Conditional Risk and Forcing Universes (Dedicated to the memory of Bernardo Cascales)

> José Miguel Zapata (University of Murcia)

XVI Encuentro Valencia-Murcia. 13-15 Dec 2018 - University of Murcia.

Partially based on joint work with Antonio Avilés (University of Murcia).

Duality theory of Risk Measure

Risk measures One-period setup:

One-period setup:Today, say 0, and tomorrow, say T > 0.

One-period setup:Today, say 0, and tomorrow, say T > 0.

• The available market information at the future date T is modelled by a probability space $(\Omega, \mathcal{F}_T, P)$.

One-period setup:Today, say 0, and tomorrow, say T > 0.

- The available market information at the future date T is modelled by a probability space $(\Omega, \mathcal{F}_T, P)$.
- The different final pay-offs are modelled by a subspace

$$\mathcal{X} \subset L^0_T := L^0(\mathcal{F}_T).$$

One-period setup:Today, say 0, and tomorrow, say T > 0.

- The available market information at the future date T is modelled by a probability space $(\Omega, \mathcal{F}_T, P)$.
- The different final pay-offs are modelled by a subspace

$$\mathcal{X} \subset L^0_T := L^0(\mathcal{F}_T).$$

• A risk measure is a function

$$\rho: \mathcal{X} \longrightarrow \mathbb{R}.$$

ho(x) quantifies the riskiness (today) of the payoff $x \in \mathcal{X}$.

One-period setup:Today, say 0, and tomorrow, say T > 0.

- The available market information at the future date T is modelled by a probability space $(\Omega, \mathcal{F}_T, P)$.
- The different final pay-offs are modelled by a subspace

$$\mathcal{X} \subset L^0_T := L^0(\mathcal{F}_T).$$

• A risk measure is a function

$$\rho: \mathcal{X} \longrightarrow \mathbb{R}.$$

 $\rho(x)$ quantifies the riskiness (today) of the payoff $x \in \mathcal{X}$.

• Duality theory of risk measures is a fruitful area of research that was started by

[P. Artzner, F. Delbaen, J. M. Eber, and D. Heath, 1999.]

One-period setup:Today, say 0, and tomorrow, say T > 0.

- The available market information at the future date T is modelled by a probability space $(\Omega, \mathcal{F}_T, P)$.
- The different final pay-offs are modelled by a subspace

$$\mathcal{X} \subset L^0_T := L^0(\mathcal{F}_T).$$

• A risk measure is a function

$$\rho: \mathcal{X} \longrightarrow \mathbb{R}.$$

 $\rho(x)$ quantifies the riskiness (today) of the payoff $x \in \mathcal{X}$.

• Duality theory of risk measures is a fruitful area of research that was started by

[P. Artzner, F. Delbaen, J. M. Eber, and D. Heath, 1999.] The main tool is classical convex analysis.

• Let \mathcal{X} be a solid subspace of $L^1_T := L^1(\mathcal{F}_T)$ with $\mathbb{R} \subset \mathcal{X}$.

• Let \mathcal{X} be a solid subspace of $L^1_T := L^1(\mathcal{F}_T)$ with $\mathbb{R} \subset \mathcal{X}$.

A convex risk measure is a function $\rho : \mathcal{X} \to \mathbb{R}$ satisfying the following conditions for all $x, y \in \mathcal{X}$:

- convexity: $\rho(rx + (1 r)y) \le r\rho(x) + (1 r)\rho(y)$ for all $r \in [0, 1]$;
- 2 monotonicity: if $x \leq y$ a.s., then $\rho(y) \leq \rho(x)$;
- **3** cash invariance: $\rho(x + r) = \rho(x) r$ for all $r \in \mathbb{R}$.

• Let \mathcal{X} be a solid subspace of $L^1_T := L^1(\mathcal{F}_T)$ with $\mathbb{R} \subset \mathcal{X}$.

A convex risk measure is a function $\rho : \mathcal{X} \to \mathbb{R}$ satisfying the following conditions for all $x, y \in \mathcal{X}$:

- convexity: $\rho(rx + (1 r)y) \le r\rho(x) + (1 r)\rho(y)$ for all $r \in [0, 1]$;
- 2 monotonicity: if $x \leq y$ a.s., then $\rho(y) \leq \rho(x)$;
- 3 cash invariance: $\rho(x + r) = \rho(x) r$ for all $r \in \mathbb{R}$.

ullet The Köthe dual space of ${\mathcal X}$ is defined to be

$$\mathcal{X}^\# := \left\{ y \in L^0_\mathcal{T} \colon \mathbb{E}[|xy|] < \infty ext{ for all } x \in \mathcal{X}
ight\}.$$

• Let \mathcal{X} be a solid subspace of $L^1_T := L^1(\mathcal{F}_T)$ with $\mathbb{R} \subset \mathcal{X}$.

