Coarse geometry of James spaces

Tony Procházka joint work with Gilles Lancien and Colin Petitjean

LmB, Université Bourgogne Franche-Comté

December 13, 2018 XVI EAFMV. Murcia

Introduction

Let $f:M\to N$ mapping between metric spaces and $\varphi,\rho:[0,\infty[\to[0,\infty]$ such that

$$\rho(d(x,y)) \leq d(f(x),f(y)) \leq \omega(d(x,y)) \quad \forall \ x,y \in M$$

- f is uniform embedding if ho(t)>0 for all t>0 and $\lim_{t\to 0+}\omega(t)=0$
- f is coarse embedding if $\lim_{t\to\infty}\rho(t)=\infty$ and $\omega(t)<\infty$ for all t>0

Theorem (Kalton 2007)

 $c_0 \not\hookrightarrow X$ coarsely or uniformly if X is reflexive.

Kalton's interlaced graphs

- let $\mathbb{M} \subset \mathbb{N}$ infinite. Denote $[\mathbb{M}]^k$ all k-subsets $\overline{n} = \{n_1 < \ldots < n_k\} \subset \mathbb{M}$.
- put an edge between $\overline{n} \neq \overline{m} \in [\mathbb{M}]^k$ iff

$$n_1 \leq m_1 \leq n_2 \leq \ldots \leq n_k \leq m_k$$

or vice versa.

- $d(\overline{n}, \overline{m})$ will be the **shortest path distance**
- Then $diam([\mathbb{M}]^k]) = k$ for all $\mathbb{M} \subset \mathbb{N}$

Property Q

Definition (Kalton)

A Banach space X has property $\mathcal Q$ if $\exists \ C>0$ such that $\forall \ k\geq 1$, $\forall \ f: [\mathbb N]^k \to X$ Lipschitz $\exists \ \mathbb M \subset \mathbb N$ infinite

$$diam([\mathbb{M}]^k) < C \cdot Lip(f)$$

Proof of Kalton's theorem:

- a Banach space without $\mathcal Q$ cannot coarsely embed into a Banach space with $\mathcal Q$.
- X reflexive \Rightarrow has Q
- c₀ doesn't
- · Indeed,

$$Y \text{ has } \mathcal{Q} \Rightarrow [\mathbb{N}]^k \not\hookrightarrow Y \text{ equi-coarsely}$$

• $[\mathbb{N}]^k$ equi-coarsely embed into c_0 .

Main result

Question

$$X$$
 has $\mathcal{Q} \leftarrow [\mathbb{N}]^k \not\hookrightarrow X$ equi-coarsely?

Answer

No, J, J^* don't have \mathcal{Q} (Kalton) but $[\mathbb{N}]^k \not\hookrightarrow J, J^*$ equi-coarsely.

Theorem (Lancien-Petitjean-P. 2018)

Let 1 and <math>X be a quasi-reflexive Banach space such that

- · X admits an equivalent p-AUS norm
- X^* admits an equivalent q-AUS norm (p + q = pq)

Then $[\mathbb{N}]^k \not\hookrightarrow X, X^*$ equi-coarsely.

Comments

- Under the hypotheses of the theorem $[\mathbb{N}]^k \not\hookrightarrow X^{(r)}$ for any $r \ge 1$.
- Freeman-Odell-Sari-Zheng: there exists a quasi-reflexive space which admits such a spreading model

Asymptotic uniform smoothness

Definition

A norm $\|\cdot\|$ on X is p-AUS if \exists C>0 \forall $x\in S_{\|\cdot\|}$ and \forall $(x_n)\subset X$ weakly-null we have

$$\limsup \|x + x_n\|^p \le 1 + C \limsup \|x_n\|^p$$

Lemma (Lancien-Raja, 2017)

If $\|\cdot\|$ on X is p-AUS then \exists C>0 \forall $x\in S_{\|\cdot\|}$ and \forall $(x_n)\subset X^{**}$ w^* -null we have

$$\limsup \|x + x_n\|^p \le 1 + C \limsup \|x_n\|^p$$

Asymptotic uniform convexity

Lemma (Godefroy-Kalton-Lancien 2001)

A norm $|\cdot|$ on X is q-AUS iff the dual norm is p-AUC*.

