On Banach spaces whose group of isometries acts micro-transitively

Sheldon Dantas

CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF ELECTRICAL ENGINEERING DEPARTMENT OF MATHEMATICS

Research supported by the project OPVVV CAAS CZ.02.1.01/0.0/0.0/16_019/0000778, Excelentní výzkum

Centrum pokročilých aplikovaných přírodních věd

(Center for Advanced Applied Science)

Work in progress with Cabello, Kadets, Kim, Lee, and Martín December, 2018, Murcia (Spain)

Sheldon Dantas

Micro-transitivity

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ ク へ ()

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

Applications

Table of contents

- 2 Uniform micro-semitransitivity
- 3 The Bishop-Phelps-Bollobás property
- 4 The relation
- 5 Applications

Applications

Notation

- X, Y are real or complex Banach spaces
- ${\ensuremath{\, \bullet }}\xspace{1.5ex}{\ensuremath{\, \mathbb K}}$ is the field ${\ensuremath{\mathbb R}}$ or ${\ensuremath{\mathbb C}}$
- B_X is the closed unit ball of X
- S_X is the unit sphere of X
- $\mathcal{L}(X, Y)$ continuous linear operators from X into Y

• If X = Y, then $\mathcal{L}(X, X) = \mathcal{L}(X)$

• $\mathcal{G}(X)$ all surjective linear isometries from X to X

Applications

Motivation

Banach-Mazur rotation problem

Applications

Motivation

Banach-Mazur rotation problem

Is every transitive separable Banach space isometrically isomorphic to a Hilbert space?

Sheldon Dantas Micro-transitivity

Definitions

Let G be a Hausdorff topological group with neutral element e and T be a Hausdorff topological space.

Sheldon Dantas Micro-transitivity

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definitions

Let G be a Hausdorff topological group with neutral element e and T be a Hausdorff topological space.

An **action** of G on T is a continuous map

 $G \times T \longrightarrow T$ $(g, x) \longmapsto gx.$

such that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definitions

Let G be a Hausdorff topological group with neutral element e and T be a Hausdorff topological space.

An **action** of G on T is a continuous map

 $G \times T \longrightarrow T$ $(g, x) \longmapsto gx.$

such that

(i) $ex = x, \forall x \in T$,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definitions

Let G be a Hausdorff topological group with neutral element e and T be a Hausdorff topological space.

An **action** of G on T is a continuous map

 $G \times T \longrightarrow T$ $(g, x) \longmapsto gx.$

such that

(i)
$$ex = x, \forall x \in T$$
,
(ii) $g(hx) = (gh)x, \forall g, h \in G, \forall x \in T$.

Applications

Definitions

An action of G on T is

Sheldon Dantas Micro-transitivity

An action of G on T is

(a) transitive if $Gx = \{gx : g \in G\} = T$, $\forall x \in T$.

An action of G on T is

- (a) transitive if $Gx = \{gx : g \in G\} = T$, $\forall x \in T$.
- (b) micro-transitive if $\forall x \in T$ and every neighborhood U of e, Ux is a neighborhood of x in T.

.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

An action of G on T is

- (a) transitive if $Gx = \{gx : g \in G\} = T$, $\forall x \in T$.
- (b) micro-transitive if $\forall x \in T$ and every neighborhood U of e, Ux is a neighborhood of x in T.

Remarks

Definitions

An action of G on T is

- (a) transitive if $Gx = \{gx : g \in G\} = T$, $\forall x \in T$.
- (b) micro-transitive if $\forall x \in T$ and every neighborhood U of e, Ux is a neighborhood of x in T.

Remarks

(i) If the action is micro-transitive, then the orbits of the elements are open. (F.D. Ancel, 1987)

Definitions

An action of G on T is

- (a) transitive if $Gx = \{gx : g \in G\} = T$, $\forall x \in T$.
- (b) micro-transitive if $\forall x \in T$ and every neighborhood U of e, Ux is a neighborhood of x in T.

Remarks

- (i) If the action is micro-transitive, then the orbits of the elements are open. (F.D. Ancel, 1987)
- (ii) So, they produce a partition of the space T as a disjoint union of open sets.

Definitions

An action of G on T is

- (a) transitive if $Gx = \{gx : g \in G\} = T$, $\forall x \in T$.
- (b) micro-transitive if $\forall x \in T$ and every neighborhood U of e, Ux is a neighborhood of x in T.

Remarks

- (i) If the action is micro-transitive, then the orbits of the elements are open. (F.D. Ancel, 1987)
- (ii) So, they produce a partition of the space T as a disjoint union of open sets.
- (iii) Therefore, if T is connected, micro-transitivity \Rightarrow transitivity.

In Banach space theory, we usually say that the norm of a Banach space X is **transitive** if $\mathcal{G}(X)$ acts transitively on S_X .

In Banach space theory, we usually say that the norm of a Banach space X is **transitive** if $\mathcal{G}(X)$ acts transitively on S_X .

That is, if for every $x, y \in S_X$, there is $S \in \mathcal{G}(X)$ such that Sx = y.

