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 Let us recall that a Banach space E (or the norm in 
E) is said to be locally uniformly rotund (LUR for 
short) if 

lim︎n︎||x︎︎n︎—x|| =0  whenever 

lim︎n||(x︎︎︎n+x)/2|| =lim︎n︎︎||x︎︎︎n||=||x||.

The LUR renorming techniques for a Banach space 
are based in two different approaches.   
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In the first one, for enough convex functions on the 
Banach space are constructed to apply Deville’s 
master lemma, to get an equivalent LUR norm. 
Originally this method use  the powerful tool of 
projectional resolutions of the identity.

The second one  is based to a characterization of 
those Banach spaces that admit a LUR renorming by 
means of a linear topological condition. Namely 

Theorem 1.(A.MOLTó, J.ORIHUELA, S.T., ’97)  A 
normed space E is LUR renormable  if and only if 
for every ε > 0 we can write in such a way
                    E =  ∪n∈N En,ε

that for every x ∈ E there exist  n ∈ N  and open half 
space H with x ∈ H ∩ En,ε, diam(H ∩ En,ε)< ε.
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It turns out that it is rather difficult to apply former 
theorem in concrete cases. This motivates us to build 
up some transfer technique designed to transfer a 
good convexity property from a normed space to 
another combining with topological properties of 
metric space of covering type. This is done in  
A.MOLTó, J.ORIHUELA, M. VALDIVIA, S.T.,  Non-linear 
transfer technique, Lect. Notes Math., 1951, 
Springer, Berlin, 2009
 We present a particular result in this direction which 
we use latter. This is a nonlinear (convex) version 
for LUR renorming of Banach spaces with strong 
Markushevich basis.
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Theorem 2. Let E be a normed space and let F be a 
norming for E subspace of E*. Assume that there is a 
locally bounded map Φ from E into c0(Γ) for some set 
Γ such that: 

(i) for every finite set A ⊂ Γ is specified a  separable                   
subspace ZA   of  E with properties:

(a)  ZA ⊂ ZB whenever A ⊂ B ⊂ Γ ;                                 

(b) x ∈ span—∪n∈N ZKn
—||.||, whenever x ∈ E and   {Kn : n 

∈ N}  is an increasing  sequence (i.e. Km ⊂ Kn if m<n) of  
finite subsets of Γ;            

 (ii)  for every γ ∈ Γ the real function δγ◦Φ on E                       
is non-negative, convex and  σ(E, F) - lower  semi -
continuous,  where δγ is the Dirac measure on Γ at γ.

Then E admits an equivalent σ(E,F) - lower semi-
continuous LUR norm.
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Example 1. Assume that E has a srtrong 
Markushevich basis  {eγ : γ∈Γ}  with conjugate 
system  {e*γ: γ∈Γ}, that is e*β(eγ)=δβ γ, and for 
every x ∈ E we have

x ∈span— {eγ : e*γ(x)=/0, γ∈Γ}—||.|| 

Let                                                                                                                               

ZA =span{eγ : γ∈A}  

and define Φ : E → c0(Γ)    by formula          

Φx(γ)=|e*γ(x)|. 

From the definition of strong Markushevich basis for 
every x ∈ E we have

x ∈span— {eγ : Φx(γ)= |e*γ(x)|=/0, γ∈Γ}——||.|| 

So Φ satisfies the hypothesis of  the former theorem.
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Lot of papers are devoted to find different classes of 
compact space X for which C(X) admits an 
equivalent pointwise lower semicontinuous LUR 
norm. Moving on now to topological properties, it 
was proved consecutively that  C(X)  has such norm 
if X is Eberlein, Talagrand, Gul’ko compact space. It 
turns out that if X hails from one of these three 
classes of compact spaces then it can be treated as a 
subset of a pointwise compact cube [0, 1]Γ, in such a 
way that, given t ∈ X, its coordinates t(γ), γ ∈ Γ, 
behave according to certain rules.
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Every compact space  X from the classes above 
shares the property that X may be embedded in      
[0, 1]Γ, such that given any t ∈ X, the support                             
supp t = { γ ∈ Γ : t(γ) ̸= 0 } is countable. In general, 
a space satisfying this property is called Corson 
compact. The space X is called Valdivia compact if it 
is as above, but, in this case, only a pointwise dense 
subset of points of X ⊆ [0, 1]Γ are required to have 
countable support. These classes have long been 
relevant to renorming theory. In all this cases C(X) 
admits projectional resolutions of the identity and 
therefore admits a pointwise lower semicontinuous 
LUR norm.
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We mention that in C(X) spaces we have a canonical 
map to  c0(Γ). Indeed if   X ⊆ [0, 1]Γ  the uniform 
continuity of every   h ∈ C(X) allows us to define the 
oscillation map      

