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Definition of plasticity

Let U be a metric space. A map F : U → U is called non-
expansive, if ρ(F (x),F (y)) ≤ ρ(x , y) for all x , y ∈ U. In 2006
S.A. Naimpally, Z. Piotrowski and E.J. Wingler introduced and
studied the following property of metric spaces.

Definition
A metric space U is called an expand-contract plastic space (or
simply, a plastic space) if every non-expansive bijection from U
onto itself is an isometry.
In other words, a bijective map F : U → U of a plastic space
either preserves all the distances, or there are both pairs of ele-
ments with increasing distances and pairs of elements with de-
creasing distances.



Namioka’s proof of plasticity for compact spaces

Ellis Theorem (1958). Let K be a compact, S ⊂ C(K ,K ) be a
semigroup for the composition, and let Σ ⊂ K K be the pointwise
closure of S. The following are equivalent:

1. Each member of Σ is one to one.
2. Σ is a group with id : K → K being the identity element of

the group.
Namioka’s argument. Let K be a metric compact, F : K →
K be a non-contractive bijective map. Consider the semigroup
S = {F n : n ∈ N} ⊂ C(K ,K ) and the corresponding Σ. Each
member of S is non-contractive, so each member of Σ is non-
contractive and hence is one to one. By Ellis theorem Σ is a
group, so F−1 ∈ Σ. Consequently, F−1 is non-contractive, which
means that F is an isometry.



More examples

There are many other plastic spaces outside of compact ones.
Say, every precompact space is plastic, and there are examples
of not precompact (and even unbounded) plastic spaces. In an
infinite-dimensional Banach space X there can be very “good”
subsets that are not plastic spaces. For example, consider

U =
{

x = (xn) ∈ H :
0∑

k=−∞
|xk |2 +

1
4

∞∑
k=1

|xk |2 ≤ 1
}
⊂ `2(Z).

Define the (linear) weighted left shift operator T as follows: Ten =
en−1 for n 6= 1 and Te1 = 1

2e0. This operator maps U to U bi-
jectively, is non-expansive and is not an isometry, so U is not
plastic, but it is a closed convex and bounded set.



The main problem

Remark that the set U in this example is a solid ellipsoid in a
Hilbert space H, so in many senses it does not differ much from
the unit ball of H. Nevertheless, in the sense of plasticity the
unit ball is quite different from this U. Namely, in recent paper by
Cascales, Kadets, Orihuela and Wingler it is shown that the unit
ball of every strictly convex Banach space is plastic.

It is an open question, whether the same result remains true
without the strict convexity assumption.

We also don’t know the answer to an analogous question whether
every bijective non-expansive map F : BX → BY between balls
of two different spaces should be an isometry.



Mankiewicz’s theorem

The following result by P. Mankiewicz (1972) explains better what
is plasticity in the case of the unit ball.

Theorem. If A ⊂ X and B ⊂ Y are convex with non-empty inte-
rior, then every bijective isometry F : A→ B can be extended to
a bijective affine isometry F̃ : X → Y . �

Taking into account that in the case of A, B being unit balls every
isometry maps 0 to 0, this result implies that every bijective iso-
metry F : BX → BY is the restriction of a linear isometry from X
onto Y .



The key lemma

Lemma. Let F : BX → BY be a bijective non-expansive map
such that F (SX ) = SY . Let V ⊂ SX be the subset of all those
v ∈ SX that F (av) = aF (v) for all a ∈ [−1,1]. Denote A = {tx :
x ∈ V , t ∈ [−1,1]}, then F |A is a bijective isometry between A
and F (A).
The idea of the proof. Consider the directional derivative of the
function x 7→ ‖x‖X at u ∈ SX in the direction v ∈ X :

u∗(v) = lim
a→0+

1
a

(‖u + av‖X − ‖u‖X ) .

If for some u ∈ SX and v ∈ A we have u∗(−v) = −u∗(v), then a
few lines of inequalities gives us (F (u))∗(F (v)) = u∗(v).