< ロ > < 団 > < 三 > < 三 > < 三 > < 三 > へ ()

In Banach space theory, we usually say that the norm of a Banach space X is **transitive** if $\mathcal{G}(X)$ acts transitively on S_X .

That is, if for every $x, y \in S_X$, there is $S \in \mathcal{G}(X)$ such that Sx = y.

(1) Pre-Hilbert spaces are transitive.

Definitions

In Banach space theory, we usually say that the norm of a Banach space X is **transitive** if $\mathcal{G}(X)$ acts transitively on S_X .

That is, if for every $x, y \in S_X$, there is $S \in \mathcal{G}(X)$ such that Sx = y.

- (1) Pre-Hilbert spaces are transitive.
- (2) Banach-Mazur rotation problem: Is every transitive separable Banach space a Hilbert space?

Definitions

In Banach space theory, we usually say that the norm of a Banach space X is **transitive** if $\mathcal{G}(X)$ acts transitively on S_X .

That is, if for every $x, y \in S_X$, there is $S \in \mathcal{G}(X)$ such that Sx = y.

- (1) Pre-Hilbert spaces are transitive.
- (2) Banach-Mazur rotation problem: Is every transitive separable Banach space a Hilbert space?
- (3) There are non-separable L_p space whose norms are transitive for 1 ≤ p < ∞ (A. Pełczyński and S. Rolewicz, 1962)</p>

Definitions

In Banach space theory, we usually say that the norm of a Banach space X is **transitive** if $\mathcal{G}(X)$ acts transitively on S_X .

That is, if for every $x, y \in S_X$, there is $S \in \mathcal{G}(X)$ such that Sx = y.

- (1) Pre-Hilbert spaces are transitive.
- (2) Banach-Mazur rotation problem: Is every transitive separable Banach space a Hilbert space?
- (3) There are non-separable L_p space whose norms are transitive for $1 \le p < \infty$ (A. Pełczyński and S. Rolewicz, 1962)
- (S. Rolewicz, 1985)
- (J. Becerra-Guerrero and A. Rodríguez-Palacios, 2002)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Definitions

We say that the norm of a Banach space X is **micro-transitive** if $\mathcal{G}(X)$ acts micro-transitively on S_X .

Sheldon Dantas

Definitions

We say that the norm of a Banach space X is **micro-transitive** if $\mathcal{G}(X)$ acts micro-transitively on S_X .

Fact

Let X with a micro-transitive norm. Then, there is a function $\beta : (0,2) \longrightarrow \mathbb{R}^+$ such that if $x, y \in S_X$ satisfy $||x - y|| < \beta(\varepsilon)$, then there is $T \in \mathcal{G}(X)$ such that

$$Tx = y$$
 and $||T - Id_X|| < \varepsilon$.

- ロ ト - 4 日 ト - 4 日 ト - 4 日 ト - 9 へ 0

Definitions

We say that the norm of a Banach space X is **micro-transitive** if $\mathcal{G}(X)$ acts micro-transitively on S_X .

Fact

Let X with a micro-transitive norm. Then, there is a function $\beta : (0,2) \longrightarrow \mathbb{R}^+$ such that if $x, y \in S_X$ satisfy $||x - y|| < \beta(\varepsilon)$, then there is $T \in \mathcal{G}(X)$ such that

$$Tx = y$$
 and $||T - Id_X|| < \varepsilon$.

Let $\varepsilon \in (0,2)$ and $U := \{S \in \mathcal{G}(X) : \|S - Id_X\| < \varepsilon\}.$

- ロ ト - 4 日 ト - 4 日 ト - 4 日 ト - 9 へ 0

Definitions

We say that the norm of a Banach space X is **micro-transitive** if $\mathcal{G}(X)$ acts micro-transitively on S_X .

Fact

Let X with a micro-transitive norm. Then, there is a function $\beta : (0,2) \longrightarrow \mathbb{R}^+$ such that if $x, y \in S_X$ satisfy $||x - y|| < \beta(\varepsilon)$, then there is $T \in \mathcal{G}(X)$ such that

$$Tx = y$$
 and $||T - Id_X|| < \varepsilon$.

Let $\varepsilon \in (0,2)$ and $U := \{S \in \mathcal{G}(X) : \|S - Id_X\| < \varepsilon\}$. Fix $x_0 \in S_X$.

Definitions

We say that the norm of a Banach space X is **micro-transitive** if $\mathcal{G}(X)$ acts micro-transitively on S_X .

Fact

Let X with a micro-transitive norm. Then, there is a function $\beta : (0,2) \longrightarrow \mathbb{R}^+$ such that if $x, y \in S_X$ satisfy $||x - y|| < \beta(\varepsilon)$, then there is $T \in \mathcal{G}(X)$ such that

$$Tx = y$$
 and $||T - Id_X|| < \varepsilon$.

Let $\varepsilon \in (0,2)$ and $U := \{S \in \mathcal{G}(X) : ||S - Id_X|| < \varepsilon\}$. Fix $x_0 \in S_X$. Since X is micro-transitivity, there is $\delta > 0$ such that

$$\{x\in S_X: \|x-x_0\|<\delta\}\subset Ux_0.$$

Sheldon Dantas

Micro-transitivity

Definitions

We say that the norm of a Banach space X is **micro-transitive** if $\mathcal{G}(X)$ acts micro-transitively on S_X .