A convex risk measure is a function $\rho : \mathcal{X} \to \mathbb{R}$ satisfying the following conditions for all $x, y \in \mathcal{X}$:

- convexity: $\rho(rx + (1 r)y) \le r\rho(x) + (1 r)\rho(y)$ for all $r \in [0, 1]$;
- 2 monotonicity: if $x \leq y$ a.s., then $\rho(y) \leq \rho(x)$;
- 3 cash invariance: $\rho(x + r) = \rho(x) r$ for all $r \in \mathbb{R}$.

ullet The Köthe dual space of ${\mathcal X}$ is defined to be

$$\mathcal{X}^\# := \left\{ y \in L^0_\mathcal{T} \colon \mathbb{E}[|xy|] < \infty ext{ for all } x \in \mathcal{X}
ight\}.$$

• $\langle \mathcal{X}, \mathcal{X}^{\#} \rangle$ is a dual pair with the bilinear form $(x, y) \mapsto \mathbb{E}[xy]$.

• Let \mathcal{X} be a solid subspace of $L^1_T := L^1(\mathcal{F}_T)$ with $\mathbb{R} \subset \mathcal{X}$.

A convex risk measure is a function $\rho : \mathcal{X} \to \mathbb{R}$ satisfying the following conditions for all $x, y \in \mathcal{X}$:

- convexity: $\rho(rx + (1 r)y) \le r\rho(x) + (1 r)\rho(y)$ for all $r \in [0, 1]$;
- 2 monotonicity: if $x \leq y$ a.s., then $\rho(y) \leq \rho(x)$;
- 3 cash invariance: $\rho(x + r) = \rho(x) r$ for all $r \in \mathbb{R}$.

ullet The Köthe dual space of ${\mathcal X}$ is defined to be

$$\mathcal{X}^\# := \left\{ y \in L^0_\mathcal{T} \colon \mathbb{E}[|xy|] < \infty ext{ for all } x \in \mathcal{X}
ight\}.$$

⟨X, X[#]⟩ is a dual pair with the bilinear form (x, y) → E[xy].
The Fenchel transform of ρ is defined to be

$$ho^{\#}(y) := \sup \{ \mathbb{E}[xy] -
ho(x) \colon x \in \mathcal{X} \} \quad \text{ for } y \in \mathcal{X}^{\#}.$$

Robust representation of convex risk measures

The following robust representation theorem was first time proved for $\mathcal{X} = L_T^{\infty}$ by Jouini, Schachermayer, and Touzi in 2006:

Robust representation of convex risk measures

The following robust representation theorem was first time proved for $\mathcal{X} = L_T^{\infty}$ by Jouini, Schachermayer, and Touzi in 2006:

Theorem (K. Owari, 2014)

Let $\rho : \mathcal{X} \to \mathbb{R}$ be a convex risk measure. Then ρ is lower semi-continuous w.r.t. $\sigma(\mathcal{X}, \mathcal{X}^{\#})$ if and only if ρ is representable, i.e.

$$\rho(x) = \sup\{\mathbb{E}[xy] - \rho^{\#}(y) \colon y \in \mathcal{X}^{\#}\} \quad \forall x \in \mathcal{X}.$$

In that case, the following conditions are equivalent:

- ρ attains the representation for each $x \in \mathcal{X}$;
- 2 ρ has the Lebesgue property, i.e.

$$\lim_{n} x_{n} = x \text{ a.s., } |x_{n}| \leq y, y \in \mathcal{X} \text{ implies } \lim_{n} \rho(x_{n}) = \rho(x);$$

)
$$ho^{\#}$$
 is inf-compact w.r.t. $\sigma(\mathcal{X}^{\#},\mathcal{X})$.

Multi-period setup:

Multi-period setup: 0 < t < T.

Multi-period setup: 0 < t < T.

• $\mathcal{F}_t \subset \mathcal{F}_T$ encodes the available market information at t.

Multi-period setup: 0 < t < T.

- $\mathcal{F}_t \subset \mathcal{F}_T$ encodes the available market information at t.
- A conditional risk measure is a function

$$\rho_t: \mathcal{X} \longrightarrow L^0_t.$$

where $\rho_t(x)$ quantifies the riskiness (at t) of the payoff $x \in \mathcal{X}$.

Multi-period setup:0 < t < T.

- $\mathcal{F}_t \subset \mathcal{F}_T$ encodes the available market information at t.
- A conditional risk measure is a function

$$\rho_t: \mathcal{X} \longrightarrow L^0_t.$$

where $\rho_t(x)$ quantifies the riskiness (at t) of the payoff $x \in \mathcal{X}$.

• D. Filipovic, M. Kupper and N. Vogelpoth (2009) proposed a module-based approach to this problem.

Multi-period setup:0 < t < T.

- $\mathcal{F}_t \subset \mathcal{F}_T$ encodes the available market information at t.
- A conditional risk measure is a function

$$\rho_t: \mathcal{X} \longrightarrow L^0_t.$$

where $\rho_t(x)$ quantifies the riskiness (at t) of the payoff $x \in \mathcal{X}$.

• D. Filipovic, M. Kupper and N. Vogelpoth (2009) proposed a module-based approach to this problem.

Namely, they consider as a model space a solid L_t^0 -submodule

$$L^0_t \subset \mathscr{X} \subset L^0_T.$$

Multi-period setup:0 < t < T.