The idea of demonstration: continuation

Fix arbitrary y1, y2 ∈ A. Let E = span{y1, y2}, and let W ⊂ SE
be the set of smooth points of SE (which is dense in SE ). All
the functionals x∗, where x ∈ W , are linear on E , so x∗(−yi) =
−x∗(yi), for i = 1,2. Now

‖y1 − y2‖X = sup{x∗(y1 − y2) : x ∈W}
= sup{x∗(y1)− x∗(y2) : x ∈W}
= sup{(F (x))∗(F (y1))− (F (x))∗(F (y2)) : x ∈W}
≤ ‖F (y1)− F (y2)‖Y .

So ‖F (y1)− F (y2)‖ = ‖y1 − y2‖. �



Elementary properties

Let F : BX → BY be a non-expansive bijection. Then, the
following holds true.

1. F (0) = 0.
2. F−1(SY ) ⊂ SX .
3. If X is strictly convex then Y is strictly convex.
4. If F (x) ∈ ext(BY ), then F (ax) = aF (x) for all a ∈ [−1,1].
5. If Y is strictly convex then F (SX ) = SY .



Why?

1. 0X has distance at most 1 from all elements of BX , so F (0X )
has distance at most 1 from all elements of BY , i.e. F (0X ) = 0Y .
2. Every element of the open ball of X is of distance smaller
than 1 to 0, so it cannot be mapped to an element of SY .
3. Let Y be not strictly convex, then for some y ∈ SY there are
infinitely many elements z ∈ SY such that ‖y + z‖ = 2. Then

‖F−1(y)+(−F−1(−z))‖ = ‖F−1(y)−F−1(−z)‖ ≥ ‖y−(−z)‖ = 2.

4. Say, for 0 < a < 1 we have ‖ax‖ = a, ‖ax − x‖ = 1 − a,
consequently ‖F (ax)‖ = a, ‖F (ax) − F (x)‖ = 1 − a. But for
F (x) ∈ ext(BY ) the only element z ∈ Y with the property ‖z‖ =
a, ‖z − F (x)‖ = 1− a is the element aF (x).



The list of results in chronological order

Let F : BX → BY be a non-expansive bijection. Then each of
the following conditions imply that F is an isometry.

1. X = Y are strictly convex (Cascales , Kadets, Orihuela,
Wingler, 2016).

2. X = Y = `1 (Kadets, Zavarzina, 2016).
3. Y is strictly convex, or Y = `1, or Y is finite-dimensional

(Zavarzina, 2018).
4. Y is `1-sum of strictly convex Banach spaces (Kadets,

Zavarzina, 2018).
5. X is strictly convex (Angosto, Kadets, Zavarzina, 2018).
6. SY is a union of finite-dimensional polyhedral faces

(Angosto, Kadets, Zavarzina, 2018).



Problems

1. Which of the spaces `∞, C(K ), c0, L1 have plastic unit
balls?

2. Does RNP or at least reflexivity imply the plasticity of the
unit ball?

3. If a space is isomorphic to a Hilbert space, should its ball
be plastic?

4. Does the existence of a non-expansive bijection
F : BX → BY imply that X and Y are isomorphic?



One more problem

What is the characterization of bounded closed convex plastic
subsets of an infinite-dimensional Hilbert space?

A step in this direction was recently made by O. Zavarzina (pre-
print, 2018).

Let a(n) > 0, n ∈ N. Suppose infn a(n) > 0 and supn a(n) < +∞
and consider an ellipsoid with these semiaxes in a Hilbert H:

E =

{
x =

∑
n∈N

xnen ∈ H :
∑
n∈N

∣∣∣∣ xn

a(n)

∣∣∣∣2 ≤ 1

}
,

where en are elements of a given orthonormal basis.



Zavarzina’s theorem about ellipsoids

Let ellipsoid E be as above, then the following conditions are
equivalent:
(1) every linear operator T : H → H that maps E to E bijectively
is an isometry;

(2) Every subset B of the set a(N) of semi-axes of E that con-
sists of more than one element possesses at least one of the
following properties:

1. B has a maximum of finite multiplicity;
2. B has a minimum of finite multiplicity.