Fact

Let X with a micro-transitive norm. Then, there is a function $\beta : (0,2) \longrightarrow \mathbb{R}^+$ such that if $x, y \in S_X$ satisfy $||x - y|| < \beta(\varepsilon)$, then there is $T \in \mathcal{G}(X)$ such that

$$Tx = y$$
 and $||T - Id_X|| < \varepsilon$.

Let $\varepsilon \in (0,2)$ and $U := \{S \in \mathcal{G}(X) : ||S - Id_X|| < \varepsilon\}$. Fix $x_0 \in S_X$. Since X is micro-transitivity, there is $\delta > 0$ such that

$$\{x\in S_X: \|x-x_0\|<\delta\}\subset Ux_0.$$

Let $x, y \in S_X$ such that $||x - y|| < \delta$. There is $R \in \mathcal{G}(X)$ such that $Rx = x_0$.

Definitions

We say that the norm of a Banach space X is **micro-transitive** if $\mathcal{G}(X)$ acts micro-transitively on S_X .

Fact

Let X with a micro-transitive norm. Then, there is a function $\beta : (0,2) \longrightarrow \mathbb{R}^+$ such that if $x, y \in S_X$ satisfy $||x - y|| < \beta(\varepsilon)$, then there is $T \in \mathcal{G}(X)$ such that

$$Tx = y$$
 and $||T - Id_X|| < \varepsilon$.

Let $\varepsilon \in (0,2)$ and $U := \{S \in \mathcal{G}(X) : ||S - Id_X|| < \varepsilon\}$. Fix $x_0 \in S_X$. Since X is micro-transitivity, there is $\delta > 0$ such that

$$\{x\in S_X: \|x-x_0\|<\delta\}\subset Ux_0.$$

Let $x, y \in S_X$ such that $||x - y|| < \delta$. There is $R \in \mathcal{G}(X)$ such that $Rx = x_0$. Then, $||x_0 - Ry|| < \delta$.

Definitions

We say that the norm of a Banach space X is **micro-transitive** if $\mathcal{G}(X)$ acts micro-transitively on S_X .

Fact

Let X with a micro-transitive norm. Then, there is a function $\beta : (0,2) \longrightarrow \mathbb{R}^+$ such that if $x, y \in S_X$ satisfy $||x - y|| < \beta(\varepsilon)$, then there is $T \in \mathcal{G}(X)$ such that

$$Tx = y$$
 and $||T - Id_X|| < \varepsilon$.

Let $\varepsilon \in (0,2)$ and $U := \{S \in \mathcal{G}(X) : ||S - Id_X|| < \varepsilon\}$. Fix $x_0 \in S_X$. Since X is micro-transitivity, there is $\delta > 0$ such that

$$\{x\in S_X: \|x-x_0\|<\delta\}\subset Ux_0.$$

Let $x, y \in S_X$ such that $||x - y|| < \delta$. There is $R \in \mathcal{G}(X)$ such that $Rx = x_0$. Then, $||x_0 - Ry|| < \delta$. Then, there is $S \in U$ such that $Sx_0 = Ry$.

Definitions

We say that the norm of a Banach space X is **micro-transitive** if $\mathcal{G}(X)$ acts micro-transitively on S_X .

Fact

Let X with a micro-transitive norm. Then, there is a function $\beta : (0,2) \longrightarrow \mathbb{R}^+$ such that if $x, y \in S_X$ satisfy $||x - y|| < \beta(\varepsilon)$, then there is $T \in \mathcal{G}(X)$ such that

$$Tx = y$$
 and $||T - Id_X|| < \varepsilon$.

Let $\varepsilon \in (0,2)$ and $U := \{S \in \mathcal{G}(X) : ||S - Id_X|| < \varepsilon\}$. Fix $x_0 \in S_X$. Since X is micro-transitivity, there is $\delta > 0$ such that

$$\{x\in S_X: \|x-x_0\|<\delta\}\subset Ux_0.$$

Let $x, y \in S_X$ such that $||x - y|| < \delta$. There is $R \in \mathcal{G}(X)$ such that $Rx = x_0$. Then, $||x_0 - Ry|| < \delta$. Then, there is $S \in U$ such that $Sx_0 = Ry$. Now define $T := R^{-1} \circ S \circ R \in \mathcal{G}(X)$.

Definitions

We say that the norm of a Banach space X is **micro-transitive** if $\mathcal{G}(X)$ acts micro-transitively on S_X .

Fact

Let X with a micro-transitive norm. Then, there is a function $\beta : (0,2) \longrightarrow \mathbb{R}^+$ such that if $x, y \in S_X$ satisfy $||x - y|| < \beta(\varepsilon)$, then there is $T \in \mathcal{G}(X)$ such that

$$Tx = y$$
 and $||T - Id_X|| < \varepsilon$.