- $\mathcal{F}_t \subset \mathcal{F}_T$ encodes the available market information at t.
- A conditional risk measure is a function

$$\rho_t: \mathcal{X} \longrightarrow L^0_t.$$

where $\rho_t(x)$ quantifies the riskiness (at t) of the payoff $x \in \mathcal{X}$.

• D. Filipovic, M. Kupper and N. Vogelpoth (2009) proposed a module-based approach to this problem.

Namely, they consider as a model space a solid L_t^0 -submodule

$$L^0_t \subset \mathscr{X} \subset L^0_T.$$

A conditional risk measure is a function $\rho : \mathscr{X} \to L^0_t$ which satisfies the following conditions for all $x, y \in \mathscr{X}$:

- L^0_t -convexity: $\rho(\eta x + (1 \eta)y) \le \eta \rho(x) + (1 \eta)\rho(y)$ a.s. for all $\eta \in L^0_t$ with $0 \le \eta \le 1$;
- 3 monotonicity: $x \le y$ a.s. implies $\rho(y) \le \rho(x)$ a.s.;
- L^0_t -cash invariance: $\rho(x + \eta) = \rho(x) \eta$ for all $\eta \in L^0_t$.

A conditional risk measure is a function $\rho : \mathscr{X} \to L^0_t$ which satisfies the following conditions for all $x, y \in \mathscr{X}$:

- L^0_t -convexity: $\rho(\eta x + (1 \eta)y) \le \eta \rho(x) + (1 \eta)\rho(y)$ a.s. for all $\eta \in L^0_t$ with $0 \le \eta \le 1$;
- 3 monotonicity: $x \le y$ a.s. implies $\rho(y) \le \rho(x)$ a.s.;
- L^0_t -cash invariance: $\rho(x + \eta) = \rho(x) \eta$ for all $\eta \in L^0_t$.

A conditional risk measure is a function $\rho : \mathscr{X} \to L^0_t$ which satisfies the following conditions for all $x, y \in \mathscr{X}$:

- L^0_t -convexity: $\rho(\eta x + (1 \eta)y) \le \eta \rho(x) + (1 \eta)\rho(y)$ a.s. for all $\eta \in L^0_t$ with $0 \le \eta \le 1$;
- 3 monotonicity: $x \le y$ a.s. implies $\rho(y) \le \rho(x)$ a.s.;
- L^0_t -cash invariance: $\rho(x + \eta) = \rho(x) \eta$ for all $\eta \in L^0_t$.

We want to study the dual representation of ρ .

• New developments in functional analysis:

A conditional risk measure is a function $\rho : \mathscr{X} \to L^0_t$ which satisfies the following conditions for all $x, y \in \mathscr{X}$:

- L^0_t -convexity: $\rho(\eta x + (1 \eta)y) \le \eta \rho(x) + (1 \eta)\rho(y)$ a.s. for all $\eta \in L^0_t$ with $0 \le \eta \le 1$;
- 3 monotonicity: $x \le y$ a.s. implies $\rho(y) \le \rho(x)$ a.s.;
- L^0_t -cash invariance: $\rho(x + \eta) = \rho(x) \eta$ for all $\eta \in L^0_t$.

- New developments in functional analysis:
 - ▶ L⁰-Convex Analysis [D. Filipović, M. Kupper, and N. Vogelpoth, 2009];

A conditional risk measure is a function $\rho : \mathscr{X} \to L^0_t$ which satisfies the following conditions for all $x, y \in \mathscr{X}$:

- L^0_t -convexity: $\rho(\eta x + (1 \eta)y) \le \eta \rho(x) + (1 \eta)\rho(y)$ a.s. for all $\eta \in L^0_t$ with $0 \le \eta \le 1$;
- 3 monotonicity: $x \le y$ a.s. implies $\rho(y) \le \rho(x)$ a.s.;
- L^0_t -cash invariance: $\rho(x + \eta) = \rho(x) \eta$ for all $\eta \in L^0_t$.

- New developments in functional analysis:
 - ▶ L⁰-Convex Analysis [D. Filipović, M. Kupper, and N. Vogelpoth, 2009];
 - Conditional analysis [S. Drapeau, A. Jamneshan, M. Karliczek, and M. Kupper, 2016].

A conditional risk measure is a function $\rho : \mathscr{X} \to L^0_t$ which satisfies the following conditions for all $x, y \in \mathscr{X}$:

- L^0_t -convexity: $\rho(\eta x + (1 \eta)y) \le \eta \rho(x) + (1 \eta)\rho(y)$ a.s. for all $\eta \in L^0_t$ with $0 \le \eta \le 1$;
- 3 monotonicity: $x \le y$ a.s. implies $\rho(y) \le \rho(x)$ a.s.;
- L^0_t -cash invariance: $\rho(x + \eta) = \rho(x) \eta$ for all $\eta \in L^0_t$.

- New developments in functional analysis:
 - ▶ L⁰-Convex Analysis [D. Filipović, M. Kupper, and N. Vogelpoth, 2009];
 - Conditional analysis [S. Drapeau, A. Jamneshan, M. Karliczek, and M. Kupper, 2016].
- Every single module or conditional analogue of a classical theorem needs an adaptation of a classical proof.

