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Duality theory of Risk Measure



Risk measures

One-period setup:Today, say 0, and tomorrow, say T > 0.

The available market information at the future date T is modelled by
a probability space (Ω,FT ,P).

The di�erent �nal pay-o�s are modelled by a subspace

X ⊂ L0T := L0(FT ).

A risk measure is a function

ρ : X −→ R.

ρ(x) quanti�es the riskiness (today) of the payo� x ∈ X .

Duality theory of risk measures is a fruitful area of research that was
started by

[P. Artzner, F. Delbaen, J. M. Eber, and D. Heath, 1999.]

The main tool is classical convex analysis.
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Convex risk measures

Let X be a solid subspace of L1T := L1(FT ) with R ⊂ X .

A convex risk measure is a function ρ : X → R satisfying the following
conditions for all x , y ∈ X :

1 convexity: ρ(rx + (1− r)y) ≤ rρ(x) + (1− r)ρ(y) for all r ∈ [0, 1];

2 monotonicity: if x ≤ y a.s., then ρ(y) ≤ ρ(x);

3 cash invariance: ρ(x + r) = ρ(x)− r for all r ∈ R.

The Köthe dual space of X is de�ned to be

X# :=
{
y ∈ L0T : E[|xy |] <∞ for all x ∈ X

}
.

〈X ,X#〉 is a dual pair with the bilinear form (x , y) 7→ E[xy ].

The Fenchel transform of ρ is de�ned to be

ρ#(y) := sup{E[xy ]− ρ(x) : x ∈ X} for y ∈ X#.
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Robust representation of convex risk measures

The following robust representation theorem was �rst time proved for
X = L∞T by Jouini, Schachermayer, and Touzi in 2006:

Theorem (K. Owari, 2014)

Let ρ : X → R be a convex risk measure. Then ρ is lower semi-continuous

w.r.t. σ(X ,X#) if and only if ρ is representable, i.e.

ρ(x) = sup{E[xy ]− ρ#(y) : y ∈ X#} ∀x ∈ X .

In that case, the following conditions are equivalent:

1 ρ attains the representation for each x ∈ X ;

2 ρ has the Lebesgue property, i.e.

lim
n

xn = x a.s., |xn| ≤ y , y ∈ X implies lim
n
ρ(xn) = ρ(x);

3 ρ# is inf-compact w.r.t. σ(X#,X ).
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Multi-period Risk Measures

Multi-period setup:0 < t < T .

Ft ⊂ FT encodes the available market information at t.

A conditional risk measure is a function

ρt : X −→ L0t .

where ρt(x) quanti�es the riskiness (at t) of the payo� x ∈ X .
D. Filipovic, M. Kupper and N. Vogelpoth (2009) proposed a
module-based approach to this problem.

Namely, they consider as a model space a solid L0t -submodule

L0t ⊂X ⊂ L0T .
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Multi-period Risk Measures

A conditional risk measure is a function ρ : X → L0t which satis�es the
following conditions for all x , y ∈X :

1 L0t -convexity: ρ(ηx + (1− η)y) ≤ ηρ(x) + (1− η)ρ(y) a.s.
for all η ∈ L0t with 0 ≤ η ≤ 1;

2 monotonicity: x ≤ y a.s. implies ρ(y) ≤ ρ(x) a.s.;

3 L0t -cash invariance: ρ(x + η) = ρ(x)− η for all η ∈ L0t .

We want to study the dual representation of ρ.

New developments in functional analysis:

I L0-Convex Analysis [D. Filipovi¢, M. Kupper, and N. Vogelpoth, 2009];
I Conditional analysis [S. Drapeau, A. Jamneshan, M. Karliczek, and

M. Kupper, 2016].

Every single module or conditional analogue of a classical theorem
needs an adaptation of a classical proof.

Transfer method between two duality theories:

Convex Risk Measures =⇒ Conditional Risk Measures.
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A transfer method from duality theory of convex

risk measures to duality theory of conditional risk

measures



Forcing universes: Historical background

Cantor stated the Continuum hypothesis (CH): every in�nite set of
reals can be bijected either with N or R (1878).

Gödel proved the consistency of CH with ZFC (1939).

Cohen proved that CH is independent of ZFC by means of the forcing
method (1963).

Scott, Solovay, and Vop¥nka created the Boolean-valued models or
forcing universes to simplify the Cohen's method of forcing (1967).

�We must ask whether there is any interest in these nonstandard models

aside from the independence proof; that is, do they have any mathematical

interest? The answer must be yes, but we cannot yet give a really good

argument.�

Dana Scott, 1969.
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The Forcing Universe associated to Ft

The Forcing Universe associated to Ft is a class of functions

x : dom(x)→ Ft such that dom(x) ⊂ Vt .

V 0
t := ∅;

V α
t := {x : x is Ft-valued and ∃β < α such that dom(x) ⊂ V β

t };
Vt =

⋃
α∈Ord

V α
t .

Any member x of Vt is understood as a �fuzzy set�

x

y, y′ ∈ dom(x)

y y′

x(y)
x(y′)

If ϕ(u1, . . . , un) is a logic formula (with u1, . . . , un free variables) and
x1, . . . , xn ∈ Vt we de�ne the Boolean truth value Jϕ(x1, . . . , xn)K ∈ Ft .