Hilbert spaces have the above property with $\beta(\varepsilon) = \varepsilon$. (see, for example, M. Acosta, M. Mastyło, and M. Soleimani-M., 2018)

Applications

Notation

Uniform micro-semitransitivity

Uniformly micro-semitransitivity

Definition (Uniform micro-semitransitivity)

We say that the norm of X is **uniformly micro-semitransitive** if there is a function $\beta : (0,2) \longrightarrow \mathbb{R}^+$ such that whenever $x, y \in S_X$ satisfies

$$\|x-y\| < \beta(\varepsilon),$$

Sheldon Dantas Micro-transitivity

Uniformly micro-semitransitivity

Definition (Uniform micro-semitransitivity)

We say that the norm of X is **uniformly micro-semitransitive** if there is a function $\beta : (0,2) \longrightarrow \mathbb{R}^+$ such that whenever $x, y \in S_X$ satisfies

$$\|x-y\| < \beta(\varepsilon),$$

then there is $T \in \mathcal{L}(X)$ with ||T|| = 1 such that

$$Tx = y$$
 and $||T - Id_X|| < \varepsilon$.

Sheldon Dantas Micro-tr

Micro-transitivity
Applications

Uniformly micro-semitransitivity

Remarks

Sheldon Dantas

Uniformly micro-semitransitivity

Remarks

(a) Micro-transitive norms are uniformly micro-semitransitive.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Uniformly micro-semitransitivity

Remarks

(a) Micro-transitive norms are uniformly micro-semitransitive.

(b) If X is uniformly micro-semitransitive, then given $x, y \in S_X$, there is an isomorphism $T \in \mathcal{L}(X)$ with ||T|| = 1 such that Tx = y.

Uniformly micro-semitransitivity

Remarks

(a) Micro-transitive norms are uniformly micro-semitransitive.

(b) If X is uniformly micro-semitransitive, then given $x, y \in S_X$, there is an isomorphism $T \in \mathcal{L}(X)$ with ||T|| = 1 such that Tx = y.

Indeed, we take $x_1, \ldots, x_n \in S_X$ such that

$$x_1 = x, \quad x_n = y \quad \text{and} \quad ||x_{i+1} - x_i|| < \beta\left(\frac{1}{2}\right), \forall i = 1, \dots, n-1.$$

Uniformly micro-semitransitivity

Remarks

(a) Micro-transitive norms are uniformly micro-semitransitive.

(b) If X is uniformly micro-semitransitive, then given $x, y \in S_X$, there is an isomorphism $T \in \mathcal{L}(X)$ with ||T|| = 1 such that Tx = y.

Indeed, we take $x_1, \ldots, x_n \in S_X$ such that

$$x_1 = x, \quad x_n = y \quad \text{and} \quad ||x_{i+1} - x_i|| < \beta\left(\frac{1}{2}\right), \forall i = 1, \dots, n-1.$$

There are $T_1, \ldots, T_{n-1} \in \mathcal{L}(X)$ with $||T_i|| = 1$ such that

Sheldon Dantas Micro-transitivity

Uniformly micro-semitransitivity

Remarks

(a) Micro-transitive norms are uniformly micro-semitransitive.

(b) If X is uniformly micro-semitransitive, then given $x, y \in S_X$, there is an isomorphism $T \in \mathcal{L}(X)$ with ||T|| = 1 such that Tx = y.

Indeed, we take $x_1, \ldots, x_n \in S_X$ such that

$$x_1 = x, \quad x_n = y \quad \text{and} \quad ||x_{i+1} - x_i|| < \beta\left(\frac{1}{2}\right), \forall i = 1, \dots, n-1.$$

There are $T_1, \ldots, T_{n-1} \in \mathcal{L}(X)$ with $||T_i|| = 1$ such that

$$T_i(x_i) = x_{i+1}$$
 and $\|T_i - \operatorname{Id}_X\| < rac{1}{2}$

Sheldon Dantas

Uniformly micro-semitransitivity

Remarks

(a) Micro-transitive norms are uniformly micro-semitransitive.

(b) If X is uniformly micro-semitransitive, then given $x, y \in S_X$, there is an isomorphism $T \in \mathcal{L}(X)$ with ||T|| = 1 such that Tx = y.

Indeed, we take $x_1, \ldots, x_n \in S_X$ such that

$$x_1 = x, \quad x_n = y \quad \text{and} \quad ||x_{i+1} - x_i|| < \beta\left(\frac{1}{2}\right), \forall i = 1, \dots, n-1.$$

There are $T_1, \ldots, T_{n-1} \in \mathcal{L}(X)$ with $\|T_i\| = 1$ such that

$$T_i(x_i) = x_{i+1}$$
 and $||T_i - Id_X|| < \frac{1}{2}$

Now define $T := T_{n-1} \circ \cdots \circ T_1$.

Uniformly micro-semitransitivity

Remarks

(a) Micro-transitive norms are uniformly micro-semitransitive.

(b) If X is uniformly micro-semitransitive, then given $x, y \in S_X$, there is an isomorphism $T \in \mathcal{L}(X)$ with ||T|| = 1 such that Tx = y.