A conditional risk measure is a function $\rho : \mathscr{X} \to L^0_t$ which satisfies the following conditions for all $x, y \in \mathscr{X}$:

- L^0_t -convexity: $\rho(\eta x + (1 \eta)y) \le \eta \rho(x) + (1 \eta)\rho(y)$ a.s. for all $\eta \in L^0_t$ with $0 \le \eta \le 1$;
- 3 monotonicity: $x \le y$ a.s. implies $\rho(y) \le \rho(x)$ a.s.;
- L^0_t -cash invariance: $\rho(x + \eta) = \rho(x) \eta$ for all $\eta \in L^0_t$.

We want to study the dual representation of ρ .

- New developments in functional analysis:
 - ▶ L⁰-Convex Analysis [D. Filipović, M. Kupper, and N. Vogelpoth, 2009];
 - Conditional analysis [S. Drapeau, A. Jamneshan, M. Karliczek, and M. Kupper, 2016].
- Every single module or conditional analogue of a classical theorem needs an adaptation of a classical proof.
- Transfer method between two duality theories:

 $\mathsf{Convex}\;\mathsf{Risk}\;\mathsf{Measures}\Longrightarrow\mathsf{Conditional}\;\mathsf{Risk}\;\mathsf{Measures}.$

A transfer method from duality theory of convex risk measures to duality theory of conditional risk measures

Forcing universes: Historical background

Forcing universes: Historical background

• Cantor stated the Continuum hypothesis (CH): every infinite set of reals can be bijected either with ℕ or ℝ (1878).

- Cantor stated the Continuum hypothesis (CH): every infinite set of reals can be bijected either with N or R (1878).
- Gödel proved the consistency of CH with ZFC (1939).

- Cantor stated the Continuum hypothesis (CH): every infinite set of reals can be bijected either with ℕ or ℝ (1878).
- Gödel proved the consistency of CH with ZFC (1939).
- Cohen proved that CH is independent of ZFC by means of the forcing method (1963).

- Cantor stated the Continuum hypothesis (CH): every infinite set of reals can be bijected either with ℕ or ℝ (1878).
- Gödel proved the consistency of CH with ZFC (1939).
- Cohen proved that CH is independent of ZFC by means of the forcing method (1963).
- Scott, Solovay, and Vopěnka created the Boolean-valued models or forcing universes to simplify the Cohen's method of forcing (1967).

- Cantor stated the Continuum hypothesis (CH): every infinite set of reals can be bijected either with ℕ or ℝ (1878).
- Gödel proved the consistency of CH with ZFC (1939).
- Cohen proved that CH is independent of ZFC by means of the forcing method (1963).
- Scott, Solovay, and Vopěnka created the Boolean-valued models or forcing universes to simplify the Cohen's method of forcing (1967).

"We must ask whether there is any interest in these nonstandard models aside from the independence proof; that is, do they have any mathematical interest? The answer must be yes, but we cannot yet give a really good argument."

Dana Scott, 1969.

The Forcing Universe associated to \mathcal{F}_t

 $\mathtt{x}: \mathsf{dom}(\mathtt{x}) \to \mathcal{F}_t$ such that $\mathsf{dom}(\mathtt{x}) \subset V_t$.

 $\mathbf{x}: \mathsf{dom}(\mathbf{x}) \to \mathcal{F}_t$ such that $\mathsf{dom}(\mathbf{x}) \subset V_t$.

 $V_t^0 := \emptyset;$

 $\mathbb{X}: \mathsf{dom}(\mathbb{X}) \to \mathcal{F}_t$ such that $\mathsf{dom}(\mathbb{X}) \subset V_t$.

 $\begin{array}{l} V^0_t := \emptyset; \\ V^\alpha_t := \{ \texttt{x} \colon \texttt{x} \text{ is } \mathcal{F}_t \text{-valued and } \exists \beta < \alpha \text{ such that } \mathsf{dom}(\texttt{x}) \subset V^\beta_t \}; \end{array}$

. .0

a

 $\mathbb{X}: \mathsf{dom}(\mathbb{X}) \to \mathcal{F}_t$ such that $\mathsf{dom}(\mathbb{X}) \subset V_t$.

$$egin{aligned} &V_t^{lpha} := \emptyset; \ &V_t^{lpha} := \{ lpha : \, lpha \, ext{ is } \mathcal{F}_t ext{-valued and } \exists eta < lpha \, ext{ such that } \operatorname{dom}(lpha) \subset V_t^{eta} \}; \ &V_t = \bigcup_{lpha \in \operatorname{Ord}} V_t^{lpha}. \end{aligned}$$

