0}: \mathbb{E}\left[|x y| \mid \mathcal{F}_{t}\right]<\infty \text { a.s. for all } x \in \mathscr{X}\right\} .
$$

- The Fenchel transform of ρ is defined to be

$$
\rho^{\#}(y):=\operatorname{ess} . \sup \left\{\mathbb{E}\left[x y \mid \mathcal{F}_{t}\right]-\rho(x): x \in \mathscr{X}\right\} \quad \text { for } y \in \mathscr{X}^{\#} .
$$

- We say that ρ is representable if

$$
\rho(x)=\operatorname{ess} . \sup \left\{\mathbb{E}\left[x y \mid \mathcal{F}_{t}\right]-\rho^{\#}(y): y \in \mathscr{X}^{\#}\right\} \quad \text { for all } x \in \mathscr{X} .
$$

Stable weak topologies

Stable weak topologies

The pairing $\langle\mathscr{X}, \mathscr{X} \#\rangle$ allows for the definition of a module analogue of the weak topologies, that we call stable weak topologies and denote by

$$
\sigma_{s}\left(\mathscr{X}, \mathscr{X}^{\#}\right) \quad \text { and } \quad \sigma_{s}\left(\mathscr{X}^{\#}, \mathscr{X}\right)
$$

Stable weak topologies

The pairing $\langle\mathscr{X}, \mathscr{X} \#\rangle$ allows for the definition of a module analogue of the weak topologies, that we call stable weak topologies and denote by

$$
\sigma_{s}\left(\mathscr{X}, \mathscr{X}^{\#}\right) \quad \text { and } \quad \sigma_{s}\left(\mathscr{X}^{\#}, \mathscr{X}\right)
$$

- ρ is \mathcal{F}_{t}-lower semi-continuous w.r.t. $\sigma_{s}\left(\mathscr{X}, \mathscr{X}^{\#}\right)$ if:

For any $\eta \in L_{t}^{0},\{\rho \leq \eta\}$ is closed w.r.t. $\sigma_{s}\left(\mathscr{X}, \mathscr{X}^{\#}\right)$;

Stable weak topologies

The pairing $\left\langle\mathscr{X}, \mathscr{X}^{\#}\right\rangle$ allows for the definition of a module analogue of the weak topologies, that we call stable weak topologies and denote by

$$
\sigma_{s}\left(\mathscr{X}, \mathscr{X}^{\#}\right) \quad \text { and } \quad \sigma_{s}\left(\mathscr{X}^{\#}, \mathscr{X}\right)
$$

- ρ is \mathcal{F}_{t}-lower semi-continuous w.r.t. $\sigma_{s}\left(\mathscr{X}, \mathscr{X}^{\#}\right)$ if:

For any $\eta \in L_{t}^{0},\{\rho \leq \eta\}$ is closed w.r.t. $\sigma_{s}\left(\mathscr{X}, \mathscr{X}^{\#}\right)$;

- ρ is \mathcal{F}_{t}-inf-compact w.r.t. $\sigma_{s}\left(\mathcal{X}, \mathcal{X}^{\#}\right)$ if:

For any $\eta \in L_{t}^{0},\{\rho \leq \eta\}$ satisfies the following compactness condition: Any «stable» filter base \mathscr{U} on $\{\rho \leq \eta\}$ has a cluster point

$$
x \in\{\rho \leq \eta\} \text { w.r.t. } \sigma_{s}\left(\mathcal{X}, \mathcal{X}^{\#}\right)
$$

Stable weak topologies

The pairing $\langle\mathscr{X}, \mathscr{X} \#\rangle$ allows for the definition of a module analogue of the weak topologies, that we call stable weak topologies and denote by

$$
\sigma_{s}\left(\mathscr{X}, \mathscr{X}^{\#}\right) \quad \text { and } \quad \sigma_{s}\left(\mathscr{X}^{\#}, \mathscr{X}\right)
$$