Indeed, we take $x_1, \ldots, x_n \in S_X$ such that

$$x_1 = x, \quad x_n = y \quad \text{and} \quad ||x_{i+1} - x_i|| < \beta\left(\frac{1}{2}\right), \forall i = 1, \dots, n-1.$$

There are $T_1, \ldots, T_{n-1} \in \mathcal{L}(X)$ with $||T_i|| = 1$ such that

$$T_i(x_i) = x_{i+1}$$
 and $\|T_i - \operatorname{Id}_X\| < \frac{1}{2}$.

Now define $T := T_{n-1} \circ \cdots \circ T_1$. Then, Tx = y and ||T|| = 1.

Micro-transitivity

Applications

Uniformly micro-semitransitivity

Remarks

(a) Micro-transitive norms are uniformly micro-semitransitive.

(b) If X is uniformly micro-semitransitive, then given $x, y \in S_X$, there is an isomorphism $T \in \mathcal{L}(X)$ with ||T|| = 1 such that Tx = y.

(c) For every Banach space X, given $x, y \in S_X$, there is $T \in \mathcal{L}(X)$ with ||T|| = 1 such that Tx = y.

Uniformly micro-semitransitivity

Remarks

(a) Micro-transitive norms are uniformly micro-semitransitive.

(b) If X is uniformly micro-semitransitive, then given $x, y \in S_X$, there is an isomorphism $T \in \mathcal{L}(X)$ with ||T|| = 1 such that Tx = y.

(c) For every Banach space X, given $x, y \in S_X$, there is $T \in \mathcal{L}(X)$ with ||T|| = 1 such that Tx = y.

(d) If X is uniformly micro-semitransitive and Y is a 1-complemented subspace of X, then Y is uniformly micro- semitransitive.

Applications

The BPBp

The Bishop-Phelps-Bollobás property

The BPBp

Bishop-Phelps-Bollobás property (M. Acosta, R. Aron, D. García, and M. Maestre, 2008)

A pair (X, Y) of Banach spaces has the **BPBp** if for every $\varepsilon > 0$, there exists $\eta(\varepsilon) > 0$ such that whenever $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 and $x_0 \in S_X$ satisfy

$$\|T(x_0)\|>1-\eta(\varepsilon),$$

there are $S \in \mathcal{L}(X, Y)$ with $\|S\| = 1$ and $x \in S_X$ such that

 $\|S(x)\| = 1$, $\|x_0 - x\| < \varepsilon$, and $\|S - T\| < \varepsilon$.

- ロ ト - 4 日 ト - 4 日 ト - 4 日 ト - 9 へ 0

The BPBp

Bishop-Phelps-Bollobás property (M. Acosta, R. Aron, D. García, and M. Maestre, 2008)

A pair (X, Y) of Banach spaces has the **BPBp** if for every $\varepsilon > 0$, there exists $\eta(\varepsilon) > 0$ such that whenever $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 and $x_0 \in S_X$ satisfy

$$\|T(x_0)\|>1-\eta(\varepsilon),$$

there are $S \in \mathcal{L}(X, Y)$ with $\|S\| = 1$ and $x \in S_X$ such that

$$\|S(x)\| = 1, \quad \|x_0 - x\| < \varepsilon, \quad \text{and} \quad \|S - T\| < \varepsilon.$$

(a) (Bollobás, 1963) (X, \mathbb{K}) has the **BPBp**, for all Banach X.

The BPBp

Bishop-Phelps-Bollobás property (M. Acosta, R. Aron, D. García, and M. Maestre, 2008)

A pair (X, Y) of Banach spaces has the **BPBp** if for every $\varepsilon > 0$, there exists $\eta(\varepsilon) > 0$ such that whenever $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 and $x_0 \in S_X$ satisfy

$$\|T(x_0)\|>1-\eta(\varepsilon),$$

there are $S \in \mathcal{L}(X, Y)$ with $\|S\| = 1$ and $x \in S_X$ such that

$$\|S(x)\|=1, \quad \|x_0-x\|<\varepsilon, \quad \text{and} \quad \|S-T\|<\varepsilon.$$

(a) (Bollobás, 1963) (X, \mathbb{K}) has the **BPBp**, for all Banach X.

(b) (S.K. Kim and H.J. Lee, 2014) If X is uniformly convex, then (X, Y) has the **BPBp** for all Banach Y.

The BPBp

Bishop-Phelps-Bollobás point property (D., S.K. Kim, and H.J. Lee (2016))

We say that a pair (X, Y) of Banach spaces has the **BPBpp** if given $\varepsilon > 0$, there exists $\tilde{\eta}(\varepsilon) > 0$ such that whenever $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 and $x_0 \in S_X$ satisfy

$$\|T(x_0)\| > 1 - \tilde{\eta}(\varepsilon),$$

there is $S \in \mathcal{L}(X, Y)$ with $\|S\| = 1$ such that

$$\|S(x_0)\| = 1$$
 and $\|S - T\| < \varepsilon$.