The Forcing Universe associated to \mathcal{F}_t

The Forcing Universe associated to \mathcal{F}_t is a class V_t of functions

$$\mathbb{X}: \mathsf{dom}(\mathbb{X}) \to \mathcal{F}_t \quad \mathsf{such that} \quad \mathsf{dom}(\mathbb{X}) \subset V_t.$$

$$\begin{array}{l} V^0_t := \emptyset; \\ V^{\alpha}_t := \{ \texttt{x} \colon \texttt{x} \text{ is } \mathcal{F}_t \text{-valued and } \exists \beta < \alpha \text{ such that } \mathsf{dom}(\texttt{x}) \subset V^{\beta}_t \}; \\ V_t = \bigcup_{\alpha \in \mathsf{Ord}} V^{\alpha}_t. \end{array}$$

• Any member x of V_t is understood as a "fuzzy set"

 $\mathbb{X}: \mathsf{dom}(\mathbb{X}) \to \mathcal{F}_t$ such that $\mathsf{dom}(\mathbb{X}) \subset V_t$.

$$\begin{array}{l} V^0_t := \emptyset; \\ V^\alpha_t := \{ \texttt{x} \colon \texttt{x} \text{ is } \mathcal{F}_t \text{-valued and } \exists \beta < \alpha \text{ such that } \operatorname{dom}(\texttt{x}) \subset V^\beta_t \}; \\ V_t = \bigcup_{\alpha \in \mathsf{Ord}} V^\alpha_t. \end{array}$$

Any member x of V_t is understood as a "fuzzy set"

$$\mathbb{X}: \mathsf{dom}(\mathbb{X}) \to \mathcal{F}_t$$
 such that $\mathsf{dom}(\mathbb{X}) \subset V_t$.

$$\begin{array}{l} V^0_t := \emptyset; \\ V^\alpha_t := \{ \texttt{x} \colon \texttt{x} \text{ is } \mathcal{F}_t \text{-valued and } \exists \beta < \alpha \text{ such that } \operatorname{dom}(\texttt{x}) \subset V^\beta_t \}; \\ V_t = \bigcup_{\alpha \in \mathsf{Ord}} V^\alpha_t. \end{array}$$

• Any member x of V_t is understood as a "fuzzy set"

• If $\varphi(u_1, \ldots, u_n)$ is a logic formula (with u_1, \ldots, u_n free variables) and $x_1, \ldots, x_n \in V_t$ we define the Boolean truth value $[\![\varphi(x_1, \ldots, x_n)]\!] \in \mathcal{F}_t$.

$$\mathbb{X}: \mathsf{dom}(\mathbb{X}) \to \mathcal{F}_t \quad \mathsf{such that} \quad \mathsf{dom}(\mathbb{X}) \subset V_t.$$

$$\begin{array}{l} V^0_t := \emptyset; \\ V^\alpha_t := \{ \texttt{x} \colon \texttt{x} \text{ is } \mathcal{F}_t \text{-valued and } \exists \beta < \alpha \text{ such that } \operatorname{dom}(\texttt{x}) \subset V^\beta_t \}; \\ V_t = \bigcup_{\alpha \in \mathsf{Ord}} V^\alpha_t. \end{array}$$

• Any member x of V_t is understood as a "fuzzy set"

• If $\varphi(u_1, \ldots, u_n)$ is a logic formula (with u_1, \ldots, u_n free variables) and $x_1, \ldots, x_n \in V_t$ we define the Boolean truth value $[\![\varphi(x_1, \ldots, x_n)]\!] \in \mathcal{F}_t$.

• A full set-theoretic reasoning is possible.

Theorem (Transfer principle)

If φ is a ZFC theorem,

then the assertion " $\llbracket \varphi \rrbracket = \Omega$ " is again a ZFC theorem.

Theorem (Transfer principle)

If φ is a ZFC theorem,

then the assertion " $\llbracket \varphi \rrbracket = \Omega$ " is again a ZFC theorem.

Theorem (Transfer principle)

If φ is a ZFC theorem, then the assertion " $[\![\varphi]\!] = \Omega$ " is again a ZFC theorem.

Suppose that we want to study a mathematical object X:

Theorem (Transfer principle)

If φ is a ZFC theorem, then the assertion " $[\![\varphi]\!] = \Omega$ " is again a ZFC theorem.

Suppose that we want to study a mathematical object X:

 Suppose that X can be seen as a "representation" of a simpler well-known mathematical object X↑ inside Vt.

Theorem (Transfer principle)

If φ is a ZFC theorem, then the assertion " $[\![\varphi]\!] = \Omega$ " is again a ZFC theorem.

Suppose that we want to study a mathematical object X:

 Suppose that X can be seen as a "representation" of a simpler well-known mathematical object X↑ inside V_t.

Theorem (Transfer principle)

If φ is a ZFC theorem, then the assertion " $[\![\varphi]\!] = \Omega$ " is again a ZFC theorem.

Suppose that we want to study a mathematical object X:

 Suppose that X can be seen as a "representation" of a simpler well-known mathematical object X↑ inside V_t.

 If we manage to interpret a theorem about X↑ as a statement about the original object X, we will have proved a new theorem about X.

We want to apply this idea to conditional risk.

We want to apply this idea to conditional risk. Let $\rho : \mathscr{X} \to L^0_t$ be a conditional risk measure.

We want to apply this idea to conditional risk. Let $\rho : \mathscr{X} \to L^0_t$ be a conditional risk measure.