- ρ is \mathcal{F}_{t}-lower semi-continuous w.r.t. $\sigma_{s}\left(\mathscr{X}, \mathscr{X}^{\#}\right)$ if:

For any $\eta \in L_{t}^{0},\{\rho \leq \eta\}$ is closed w.r.t. $\sigma_{s}\left(\mathscr{X}, \mathscr{X}^{\#}\right)$;

- ρ is \mathcal{F}_{t}-inf-compact w.r.t. $\sigma_{s}\left(\mathcal{X}, \mathcal{X}^{\#}\right)$ if:

For any $\eta \in L_{t}^{0},\{\rho \leq \eta\}$ satisfies the following compactness condition: Any «stable» filter base \mathscr{U} on $\{\rho \leq \eta\}$ has a cluster point

$$
x \in\{\rho \leq \eta\} \text { w.r.t. } \sigma_{s}\left(\mathcal{X}, \mathcal{X}^{\#}\right)
$$

- ρ has the Lebesgue property if

$$
\lim _{n} x_{n}=x \text { a.s., }\left|x_{n}\right| \leq z, z \in \mathscr{X} \text { implies } \lim _{n} \rho\left(x_{n}\right)=\rho(x) \text { a.s.. }
$$

Interpretation of a conditional risk measure as a convex risk measure

Theorem
Let $\rho: \mathscr{X} \rightarrow L_{t}^{0}$ be a conditional risk measure. Then, inside of V_{t}, there exists a convex risk measure $\rho \uparrow$ so that:

Interpretation of a conditional risk measure as a convex risk measure

Theorem
Let $\rho: \mathscr{X} \rightarrow L_{t}^{0}$ be a conditional risk measure. Then, inside of V_{t}, there exists a convex risk measure $\rho \uparrow$ so that:
(1) ρ is representable if and only if $\llbracket \rho \uparrow$ is representable $\rrbracket=\Omega$.

Interpretation of a conditional risk measure as a convex risk measure

Theorem

Let $\rho: \mathscr{X} \rightarrow L_{t}^{0}$ be a conditional risk measure. Then, inside of V_{t}, there exists a convex risk measure $\rho \uparrow$ so that:
(1) ρ is representable if and only if $\llbracket \rho \uparrow$ is representable $\rrbracket=\Omega$.
(3) ρ is \mathcal{F}_{t}-lower semi-continuous if and only if $\llbracket \rho \uparrow$ is l.s.c. $\rrbracket=\Omega$.

Interpretation of a conditional risk measure as a convex risk measure

Theorem

Let $\rho: \mathscr{X} \rightarrow L_{t}^{0}$ be a conditional risk measure. Then, inside of V_{t}, there exists a convex risk measure $\rho \uparrow$ so that:
(1) ρ is representable if and only if $\llbracket \rho \uparrow$ is representable $\rrbracket=\Omega$.
(1) ρ is \mathcal{F}_{t}-lower semi-continuous if and only if $\llbracket \rho \uparrow$ is l.s.c. $\rrbracket=\Omega$.

- ρ is \mathcal{F}_{t}-inf-compact if and only if $\llbracket \rho \uparrow$ is inf-compact $\rrbracket=\Omega$.

Interpretation of a conditional risk measure as a convex risk measure

Theorem

Let $\rho: \mathscr{X} \rightarrow L_{t}^{0}$ be a conditional risk measure. Then, inside of V_{t}, there exists a convex risk measure $\rho \uparrow$ so that:
(1) ρ is representable if and only if $\llbracket \rho \uparrow$ is representable $\rrbracket=\Omega$.
(1) ρ is \mathcal{F}_{t}-lower semi-continuous if and only if $\llbracket \rho \uparrow$ is l.s.c. $\rrbracket=\Omega$.

