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Dirichlet series

Dirichlet series ∑
ann−s

where an ∈ X (Banach space)

A norm for finite sums (polynomials)
For 1 ≤ p <∞ define

∥∥∥ N∑
n=1

ann−s
∥∥∥
p

= lim
R→∞

(
1
2R

∫ R

−R

∥∥∥ N∑
n=1

an
1
nit
∥∥∥p
X
dt
) 1

p

• converges
• defines a norm

Hardy space [Bayart]

Hp(X) = completion
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Gateway: harmonic analysis

Infinite-dimensional torus

T∞ = {(zn)n ⊂ C : |zn| = 1}

with the normalised Lebesgue measure.

Fourier coefficient
f ∈ L1(T∞, X)

α = (α1, . . . , αn,0,0, . . .) with αi ∈ Z for i = 1, . . . ,n and n ∈ N

f̂ (α) =

∫
T∞

f (z)z−αdz

Hardy space

Hp(T∞, X) =
{
f ∈ Lp(T∞, X) : ∃i, αi < 0⇒ f̂ (α) = 0

}
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Gateway: harmonic analysis

decomposition as product
of primes

Correspondence∑
ann−s ∈Hp(X) if and only if

∃f ∈ Hp(X) s.t. f̂ (α) = an with n = pα11 · · ·pαnn

Moreover ∥∥∥∑ann−s
∥∥∥

Hp(X)
= ‖f‖Hp(T∞,X)
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What do we aim at?
Conditions that in some sense relate the Hp(X)-norm with the
coefficients
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What do we know?

Cotype
X has cotype 2 ≤ q ≤ ∞ if there is C > 1 so that

( N∑
n=1
‖xn‖qX

) 1
q ≤ C

∫
TN

∥∥∥ N∑
n=1

xnzn
∥∥∥
X
dz

for every choice x1, . . . , xN ∈ X.

[Carando-Defant-S]
If X has cotype q then for every σ > 1− 1

q = 1
q′ we have

∞∑
n=1

‖an‖X
nσ ≤ C

∥∥∥∑ann−s
∥∥∥

H1(X)

Problem
The inequality is too weak . . . can we do better?
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Hausdorff-Young inequality – scalar valued

We consider the operator

f : T→ C 
(
f̂ (n)

)
n∈Z

Easy

L1(T) −→ `∞(Z) bounded

Plancherel

L2(T) −→ `2(Z) isometry

Interpolating (Haussdorff-Young)

Lp(T) −→ `p′(Z) bounded

for 1 ≤ p ≤ 2 and 1
p + 1

p′ = 1.

6



Hausdorff-Young inequality – scalar valued

In particular ( ∞∑
n=0
|f̂ (n)|p

′
) 1

p′ ≤ C‖f‖p

for every f ∈ Hp(T)

This transfers to T∞ and gives( ∞∑
n=1
|an|p

′
) 1

p′ ≤ C
∥∥∥∑ann−s

∥∥∥
Hp(C)

for every 1 ≤ p ≤ 2.
With a similar idea (taking an operator `1 → L∞ and `2 → L2 and
interpolating. . . ) one gets another HY inequality and, from it,
deduces ∥∥∥∑ann−s

∥∥∥
Hp(C)

≤ C
( ∞∑
n=1
|an|p

′
) 1

p′

for 2 ≤ p ≤ ∞.
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Hausdorff-Young inequality – vector valued?

Still easy

L1(T, X) −→ `∞(Z, X) bounded

Unfortunately Plancherel does not hold in general . . .
Fourier cotype
X has Fourier cotype 2 ≤ q ≤ ∞ if there is C > 1 so that

( m∑
n=1
‖xn‖qX

) 1
q ≤ C

(∫
T

∥∥∥ m∑
n=1

xnzn
∥∥∥q′
X
dz
) 1

q′

for every choice x1, . . . , xm ∈ X.

In other words
Given 1 ≤ p ≤ 2,

Lp(T, X) −→ `p′(Z, X)

is bounded if and only if X has Fourier cotype p′.
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Hausdorff-Young inequality – vector valued?

Theorem
Are equivalent

(a) X has Fourier cotype q (with constant C)

(b)
(∑

α

‖f̂ (α)‖q
) 1

q ≤ C‖f‖Hq′ (T∞,X)

(c)
( ∞∑
n=1
‖an‖q

) 1
q ≤ C

∥∥∥∑ann−s
∥∥∥

Hq′ (X)

Problem
Having Fourier cotype is too restrictive
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Something in between - reformulating what we know

Polynomial in n variables: finite sum

P(z) =
∑
α∈Nn

0

xαzα11 · · · zαnn =
∑
α∈Nn

0

xαzα

Degree: max{α1 + · · ·+ αn}.
Cotype q
there is C > 1 so that for every n and every polynomial P of degree 1
in n variables (∑

α

‖xα‖qX
) 1

q ≤ C‖P‖1

Fourier cotype q
there is C > 1 so that for every m and every polynomial P of degree
m in n variables (∑

α

‖xα‖qX
) 1

q ≤ C‖P‖q
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Something in between – polynomial cotype

Polynomial cotype [CDS]
X has polynomial cotype 2 ≤ q ≤ ∞ if there is C > 1 so that for
every m and n and every polynomial of degree m in n variables(∑