Sheldon Dantas Micro-transitivity

The BPBp

Bishop-Phelps-Bollobás point property (D., S.K. Kim, and H.J. Lee (2016))

We say that a pair (X, Y) of Banach spaces has the **BPBpp** if given $\varepsilon > 0$, there exists $\tilde{\eta}(\varepsilon) > 0$ such that whenever $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 and $x_0 \in S_X$ satisfy

$$\|T(x_0)\| > 1 - \tilde{\eta}(\varepsilon),$$

there is $S \in \mathcal{L}(X, Y)$ with $\|S\| = 1$ such that

$$\|S(x_0)\| = 1$$
 and $\|S - T\| < \varepsilon$.

(a) The pair (X, \mathbb{K}) has the **BPBpp** if and only if X is uniformly smooth.

The BPBp

Bishop-Phelps-Bollobás point property (D., S.K. Kim, and H.J. Lee (2016))

We say that a pair (X, Y) of Banach spaces has the **BPBpp** if given $\varepsilon > 0$, there exists $\tilde{\eta}(\varepsilon) > 0$ such that whenever $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 and $x_0 \in S_X$ satisfy

$$\|T(x_0)\| > 1 - \tilde{\eta}(\varepsilon),$$

there is $S \in \mathcal{L}(X, Y)$ with $\|S\| = 1$ such that

$$\|S(x_0)\| = 1$$
 and $\|S - T\| < \varepsilon$.

(a) The pair (X, \mathbb{K}) has the **BPBpp** if and only if X is uniformly smooth. (b) If $\exists Y$ such that (X, Y) has the **BPBpp**, then X is uniformly smooth.

The BPBp

(D., V. Kadets, S.K. Kim, H.J. Lee, and M. Martín (2018))

(a) If (X, Y) has the **BPBpp** $\forall Y$, then X is uniformly convex.

Sheldon Dantas

The BPBp

(D., V. Kadets, S.K. Kim, H.J. Lee, and M. Martín (2018))

(a) If (X, Y) has the **BPBpp** $\forall Y$, then X is uniformly convex. Moreover,

 $\delta_X(\varepsilon) \ge C \varepsilon^q$

for suitable $2 \leq q < \infty$ and C > 0.

Sheldon Dantas Micro-transitivity

<ロト 4 回 ト 4 回 ト 4 回 ト 1 回 9 9 9 9</p>

The BPBp

(D., V. Kadets, S.K. Kim, H.J. Lee, and M. Martín (2018))

(a) If (X, Y) has the **BPBpp** $\forall Y$, then X is uniformly convex. Moreover,

$\delta_X(\varepsilon) \ge C \varepsilon^q$

for suitable $2 \le q < \infty$ and C > 0.

(b) If X is isomorphic to a Hilbert space and (X, Y) has the **BPBpp** $\forall Y$,

The BPBp

(D., V. Kadets, S.K. Kim, H.J. Lee, and M. Martín (2018))

(a) If (X, Y) has the **BPBpp** $\forall Y$, then X is uniformly convex. Moreover,

$\delta_X(\varepsilon) \ge C \varepsilon^q$

for suitable $2 \le q < \infty$ and C > 0.

(b) If X is isomorphic to a Hilbert space and (X, Y) has the **BPBpp** $\forall Y$, then X has an optimal modulus of convexity, that is,

The BPBp

(D., V. Kadets, S.K. Kim, H.J. Lee, and M. Martín (2018))

(a) If (X, Y) has the **BPBpp** $\forall Y$, then X is uniformly convex. Moreover,

 $\delta_X(\varepsilon) \ge C \varepsilon^q$

for suitable $2 \leq q < \infty$ and C > 0.

(b) If X is isomorphic to a Hilbert space and (X, Y) has the **BPBpp** $\forall Y$, then X has an optimal modulus of convexity, that is, there exists C > 0 such that

$$\delta_X(\varepsilon) \ge C \, \varepsilon^2 \qquad (0 < \varepsilon < 2).$$

Sheldon Dantas

Micro-transitivity

Applications

The relation

The relation

The relation

Proposition 1

If X is uniformly micro-semitransitive and (X, Y) has the **BPBp**, then (X, Y) has the **BPBpp**.

・ロト 《日 》 《王 》 《王 》 《 日 》

The relation

Proposition 1

If X is uniformly micro-semitransitive and (X, Y) has the **BPBp**, then (X, Y) has the **BPBpp**.

(Hypothesis + $S := \widetilde{S} \circ R$)

The relation

Proposition 1

If X is uniformly micro-semitransitive and (X, Y) has the **BPBp**, then (X, Y) has the **BPBpp**.

(Hypothesis + $S := \widetilde{S} \circ R$)

Corollary 2

If X is uniformly micro-semitransitive, then it is uniformly smooth.

Sheldon Dantas Micro-transitivity

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー のへで

The relation

Proposition 1

If X is uniformly micro-semitransitive and (X, Y) has the **BPBp**, then (X, Y) has the **BPBpp**.

(Hypothesis + $S := \widetilde{S} \circ R$)

Corollary 2

If X is uniformly micro-semitransitive, then it is uniformly smooth.

(Bishop-Phelps-Bollobás theorem + Proposition 1)

Sheldon Dantas Micro-transitivity

The relation

Proposition 1

If X is uniformly micro-semitransitive and (X, Y) has the **BPBp**, then (X, Y) has the **BPBpp**.