Ω : C(X) → c0(Γ)                                                      
by formula                                                         
Ω(h(γ))=sup︎{h(t)−h(s): t, s ∈X , (t−s)1Γ\{γ} = 0}, 
where h ∈ C(X). It is easy to see that Ω is a bounded 
map  satisfying condition (ii) of Theorem 2, i.e.      
δγ◦Ω on E is non-negative, convex and pointwise 
lower semi-continuous, where δγ is the Dirac 
measure on Γ at γ.

In [MOTV] is shown that Ω satisfies a condition 
similar to condition (i)  of Theorem 1 when X is 
Helly compact of monotone functions on [0,1].
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The aim of this talk is to give a new class of 
compact spaces for which the corresponding space 
of continuos functions is LUR renormable. The 
following definition goes back to V.V. Fedorchuk.

Definition1. Continuous  map f : X →Y is said to be 
fully closed if for every disjoint closed subsets A and 
B of X the set f(A) ∩ f(B) is finite. 

Our  main result is next

Theorem 3. Let X be a compact space admitting a 
fully closed map f onto a metric compact Y  such that 
the fibers  f -1(y) are  metrizable  for every   y ∈ Y . 
Then C(X) admits an equivalent pointwise lower 
semi-continuous LUR norm.
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The above class of compact spaces  is particular case 
of Fedorchuk compacts. 

Example 2. Denote with L  the lexicographic 
square.  The projection of L onto the first factor is 
fully closed and all its fibers are homeomorphic to 
the closed interval. 

G.Alexandrov’88  showed that C(L) is LUR 
renormable. Latter R. Haydon, J. Jayne,  I. Namioka 
and C. A. Rogers’ 00 proved that if Q = [0, 1]Γ is 
lexicographical cube then C(Q) is LUR renormable 
if and only if Γ is а countable ordinal. 
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Let  f : X → Y  be a continuous map of compacts. 
Given y ∈ Y  define

  osc f -1(y) (h) = sups,t ∈ f -1(y) {h(t) - h(s)}   

for h ∈ C(X). Clearly osc f -1(y) (·) is a pointwise 
lower semi-continuous semi-norm in C(X).

We introduce fiberwise oscillation map 

Ωf :C(X) → l∞ (Y)
by formula  
Ωf (h)(y)= oscf -1(y)(h),  

∀y ∈ Y, where h ∈ C(X).
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Clearly the map Ωf is bounded.  Since                                                                                                                                                                                                                                                                                                                         

δy◦Ωf (h) = oscf -1(y)(h)

we get that  Ωf  satisfies condition (ii) of Theorem 2, 
that is ∀y ∈ Y the function δy◦Ωf(h) is non negative, 
convex function of h and osc f -1(y) (·) is a pointwise 
lower semi-continuous semi-norm on C(X).
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Proposition1. The continuos map f : X → Y  of 
compacts is fully closed if and only if  Ωf  maps 
C(X) into c0 (Y).                                                        
Proof. Assume that the set                                       
Hh,ε = {y ∈ Y : diam(h(f -1(y))) ≥ ε}                      
is infinite for  some h ∈ C(X) and ε > 0. We show 
that f  is not  fully closed.

Denote with Λ the space of all non empty subsets of 
closed interval [-||h||∞, ||h||∞] endowed with 
Hausdorff metric d. It is well known that (Λ, d) is 
compact.
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We can consider {h(f -1(y)) : y ∈ Hh,ε } as infinite 
family of closed subsets of the interval [-||h||∞, ||h||∞], 
i.e. {h(f -1(y)) : y ∈ Hh,ε } ⊆ Λ.
Since Λ is metric compact  there exists a sequence         
{yn : n ∈ N} of different points of Hh,ε   and subset M 
of the interval [-||h||∞, ||h||∞] such that 

 limnd(h(f -1(yn)), M) )=0.                              