• The Köthe dual L^0_t -module of $\mathscr X$ is defined to be

$$\mathscr{X}^{\#} := \left\{ y \in L^{0}_{\mathcal{T}} \colon \mathbb{E}[|xy| \mid \mathcal{F}_{t}] < \infty \text{ a.s. for all } x \in \mathscr{X}
ight\}.$$

We want to apply this idea to conditional risk. Let $\rho : \mathscr{X} \to L^0_t$ be a conditional risk measure.

• The Köthe dual L^0_t -module of \mathscr{X} is defined to be

$$\mathscr{X}^{\#} := \left\{ y \in L^{0}_{\mathcal{T}} \colon \mathbb{E}[|xy| \mid \mathcal{F}_{t}] < \infty \text{ a.s. for all } x \in \mathscr{X}
ight\}.$$

• The Fenchel transform of ρ is defined to be

$$\rho^{\#}(y) := \operatorname{ess.sup}\{\mathbb{E}[xy|\mathcal{F}_t] - \rho(x) \colon x \in \mathscr{X}\} \quad \text{ for } y \in \mathscr{X}^{\#}.$$

We want to apply this idea to conditional risk. Let $\rho : \mathscr{X} \to L^0_t$ be a conditional risk measure.

• The Köthe dual L^0_t -module of \mathscr{X} is defined to be

$$\mathscr{X}^{\#} := \left\{ y \in \mathcal{L}^{0}_{\mathcal{T}} \colon \mathbb{E}[|xy| \mid \mathcal{F}_{t}] < \infty ext{ a.s. for all } x \in \mathscr{X}
ight\}.$$

- The Fenchel transform of ρ is defined to be $ho^{\#}(y) := ess.sup\{\mathbb{E}[xy|\mathcal{F}_t] - \rho(x) \colon x \in \mathscr{X}\}$ for $y \in \mathscr{X}^{\#}$.
- We say that ho is representable if

$$ho(x) = { ext{ess.sup}}\{\mathbb{E}[xy|\mathcal{F}_t] -
ho^{\#}(y) \colon y \in \mathscr{X}^{\#}\} \quad ext{ for all } x \in \mathscr{X}.$$

The pairing $\langle \mathscr{X}, \mathscr{X}^{\#} \rangle$ allows for the definition of a module analogue of the weak topologies, that we call stable weak topologies and denote by

$$\sigma_s(\mathscr{X}, \mathscr{X}^{\#})$$
 and $\sigma_s(\mathscr{X}^{\#}, \mathscr{X}).$

The pairing $\langle \mathscr{X}, \mathscr{X}^{\#} \rangle$ allows for the definition of a module analogue of the weak topologies, that we call stable weak topologies and denote by

$$\sigma_s(\mathscr{X}, \mathscr{X}^{\#})$$
 and $\sigma_s(\mathscr{X}^{\#}, \mathscr{X}).$

• ρ is \mathcal{F}_t -lower semi-continuous w.r.t. $\sigma_s(\mathscr{X}, \mathscr{X}^{\#})$ if:

For any $\eta \in L^0_t$, $\{\rho \leq \eta\}$ is closed w.r.t. $\sigma_s(\mathscr{X}, \mathscr{X}^{\#})$;

The pairing $\langle \mathscr{X}, \mathscr{X}^{\#} \rangle$ allows for the definition of a module analogue of the weak topologies, that we call stable weak topologies and denote by

$$\sigma_s(\mathscr{X}, \mathscr{X}^{\#})$$
 and $\sigma_s(\mathscr{X}^{\#}, \mathscr{X}).$

• ρ is \mathcal{F}_t -lower semi-continuous w.r.t. $\sigma_s(\mathscr{X}, \mathscr{X}^{\#})$ if:

For any $\eta \in L^0_t$, $\{\rho \leq \eta\}$ is closed w.r.t. $\sigma_s(\mathscr{X}, \mathscr{X}^{\#})$;

•
$$\rho$$
 is \mathcal{F}_t -inf-compact w.r.t. $\sigma_s(\mathcal{X}, \mathcal{X}^{\#})$ if:

For any $\eta \in L^0_t$, $\{\rho \leq \eta\}$ satisfies the following compactness condition: Any «stable» filter base \mathscr{U} on $\{\rho \leq \eta\}$ has a cluster point $x \in \{\rho \leq \eta\}$ w.r.t. $\sigma_s(\mathcal{X}, \mathcal{X}^{\#})$.