- ρ is \mathcal{F}_{t}-inf-compact if and only if $\llbracket \uparrow \uparrow$ is inf-compact $\rrbracket=\Omega$.
- ρ has the Lebesgue property if and only if
$\llbracket \rho \uparrow$ has the Lebesgue property $=\Omega$.

Interpretation of a conditional risk measure as a convex risk measure

Interpretation of a conditional risk measure as a convex risk measure

Robust representation of conditional risk measures

Recall the general version of the Jouini-Schachermayer-Touzi theorem:

Theorem

Let $\rho: \mathcal{X} \rightarrow \mathbb{R}$ be a convex risk measure. Then ρ is lower semi-continuous w.r.t. $\sigma\left(\mathcal{X}, \mathcal{X}^{\#}\right)$ if and only if ρ is representable, i.e.

$$
\rho(x)=\sup \left\{\mathbb{E}[x y]-\rho^{\#}(y): y \in \mathcal{X}^{\#}\right\} \quad \forall x \in \mathcal{X}
$$

In that case, the following conditions are equivalent:
(1) ρ attains the representation for each $x \in \mathcal{X}$;
(2) ρ has the Lebesgue property, i.e.

$$
\lim _{n} x_{n}=x \text { a.s., }\left|x_{n}\right| \leq y, y \in \mathcal{X} \text { implies } \lim _{n} \rho\left(x_{n}\right)=\rho(x) ;
$$

(3) $\rho^{\#}$ is inf-compact w.r.t. $\sigma\left(\mathcal{X}^{\#}, \mathcal{X}\right)$.

Robust representation of conditional risk measures

Thanks to the transfer principle we derive the following robust representation theorem:

Theorem

Let $\rho: \mathscr{X} \rightarrow L_{t}^{0}$ be a conditional risk measure. Then ρ is \mathcal{F}_{t}-lower semi-continuous w.r.t. $\sigma_{s}\left(\mathscr{X}, \mathscr{X}^{\#}\right)$ if and only if ρ admits a representation

$$
\rho(x)=\operatorname{ess} \cdot \sup \left\{\mathbb{E}[x y \mid \mathcal{F}]-\rho^{\#}(y): y \in \mathscr{X}^{\#}\right\} \quad \forall x \in \mathscr{X} .
$$

In that case, the following conditions are equivalent:
(1) ρ attains the representation for each $x \in \mathcal{X}$;
(2) ρ has the Lebesgue property, i.e.

$$
\lim _{n} x_{n}=x \text { a.s., }\left|x_{n}\right| \leq y, y \in \mathscr{X} \text { implies } \lim _{n} \rho\left(x_{n}\right)=\rho(x) \text { a.s.; }
$$

(3) $\rho^{\#}$ is \mathcal{F}_{t}-inf-compact w.r.t. $\sigma_{s}\left(\mathscr{X}^{\#}, \mathscr{X}\right)$.

Examples of model spaces

- L^{∞} type modules:

$$
L_{t, T}^{\infty}:=\left\{x \in L_{T}^{0}: \exists \eta \in L_{t}^{0} \text { such that }|x| \leq \eta\right\}
$$

Examples of model spaces

- L^{∞} type modules:

$$
L_{t, T}^{\infty}:=\left\{x \in L_{T}^{0}: \exists \eta \in L_{t}^{0} \text { such that }|x| \leq \eta\right\}
$$

- L^{p} type modules $(1 \leq p<\infty)$:

$$
L_{t, T}^{p}:=\left\{x \in L_{T}^{0}: \mathbb{E}\left[|x| \mid \mathcal{F}_{t}\right]<\infty \text { a.s. }\right\} .
$$

Examples of model spaces

- L^{∞} type modules:

$$
L_{t, T}^{\infty}:=\left\{x \in L_{T}^{0}: \exists \eta \in L_{t}^{0} \text { such that }|x| \leq \eta\right\}
$$