Definition

A norm $|\cdot|$ on X^* is p-AUC* if $\exists \ C>0 \ \forall \ x\in S_{|\cdot|}$ and $\forall \ (x_n)\subset X^*$ w*-null we have

$$\liminf |x + x_n|^p \ge 1 + C \liminf |x_n|^p$$

Proof of the main result

• Let $f_k : [\mathbb{N}]^k \to X$ satisfy $\forall k$

$$\rho(d(\overline{n},\overline{m}))) \leq \|f_k(\overline{n}) - f_k(\overline{m})\| \leq \omega(d(\overline{n},\overline{m})) \quad \forall \ \overline{n},\overline{m} \in [\mathbb{N}]^k$$

with $\rho(t) \to \infty$ as $t \to \infty$ and $\omega(t) < \infty$. (i.e. equi-coarse embedding)

- Fix k large (of the form $k \sim N^{1+p/q}$ for N large).
- Produce a w*-continuous sub-tree $(x_{\overline{n}})_{\overline{n} \in [\mathbb{M}]^{\leq k}}$
 - $x_{\overline{n}} := f(\overline{n}) \text{ if } \overline{n} \in [\mathbb{M}]^k$
 - $x_{\overline{n}} := w^* \lim_{m \in \mathbb{M}} x_{\overline{n} \smallfrown m}$ if $\overline{n} \in [\mathbb{M}]^j$ with j < k.
- Let $z(\overline{n}) := x(\overline{n}) x(\overline{n}^{\ominus})$
 - so $\sum_{j=1}^k z(\overline{n} \restriction_j) = f(\overline{n})$
 - $(z_{\overline{n}})_{\overline{n} \in [\mathbb{M}]^{\leq k}}$ is a w*-null tree
- Notice that $||z_{\overline{n}}|| \leq \omega(1)$

Proof of the main result

• Let $|\cdot|$ be the *q*-AUS norm on X^* such that

$$|b||y|| \le |y| \le ||y|| \quad \forall \ y \in X^{**}$$

· Pass to a further sub-tree such that

$$|f(\overline{n}) - f(\overline{m})|^{p} = |\sum_{j=1}^{k} z(\overline{n} \upharpoonright_{j}) - z(\overline{m} \upharpoonright_{j})|^{p}$$

$$\geq const \sum_{j=1}^{k} |z(\overline{n} \upharpoonright_{j})|^{p} + |z(\overline{m} \upharpoonright_{j})|^{p}$$

if
$$n_1 < m_1 < n_2 < \ldots < n_k < m_k$$
.

Pass to yet another subtree and get

$$const \cdot \omega(1)^p \ge \sum_{j=1}^k |z(\overline{n}\restriction_j)|^p \quad \forall \ \overline{n} \in [\mathbb{M}]^k$$

Proof of the main result

- Ramsey $\Rightarrow \exists \ \textit{K}_j \in [0, \omega(1)]$ such that $z(\overline{n} \upharpoonright_j) \sim \textit{K}_j \ \forall \ \overline{n} \in [\mathbb{M}]^k, \ \forall \ j \leq k$
- $\bullet \Rightarrow$

$$const \cdot \omega(1)^p \ge \sum_{j=1}^k K_j^p = \sum_{l=0}^{N^{p/q}} \sum_{j=lN+1}^{(l+1)N} K_j^p$$

 $\Rightarrow \exists I \leq N^{p/q}$ such that $\sum_{j=lN+1}^{(l+1)N} K_j \leq const \cdot \omega(1)$ provided $k \sim N \cdot N^{p/q}$

- $\Rightarrow \exists \ \overline{n}_0, \overline{m}_0 \in [\mathbb{M}]^{(l+1)N}$ such that $d(\overline{n}_0, \overline{m}_0) = N$ and $2 \ const \cdot \omega(1) \geq ||x_{\overline{n}_0} x_{\overline{m}_0}||$
- p-AUS+quasi-reflexivity $\Rightarrow \exists \ \overline{n}, \overline{m} \in [\mathbb{M}]^k$ such that $d(\overline{n}, \overline{m}) = N$ and

3
$$const \cdot \omega(1) \ge ||x_{\overline{n}} - x_{\overline{m}}|| = ||f_k(\overline{n}) - f_k(\overline{m})|| \ge \rho(N)$$

• Enough to take *N* such that $\rho(N) > 3 \ const \cdot \omega(1)$.

Last slide

Theorem (Kalton 2007)

 $c_0 \not\hookrightarrow X$ if $X^{(r)}$ is separable for all r

Theorem (Lancien-Petitjean-P. 2018)

 $\mathcal{JT}, \mathcal{JT}^* \not\hookrightarrow X$ coarsely if $X^{(r)}$ is separable for all r

- We don't know if $[\mathbb{N}]^k \hookrightarrow \mathcal{JT}, \mathcal{JT}^*$ equi-coarsely.
- Based on the following fact: \exists uncountable $I \ \forall i \in I \ \forall k \in \mathbb{N}$ \exists 1-Lipschitz $f_i^k : [\mathbb{N}]^k \to \mathcal{JT}$ such that

$$\lim_{k\to\infty}\inf_{i\neq j}\inf_{\mathbb{M}}\sup_{\overline{n}\in[\mathbb{M}]^k}\|f_i^k(\overline{n})-f_j^k(\overline{n})\|=\infty$$

Gracias por su atención!

Advertisement

Banach spaces and optimization:
Surprise conference for Robert
Deville's 60th birthday!
Métabief (France), June 16-21,
2019