(Hypothesis + $S := \widetilde{S} \circ R$)

Corollary 2

If X is uniformly micro-semitransitive, then it is uniformly smooth.

(Bishop-Phelps-Bollobás theorem + Proposition 1)

Corollary 3

If X is micro-transitive, then it is uniformly smooth and uniformly convex.

The relation

Proposition 1

If X is uniformly micro-semitransitive and (X, Y) has the **BPBp**, then (X, Y) has the **BPBpp**.

(Hypothesis + $S := \widetilde{S} \circ R$)

Corollary 2

If X is uniformly micro-semitransitive, then it is uniformly smooth.

(Bishop-Phelps-Bollobás theorem + Proposition 1)

Corollary 3

If X is micro-transitive, then it is uniformly smooth and uniformly convex.

 $(Transitive + superflexive \Rightarrow uniformly convex (Finet, 1986))$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Corollary 4

Corollary 4

If X is uniformly micro-semitransitive, then the following are equivalent:

(a) (X, Y) has the **BPBp** for every Banach space Y.

Corollary 4

- (a) (X, Y) has the **BPBp** for every Banach space Y.
- (b) (X, Y) has the **BPBpp** for every Banach space Y.

Corollary 4

- (a) (X, Y) has the **BPBp** for every Banach space Y.
- (b) (X, Y) has the **BPBpp** for every Banach space Y.
- (c) $\exists 2 \leq q < \infty$ and C > 0 such that $\delta_X(\varepsilon) \geq C \varepsilon^q, \forall 0 < \varepsilon < 2$.

Corollary 4

- (a) (X, Y) has the **BPBp** for every Banach space Y.
- (b) (X, Y) has the **BPBpp** for every Banach space Y.
- (c) $\exists 2 \leq q < \infty$ and C > 0 such that $\delta_X(\varepsilon) \geq C \varepsilon^q, \forall 0 < \varepsilon < 2$.
- (d) X is uniformly convex.

Corollary 4

If X is uniformly micro-semitransitive, then the following are equivalent:

- (a) (X, Y) has the **BPBp** for every Banach space Y.
- (b) (X, Y) has the **BPBpp** for every Banach space Y.
- (c) $\exists 2 \leq q < \infty$ and C > 0 such that $\delta_X(\varepsilon) \geq C \varepsilon^q, \forall 0 < \varepsilon < 2$.

(d) X is uniformly convex.

If, moreover, \boldsymbol{X} is isomorphic to a Hilbert space, then the above conditions are indeed equivalent to

(e) $\exists C > 0$ such that $\delta_X(\varepsilon) \ge C \varepsilon^2$ ($0 < \varepsilon < 2$), where the constant C depends only on the modulus of convexity of X, on the function $\beta(\cdot)$ of the definition of uniform micro-transitivity, and on the Banach-Mazur distance from X to the Hilbert space.

Corollary 5

If X is micro-transitive, then

- (a) For every Banach space Y, the pair (X, Y) has the **BPBpp**,
- (b) there exists $2 \le q < \infty$ and C > 0 so that $\delta_X(\varepsilon) \ge C \varepsilon^q$ for $0 < \varepsilon < 2$.
- If, moreover, X is isomorphic to a Hilbert space, then

(c) there exists C > 0 such that

$$\delta_X(\varepsilon) \ge C \, \varepsilon^2 \qquad (0 < \varepsilon < 2),$$

where the constant *C* depends only on the modulus of convexity of *X*, on the function $\beta(\cdot)$ of the definition of uniform micro-transitivity, and on the Banach-Mazur distance from *X* to the Hilbert space.
Applications

Applications

・ロト・日本・日本・日本・日本・日本

Theorem 6

The norm of $L_p(\mu)$ is uniformly micro-semitransitive if and only it is a Hilbertian norm. That is, p = 2 or the space is one-dimensional.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = 三 のへ⊙

Applications

Theorem 6

The norm of $L_p(\mu)$ is uniformly micro-semitransitive if and only it is a Hilbertian norm. That is, p = 2 or the space is one-dimensional.

Corollary 7

The norm of $L_p(\mu)$ is micro-transitive if and only if it is Hilbertian norm.

Sheldon Dantas Micro-transitivity

Applications

Theorem 6

The norm of $L_p(\mu)$ is uniformly micro-semitransitive if and only it is a Hilbertian norm. That is, p = 2 or the space is one-dimensional.

Corollary 7

The norm of $L_p(\mu)$ is micro-transitive if and only if it is Hilbertian norm.

Remark: For $1 \le p < \infty$, there are (non-separable) L_p -spaces whose standard norms are transitive but **they are not** micro-transitive unless p = 2.

Applications

Proof of Theorem 6

Proof of Theorem 6

For $1 and <math>p \neq 2$, the norm of ℓ_p^2 is not uniformly microsemitransitive (in particular, it is not micro-transitive).

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで</p>

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Applications

Proof of Theorem 6

For $1 and <math>p \neq 2$, the norm of ℓ_p^2 is not uniformly microsemitransitive (in particular, it is not micro-transitive).