Stable weak topologies

The pairing $\langle \mathscr{X}, \mathscr{X}^{\#} \rangle$ allows for the definition of a module analogue of the weak topologies, that we call stable weak topologies and denote by

$$\sigma_s(\mathscr{X}, \mathscr{X}^{\#})$$
 and $\sigma_s(\mathscr{X}^{\#}, \mathscr{X}).$

• ρ is \mathcal{F}_t -lower semi-continuous w.r.t. $\sigma_s(\mathscr{X}, \mathscr{X}^{\#})$ if:

For any $\eta \in L^0_t$, $\{\rho \leq \eta\}$ is closed w.r.t. $\sigma_s(\mathscr{X}, \mathscr{X}^{\#})$;

•
$$\rho$$
 is \mathcal{F}_t -inf-compact w.r.t. $\sigma_s(\mathcal{X}, \mathcal{X}^{\#})$ if:

For any $\eta \in L^0_t$, $\{\rho \leq \eta\}$ satisfies the following compactness condition: Any «stable» filter base \mathscr{U} on $\{\rho \leq \eta\}$ has a cluster point $x \in \{\rho \leq \eta\}$ w.r.t. $\sigma_s(\mathcal{X}, \mathcal{X}^{\#})$.

• ho has the Lebesgue property if

$$\lim_n x_n = x \text{ a.s., } |x_n| \le z, \ z \in \mathscr{X} \text{ implies } \lim_n \rho(x_n) = \rho(x) \text{ a.s..}$$

Theorem

Theorem

Let $\rho : \mathscr{X} \to L^0_t$ be a conditional risk measure. Then, inside of V_t , there exists a convex risk measure ρ^{\uparrow}_1 so that:

• ρ is representable if and only if $\llbracket \rho \uparrow$ is representable $\rrbracket = \Omega$.

Theorem

- ρ is representable if and only if $\llbracket \rho \uparrow$ is representable $\rrbracket = \Omega$.
- $\ \, {\it O} \ \, \rho \ \, {\it is} \ \, {\cal F}_t {\it -lower} \ \, {\it semi-continuous} \ \, {\it if} \ \, {\it and} \ \, {\it only} \ \, {\it if} \ \, [\![\rho\uparrow] \ \, {\it is} \ \, {\it l.s.c.}]\!] = \Omega.$

Theorem

- ρ is representable if and only if $\llbracket \rho \uparrow$ is representable $\rrbracket = \Omega$.
- $\ \, {\it O} \ \, {\it o} \ \, {\it is} \ \, {\cal F}_t \mbox{-lower semi-continuous if and only if} \ \, [\![\rho \ \, {\it is} \ \, {\it l.s.c.}]\!] = \Omega.$
- ρ is \mathcal{F}_t -inf-compact if and only if $\llbracket \rho \uparrow$ is inf-compact $\rrbracket = \Omega$.

Theorem

- ρ is representable if and only if $[\rho\uparrow]$ is representable $] = \Omega$.
- $\ \, {\it O} \ \, {\it o} \ \, {\it is} \ \, {\cal F}_t \mbox{-lower semi-continuous if and only if} \ \, [\![\rho \ \, {\it is} \ \, {\it l.s.c.}]\!] = \Omega.$
- ρ is \mathcal{F}_t -inf-compact if and only if $\llbracket \rho \uparrow$ is inf-compact $\rrbracket = \Omega$.

Robust representation of conditional risk measures

Recall the general version of the Jouini-Schachermayer-Touzi theorem:

Theorem

Let $\rho : \mathcal{X} \to \mathbb{R}$ be a convex risk measure. Then ρ is lower semi-continuous w.r.t. $\sigma(\mathcal{X}, \mathcal{X}^{\#})$ if and only if ρ is representable, i.e.

 $\rho(x) = \sup\{\mathbb{E}[xy] - \rho^{\#}(y) \colon y \in \mathcal{X}^{\#}\} \quad \forall x \in \mathcal{X}.$

In that case, the following conditions are equivalent:

- ρ attains the representation for each $x \in \mathcal{X}$;
- **2** ρ has the Lebesgue property, i.e.

$$\lim_{n} x_{n} = x \text{ a.s., } |x_{n}| \leq y, y \in \mathcal{X} \text{ implies } \lim_{n} \rho(x_{n}) = \rho(x);$$

3 $\rho^{\#}$ is inf-compact w.r.t. $\sigma(\mathcal{X}^{\#}, \mathcal{X})$.

Robust representation of conditional risk measures

Thanks to the transfer principle we derive the following robust representation theorem:

Theorem

Let $\rho : \mathscr{X} \to L^0_t$ be a conditional risk measure. Then ρ is \mathcal{F}_t -lower semi-continuous w.r.t. $\sigma_s(\mathscr{X}, \mathscr{X}^{\#})$ if and only if ρ admits a representation

$$\rho(\mathbf{x}) = \operatorname{ess.sup}\left\{ \mathbb{E}[\mathbf{x}\mathbf{y}|\mathcal{F}] - \rho^{\#}(\mathbf{y}) \colon \mathbf{y} \in \mathscr{X}^{\#} \right\} \quad \forall \mathbf{x} \in \mathscr{X}.$$

In that case, the following conditions are equivalent:

- ρ attains the representation for each $x \in \mathcal{X}$;
- 2 ρ has the Lebesgue property, i.e.

$$\lim_{n} x_{n} = x \text{ a.s., } |x_{n}| \leq y, y \in \mathscr{X} \text{ implies } \lim_{n} \rho(x_{n}) = \rho(x) \text{ a.s.;}$$

3)
$$ho^{\#}$$
 is \mathcal{F}_t -inf-compact w.r.t. $\sigma_s(\mathscr{X}^{\#},\mathscr{X})$.