α

‖xα‖qX
) 1

q ≤ Cm‖P‖1

Fact
Fourier cotype⇒ polynomial cotype⇒ cotype
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Something in between – polynomial cotype

number of primes in
the decomposition,

counted with
multiplicity

Theorem
Are equivalent

(a) X has polynomial cotype q;
(b) there exist C ≥ 1 and 0 < r < 1 such that( ∞∑

n=1
rq Ω(n)

‖an‖q
) 1

q

≤ C
∥∥∥∑ann−s

∥∥∥
H1(X)

(c) there exist C ≥ 1 and 0 < r < 1 such that(∑
α

rqα‖f̂ (α)‖q
) 1

q

≤ C‖f‖H1(T∞,X)
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Something in between – polynomial cotype

Moreover. . .
If X has non-trivial type the previous are equivalent to

(d) for every 1 < p <∞, there exist constants C ≥ 1 and 0 < r < 1
such that every function f ∈ Lp({−1, 1}∞, X) satisfies( ∑

A⊂N
A finite

rq|A|‖f̂ (A)‖q
)1/q

≤ C‖f‖Lp({−1,1}∞,X)
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Spaces with polynomial cotype

Question
Which spaces have polynomial cotype?

Known [CDS]

• Fourier cotype
• local unconditional structure + cotype

In particular

• Lp-spaces have polynomial cotype q for q = max(2,p)

• for 2 ≤ p ≤ ∞, Schatten classes Sp have polynomial cotype p
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Spaces with polynomial cotype – an interesting feature

Recall polynomial cotype
For every m and n and every polynomial of degree m,
P(z) =

∑
α∈Nn

0
xαzα in n variables(∑

α

‖xα‖qX
) 1

q ≤ Cm‖P‖1 (?)

Tetrahedral polynomial
All variables appear with power at most 1, that is

P(z) =
∑

α∈{0,1}n
xαzα

Theorem
X has polynomial cotype q if and only if (?) holds for every
tetrahedral polynomial of degree m in n variables
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Spaces with polynomial cotype

Other properties that imply polynomial cotype

• Walsh cotype q⇒ polynomial cotype q
• non-trivial type + cotype 2⇒ polynomial cotype 2
• Gaussian Approximation Property [Casazza-Nielsen] (+ cotype
q)⇒ polynomial cotype q

• l.u.st. + cotype q
• type 2 + cotype q
• Gordon-Lewis property + cotype q

• q-uniform PL-convex⇒ polynomial cotype q

16



Spaces with polynomial cotype

Uniform PL-convexity [Davis-Garling-Tomczak Jaegermann]
X is q-uniformly PL-convex (for q ≥ 2) if there exists λ > 0 such that

‖x‖q + λ‖y‖q ≤
∫
T
‖x + zy‖qdz,

for all x, y ∈ X.

Spaces that are q-uniformly PL-convex

• q-uniformly convex
• any non-commutative L1-space (for q = 2) [Haagerup]
• spaces with ARNP (for q = 2) [Haagerup-Pisier]
• Schatten classes Sp (for q = max(p, 2))

In particular
Schatten classes have polynomial cotype q = max(p, 2)
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Spaces with polynomial cotype

What is left?

We do not know of a Banach space that does not fall into one of
the previous classes

Daniel
Felipe
Pablo

Candidate

L1(T)/H1(T)

is not uniformly PL-convex, but we do not know if it has GAP (or
polynomial cotype).
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Can we have reversed inequalities?

Recall the ‘second’ Hausdorff-Young inequality

‖f‖p′ ≤ C
(∑
n∈Z
|f̂ (n)|p

) 1
p

for 1 ≤ p ≤ 2, that led to∥∥∥∑ann−s
∥∥∥

Hp′ (C)
≤ C

( ∞∑
n=1
|an|p

) 1
p

Polynomial type
A Banach space X has polynomial type 1 ≤ p ≤ 2 if there is C > 1 so
that for every m and n and every polynomial of degree m in n
variables

‖P‖1 ≤ Cm
(∑

α

‖xα‖pX
) 1

p
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Polynomial type

Theorem
Are equivalent

(a) X has polynomial type p
(b) for some 1 ≤ q <∞ there exist R, C ≥ 1 such that∥∥∥∑ann−s

∥∥∥
Hq(X)

≤ C
( ∞∑
n=1

RpΩ(n)‖an‖p
) 1

p

(c) for every 1 ≤ q <∞ there exist R, C ≥ 1 such that∥∥∥∑ann−s
∥∥∥

Hq(X)
≤ C

( ∞∑
n=1

RpΩ(n)‖an‖p
) 1

p

and . . .
analogous inequalities for Hq(T∞, X) and Lq({−1, 1}∞, X).
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Polynomial type

Relation with cotype

• X polynomial type p⇒ X∗ polynomial cotype p′

• X polynomial cotype q + non-trivial type⇒ X∗ polynomial type
q′

Spaces having polynomial type

• type 2⇒ polynomial type 2
• Gordon-Lewis property + type p⇒ polynomial type p
• p-uniform smooth⇒ polynomial type p

For example. . .
Lp-spaces and Schatten classes Sp have polynomial type min(2,p)
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