It is obvious that diam(M) ≥ ε>0.  Pick two different  
real numbers u,v ∈ M. There exist  closed disjoint 
intervals I and J  such that its interiors contain u and 
v respectively. Clearly for all enough large n

   h(f -1(yn)) ∩ I=/∅ ,           h(f -1(yn)) ∩J=/∅  

Set A=h-1(I) and B=h-1(J ). Since I and J are closed 
disjoint we get that A and B are closed disjoint sets 
in X too. 
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We have 

f(A)={y∈ Y : ∃ x ∈ f -1(y) with h(x) ∈I},

f(B)=={y∈ Y : ∃ x ∈ f -1(y) with h(x) ∈J}. 

So

yn ∈ f(A) ∩ f(B)

for all enough large n.

Hence f is not  fully closed map. 
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Assume now that  f  is not fully closed.Then there 
exist disjoint closed subsets A, B  in X  such that the 
intersection D = f(A) ∩ f(B)  is infinite. There exists           
g ∈ C(X) such that  g1A =1 and  g1B =0. So for every y 
∈ D we have Ωf (g)(y)=1. Hence Hg,1  contains 
infinite set D .!  
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Let  A  be an arbitrary subset of Y . Consider a 
partition of a compact X  whose nontrivial elements 
are sets  f -1(y)  for y ∈ Y \ A. Let Y A be the quotient 
space corresponding to this partition  (with respect 
to f ), that is
YA  = { f -1(y):  y ∈ Y \ A}∪{{x}: f (x)∈ A}.
Let  fA  :  X → YA be a quotient map, corresponding  
to this partition, that is

fA(x) ={f -1(f (x))  if  f (x) ∈ Y\A 
{x} otherwise                 

In YA  we consider standard  factor topology  i.e.      

U ⊂  YA   is  open iff  fA 
-1(U) is open in X.

Fact. If Y is metrizable with metrizable  fibers and A 
is countable then YA   is metrizable too.
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Given A ⊂ Y  define
ZA = {h ∈  C(X) : supp(Ωf (h)) ⊆  A}.
From the definition of Ωf  it follows that ZA is a 
closed subspace of C(X) . We investigate ZA using 
that f : X → Y  is fully closed map of compacts.

Lemma 1. The spaces ZA  and C(YA) are 
isomorphically isometric. The linear operator 
TA  :  ZA → C(YA)  defined by formula

TA h = h ◦ f A 
-1

give the isometry , i.e.
||TA h||∞ = ||h||∞ .

Corollary. If Y is metrizable with metrizable  fibers 
and A is countable then  ZA is separable.
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Proposition 2. Let f : X → Y  be a fully closed map 
of compact X onto a metric compact Y with 
metrizable fibers f -1(y). Let K be a finite subset of a 
countable set A ⊂ Y .  Then for every h ∈ ZA we 
have
dist(h, ZK) = inf{|| h -g ||∞ : g ∈ZK} ≤ || Ωf (h)1Y\K ||∞ .
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Proposition 3. The map of the fiberwise oscillation 
Ωf : C(X) → c0(Y) satisfies the conditions (a) and (b) 
of (i) Theorem 1 for any fully closed map f : X → Y 
of compact X onto a metric compact Y with 
metrizable fibers  f -1(y), y ∈Y, that is :

(i) for every finite set A ⊂ Γ is specified a separable 
subspace ZA of E with properties:

(a)  ZA ⊂ ZB  whenever A ⊂ B ⊂ Γ ;

(b)   h ∈ span—∪n∈N ZKn 
—||.||

whenever x ∈ E and  {Kn : n ∈ N} is an increasing 
sequence (i.e. Km ⊂ Kn if m<n) of finite subsets of Γ 
with supp(Ωf (h)) ⊂ ∪n∈N Kn .
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Proof. Let us remember that we set
ZA = {h ∈  C(X) : supp(Ωf (h)) ⊆  A}.
If A is finite or countable we showed  that ZA is 
separable. Evidently condition (a) holds. Pick
h ∈  C(X) and set
Km = {y ∈ Y : Ωf (h)(y) ≥ 1/m}
Since Ωf (h) ∈ c0(Y) we get that   all Km  are finite. 
From former proposition we get dist(h, ZKm) < 1/m.