• L^{∞} type modules:

$$L^\infty_{t,\mathcal{T}} := \left\{ x \in L^0_\mathcal{T} \colon \exists \eta \in L^0_t \text{ such that } |x| \leq \eta
ight\}.$$

• L^{∞} type modules:

$$L^\infty_{t,\mathcal{T}} := \left\{ x \in L^{\mathsf{O}}_{\mathcal{T}} \colon \exists \eta \in L^{\mathsf{O}}_t \text{ such that } |x| \leq \eta
ight\}.$$

•
$$L^p$$
 type modules $(1 \le p < \infty)$:
 $L^p_{t,T} := \left\{ x \in L^0_T \colon \mathbb{E}[|x| \mid \mathcal{F}_t] < \infty \text{ a.s.} \right\}.$

• L^{∞} type modules:

$$L^\infty_{t,\mathcal{T}} := \left\{ x \in L^{\mathsf{O}}_{\mathcal{T}} \colon \exists \eta \in L^{\mathsf{O}}_t ext{ such that } |x| \leq \eta
ight\}.$$

•
$$L^p$$
 type modules $(1 \le p < \infty)$:
 $L^p_{t,T} := \left\{ x \in L^0_T \colon \mathbb{E}[|x| \mid \mathcal{F}_t] < \infty \text{ a.s.} \right\}.$

• Orlicz type modules: Suppose that $\phi:[0,\infty) o [0,\infty]$ is a Young function

$$L^\phi_{t,\mathcal{T}} := \left\{ x \in L^0_{\mathcal{T}} \colon \exists \varepsilon \in L^0_t, \ \varepsilon > 0 \text{ a.s.}, \ E[\phi(\varepsilon^{-1}|x|)|\mathcal{F}_t] < \infty \text{ a.s.} \right\}.$$

• L^{∞} type modules:

$$L^\infty_{t,\mathcal{T}} := \left\{ x \in L^{\mathsf{O}}_{\mathcal{T}} \colon \exists \eta \in L^{\mathsf{O}}_t \text{ such that } |x| \leq \eta
ight\}.$$

•
$$L^p$$
 type modules $(1 \le p < \infty)$:
 $L^p_{t,T} := \left\{ x \in L^0_T \colon \mathbb{E}[|x| \mid \mathcal{F}_t] < \infty \text{ a.s.} \right\}.$

• Orlicz type modules: Suppose that $\phi:[0,\infty)
ightarrow [0,\infty]$ is a Young function

$$L^\phi_{t,\mathcal{T}} := \left\{ x \in L^0_{\mathcal{T}} \colon \exists \varepsilon \in L^0_t, \ \varepsilon > 0 \text{ a.s., } E[\phi(\varepsilon^{-1}|x|)|\mathcal{F}_t] < \infty \text{ a.s.} \right\}.$$

• Orlicz-heart type modules: Suppose that $\phi:[0,\infty)\to [0,\infty]$ is a Young function

$$H^\phi_{t,\mathcal{T}} := \left\{ x \in L^0_{\mathcal{T}} \colon \forall \varepsilon \in L^0_t, \; \varepsilon > 0 \text{ a.s.}, \; E[\phi(\varepsilon^{-1}|x|)|\mathcal{F}_t] < \infty \text{ a.s.} \right\}.$$

 A. Avilés, J.M. Zapata. Boolean-valued models as a foundation for locally L⁰-convex analysis and Conditional set theory. Journal of Applied Logics. 5(1) (2018) 389-420.

A. Avilés, J.M. Zapata. Boolean-valued models as a foundation for locally L⁰-convex analysis and Conditional set theory. Journal of Applied Logics. 5(1) (2018) 389–420.

J.M. Zapata. A Boolean-valued model approach to conditional risk. Preprint available in Arxiv (2018).

A. Avilés, J.M. Zapata. Boolean-valued models as a foundation for locally *L*⁰-convex analysis and Conditional set theory. Journal of Applied Logics. 5(1) (2018) 389–420.

- J.M. Zapata. A Boolean-valued model approach to conditional risk. Preprint available in Arxiv (2018).
 - J.M. Zapata. A Boolean-valued Models Approach to L⁰-Convex Analysis, Conditional Risk and Stochastic Control. Thesis dissertation (2018) – Supervised by José Orihuela.

- A. Avilés, J.M. Zapata. Boolean-valued models as a foundation for locally L⁰-convex analysis and Conditional set theory. Journal of Applied Logics. 5(1) (2018) 389–420.
- J.M. Zapata. A Boolean-valued model approach to conditional risk. Preprint available in Arxiv (2018).
- J.M. Zapata. A Boolean-valued Models Approach to L⁰-Convex Analysis, Conditional Risk and Stochastic Control. Thesis dissertation (2018) – Supervised by José Orihuela.
- A. Jamneshan, M. Kupper, J.M. Zapata. Parameter-dependent Stochastic Optimal Control in Finite Discrete Time. Arxiv preprint (2018). Reviewed in SIAM Journal on Control and Optimization.

Thank you for your attention!