A full set-theoretic reasoning is possible.
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Transfer principle

Theorem (Transfer principle)

If is a ZFC theorem,

then the assertion �JϕK = Ω� is again a ZFC theorem.

Suppose that we want to study a mathematical object X :

Suppose that X can be seen as a �representation� of a simpler
well-known mathematical object X↑ inside Vt .

If we manage to interpret a theorem about X↑ as a statement about
the original object X , we will have proved a new theorem about X .
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Application to conditional risk

We want to apply this idea to conditional risk.
Let ρ : X → L0t be a conditional risk measure.

The Köthe dual L0t -module of X is de�ned to be

X # :=
{
y ∈ L0T : E[|xy | | Ft ] <∞ a.s. for all x ∈X

}
.

The Fenchel transform of ρ is de�ned to be

ρ#(y) := ess.sup{E[xy |Ft ]− ρ(x) : x ∈X } for y ∈X #.

We say that ρ is representable if

ρ(x) = ess.sup{E[xy |Ft ]− ρ#(y) : y ∈X #} for all x ∈X .
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Stable weak topologies

The pairing 〈X ,X #〉 allows for the de�nition of a module analogue of
the weak topologies, that we call stable weak topologies and denote by

σs(X ,X #) and σs(X #,X ).

ρ is Ft-lower semi-continuous w.r.t. σs(X ,X #) if:

For any η ∈ L0t , {ρ ≤ η} is closed w.r.t. σs(X ,X #);

ρ is Ft-inf-compact w.r.t. σs(X ,X#) if:

For any η ∈ L0t , {ρ ≤ η} satis�es the following compactness condition:
Any �stable� �lter base U on {ρ ≤ η} has a cluster point

x ∈ {ρ ≤ η} w.r.t. σs(X ,X#).

ρ has the Lebesgue property if

lim
n

xn = x a.s., |xn| ≤ z , z ∈X implies lim
n
ρ(xn) = ρ(x) a.s..
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Interpretation of a conditional risk measure as a convex risk

measure

Theorem

Let ρ : X → L0t be a conditional risk measure. Then, inside of Vt , there

exists a convex risk measure ρ↑ so that:

1 ρ is representable if and only if Jρ↑ is representableK = Ω.

2 ρ is Ft-lower semi-continuous if and only if Jρ↑ is l.s.c.K = Ω.

3 ρ is Ft-inf-compact if and only if Jρ↑ is inf-compactK = Ω.

4 ρ has the Lebesgue property if and only if

Jρ↑ has the Lebesgue propertyK = Ω.
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Robust representation of conditional risk measures

Recall the general version of the Jouini-Schachermayer-Touzi theorem:

Theorem

Let ρ : X → R be a convex risk measure. Then ρ is lower semi-continuous

w.r.t. σ(X ,X#) if and only if ρ is representable, i.e.

ρ(x) = sup{E[xy ]− ρ#(y) : y ∈ X#} ∀x ∈ X .

In that case, the following conditions are equivalent:

1 ρ attains the representation for each x ∈ X ;

2 ρ has the Lebesgue property, i.e.

lim
n

xn = x a.s., |xn| ≤ y , y ∈ X implies lim
n
ρ(xn) = ρ(x);

3 ρ# is inf-compact w.r.t. σ(X#,X ).



Robust representation of conditional risk measures

Thanks to the transfer principle we derive the following robust
representation theorem:

Theorem

Let ρ : X → L0t be a conditional risk measure. Then ρ is Ft-lower

semi-continuous w.r.t. σs(X ,X #) if and only if ρ admits a representation

ρ(x) = ess.sup
{
E[xy |F ]− ρ#(y) : y ∈X #

}
∀x ∈X .

In that case, the following conditions are equivalent:

1 ρ attains the representation for each x ∈ X ;

2 ρ has the Lebesgue property, i.e.

lim
n

xn = x a.s., |xn| ≤ y , y ∈X implies lim
n
ρ(xn) = ρ(x) a.s.;

3 ρ# is Ft-inf-compact w.r.t. σs(X #,X ).



Examples of model spaces

L∞ type modules:

L∞t,T :=
{
x ∈ L0T : ∃η ∈ L0t such that |x | ≤ η

}
.

Lp type modules (1 ≤ p <∞):

Lpt,T :=
{
x ∈ L0T : E[|x | | Ft ] <∞ a.s.

}
.

Orlicz type modules: Suppose that φ : [0,∞)→ [0,∞] is a Young
function

Lφt,T :=
{
x ∈ L0T : ∃ε ∈ L0t , ε > 0 a.s., E [φ(ε−1|x |)|Ft ] <∞ a.s.

}
.

Orlicz-heart type modules: Suppose that φ : [0,∞)→ [0,∞] is a
Young function

Hφ
t,T :=

{
x ∈ L0T : ∀ε ∈ L0t , ε > 0 a.s., E [φ(ε−1|x |)|Ft ] <∞ a.s.

}
.
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Thank you for your attention!
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