Indeed,

Sheldon Dantas Micro-transitivity

Proof of Theorem 6

For $1 and <math>p \neq 2$, the norm of ℓ_p^2 is not uniformly microsemitransitive (in particular, it is not micro-transitive).

Indeed, for p > 2,

 $\neg \Box \rangle \neg d P \land \neg E \rangle \land E \rangle \neg E \neg Q \bigcirc$

Applications

Proof of Theorem 6

For $1 and <math>p \neq 2$, the norm of ℓ_p^2 is not uniformly microsemitransitive (in particular, it is not micro-transitive).

Indeed, for p > 2, there is **no** isomorphism $T \in \mathcal{L}(\ell_p^2)$ with ||T|| = 1 such that

$$T(e_1) = \left(\frac{1}{2^{1/p}}, \frac{1}{2^{1/p}}\right).$$

Applications

Proof of Theorem 6

For $1 and <math>p \neq 2$, the norm of ℓ_p^2 is not uniformly microsemitransitive (in particular, it is not micro-transitive).

Indeed, for p > 2, there is **no** isomorphism $T \in \mathcal{L}(\ell_p^2)$ with ||T|| = 1 such that

$$T(e_1) = \left(\frac{1}{2^{1/p}}, \frac{1}{2^{1/p}}\right).$$

And for 1 ,

Applications

Proof of Theorem 6

For $1 and <math>p \neq 2$, the norm of ℓ_p^2 is not uniformly microsemitransitive (in particular, it is not micro-transitive).

Indeed, for p > 2, there is **no** isomorphism $T \in \mathcal{L}(\ell_p^2)$ with ||T|| = 1 such that

$$T(e_1) = \left(\frac{1}{2^{1/p}}, \frac{1}{2^{1/p}}\right).$$

And for 1 , there is**no** $isomorphism <math>T \in \mathcal{L}(\ell_p^2)$ with $\|T\| = 1$ such that

$$T\left(\frac{1}{2^{1/p}},\frac{1}{2^{1/p}}\right)=e_1.$$

Sheldon Dantas

Micro-transitivity

Applications

Proof of Theorem 6

For $1 and <math>p \neq 2$, the norm of ℓ_p^2 is not uniformly microsemitransitive (in particular, it is not micro-transitive).

Indeed, for p > 2, there is **no** isomorphism $T \in \mathcal{L}(\ell_p^2)$ with ||T|| = 1 such that

$$T(e_1) = \left(\frac{1}{2^{1/p}}, \frac{1}{2^{1/p}}\right).$$

And for 1 , there is**no** $isomorphism <math>T \in \mathcal{L}(\ell_p^2)$ with $\|T\| = 1$ such that

$$T\left(\frac{1}{2^{1/p}},\frac{1}{2^{1/p}}\right)=e_1.$$

Since ℓ_p^2 is always 1-complemented in $L_p(\mu)$, we are done.

<ロト 4 回 ト 4 回 ト 4 回 ト 1 回 9 9 9 9</p>

Applications

Theorem 8

(a) Let X be a uniformly convex Banach space. If X is uniformly microsemitransitive, then so is X^* .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Applications

Theorem 8

(a) Let X be a uniformly convex Banach space. If X is uniformly microsemitransitive, then so is X^* .

(b) If X is micro-transitive, then so is X^* .

Questions

Applications

(a) Micro-transitivity \Rightarrow Hilbert?

Actually,

Sheldon Dantas Mid

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Questions

Applications

(a) Micro-transitivity \Rightarrow Hilbert?

Actually,

(b) Uniformly micro-semitransitivity \Rightarrow Hilbert?

Sheldon Dantas Micro-transitivity

Theorem 9

Suppose that

(a) X is uniformly convex.

・ロト・< 言ト< 言・< 言・< らへの

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Applications

Theorem 9

Suppose that

- (a) X is uniformly convex.
- (b) the norm of X is uniformly micro-semitransitive.

Applications

Theorem 9

Suppose that

- (a) X is uniformly convex.
- (b) the norm of X is uniformly micro-semitransitive.
- (c) there is a function β : $(0,2) \longrightarrow \mathbb{R}^+$ such that the norm of 2dimensional subspaces of X and all 2-dimensional quotients of X is uniformly micro-semitransitive witnessed by this function.

Applications

Theorem 9

Suppose that

- (a) X is uniformly convex.
- (b) the norm of X is uniformly micro-semitransitive.
- (c) there is a function β : $(0,2) \longrightarrow \mathbb{R}^+$ such that the norm of 2dimensional subspaces of X and all 2-dimensional quotients of X is uniformly micro-semitransitive witnessed by this function.

Then, X is isomorphic to a Hilbert space.

Applications

Theorem 9

Suppose that

- (a) X is uniformly convex.
- (b) the norm of X is uniformly micro-semitransitive.
- (c) there is a function β : $(0,2) \longrightarrow \mathbb{R}^+$ such that the norm of 2dimensional subspaces of X and all 2-dimensional quotients of X is uniformly micro-semitransitive witnessed by this function.

Then, X is isomorphic to a Hilbert space.

Every space that is of type 2 and cotype 2 is isomorphic to a Hilbert space (S. Kwapień, 1972)

Thank you for your attention