- L^{p} type modules $(1 \leq p<\infty)$:

$$
L_{t, T}^{p}:=\left\{x \in L_{T}^{0}: \mathbb{E}\left[|x| \mid \mathcal{F}_{t}\right]<\infty \text { a.s. }\right\} .
$$

- Orlicz type modules: Suppose that $\phi:[0, \infty) \rightarrow[0, \infty]$ is a Young function

$$
L_{t, T}^{\phi}:=\left\{x \in L_{T}^{0}: \exists \varepsilon \in L_{t}^{0}, \varepsilon>0 \text { a.s., } E\left[\phi\left(\varepsilon^{-1}|x|\right) \mid \mathcal{F}_{t}\right]<\infty \text { a.s. }\right\}
$$

Examples of model spaces

- L^{∞} type modules:

$$
L_{t, T}^{\infty}:=\left\{x \in L_{T}^{0}: \exists \eta \in L_{t}^{0} \text { such that }|x| \leq \eta\right\} .
$$

- L^{p} type modules $(1 \leq p<\infty)$:

$$
L_{t, T}^{p}:=\left\{x \in L_{T}^{0}: \mathbb{E}\left[|x| \mid \mathcal{F}_{t}\right]<\infty \text { a.s. }\right\} .
$$

- Orlicz type modules: Suppose that $\phi:[0, \infty) \rightarrow[0, \infty]$ is a Young function

$$
L_{t, T}^{\phi}:=\left\{x \in L_{T}^{0}: \exists \varepsilon \in L_{t}^{0}, \varepsilon>0 \text { a.s., } E\left[\phi\left(\varepsilon^{-1}|x|\right) \mid \mathcal{F}_{t}\right]<\infty \text { a.s. }\right\} .
$$

- Orlicz-heart type modules: Suppose that $\phi:[0, \infty) \rightarrow[0, \infty]$ is a Young function

$$
H_{t, T}^{\phi}:=\left\{x \in L_{T}^{0}: \forall \varepsilon \in L_{t}^{0}, \varepsilon>0 \text { a.s., } E\left[\phi\left(\varepsilon^{-1}|x|\right) \mid \mathcal{F}_{t}\right]<\infty \text { a.s. }\right\}
$$

References

References

A. Avilés, J.M. Zapata. Boolean-valued models as a foundation for locally
L^{0}-convex analysis and Conditional set theory. Journal of Applied Logics. 5(1) (2018) 389-420.

References

A. Avilés, J.M. Zapata. Boolean-valued models as a foundation for locally
L^{0}-convex analysis and Conditional set theory. Journal of Applied Logics. 5(1) (2018) 389-420.
J.M. Zapata. A Boolean-valued model approach to conditional risk. Preprint available in Arxiv (2018).

References

A. Avilés, J.M. Zapata. Boolean-valued models as a foundation for locally L^{0}-convex analysis and Conditional set theory. Journal of Applied Logics. 5(1) (2018) 389-420.

显
J.M. Zapata. A Boolean-valued model approach to conditional risk. Preprint available in Arxiv (2018).
圊 J.M. Zapata. A Boolean-valued Models Approach to L^{0}-Convex Analysis, Conditional Risk and Stochastic Control. Thesis dissertation (2018) - Supervised by José Orihuela.

References

A. Avilés, J.M. Zapata. Boolean-valued models as a foundation for locally L^{0}-convex analysis and Conditional set theory. Journal of Applied Logics. 5(1) (2018) 389-420.

显
J.M. Zapata. A Boolean-valued model approach to conditional risk. Preprint available in Arxiv (2018).
(J.M. Zapata. A Boolean-valued Models Approach to L^{0}-Convex Analysis, Conditional Risk and Stochastic Control. Thesis dissertation (2018) - Supervised by José Orihuela.
A. Jamneshan, M. Kupper, J.M. Zapata. Parameter-dependent Stochastic Optimal Control in Finite Discrete Time. Arxiv preprint (2018). Reviewed in SIAM Journal on Control and Optimization.

Thank you for your attention!

