

Hausdorff-Young type inqualities for vector-valued Dirichlet series

Pablo Sevilla Murcia, 14.12.2018

Joint work with D. Carando and F. Marceca (Universidad de Buenos Aires)

Dirichlet series

Dirichlet series

$$
\sum a_n n^{-s}
$$

where $a_n \in X$ (Banach space)

A norm for finite sums (polynomials)

For $1 \leq p < \infty$ define

$$
\Big\|\sum_{n=1}^{N} a_n n^{-s}\Big\|_{p} = \lim_{R \to \infty} \left(\frac{1}{2R} \int_{-R}^{R} \Big\|\sum_{n=1}^{N} a_n \frac{1}{n^{it}}\Big\|_{X}^{p} dt\right)^{\frac{1}{p}}
$$

- converges
- defines a norm

Hardy space [Bayart]

 $\mathscr{H}_n(X) =$ completion

Infinite-dimensional torus

$$
\mathbb{T}^{\infty} = \{(z_n)_n \subset \mathbb{C} \colon |z_n| = 1\}
$$

with the normalised Lebesgue measure.

Fourier coefficient

$$
f \in L_1(\mathbb{T}^\infty, X)
$$

\n
$$
\alpha = (\alpha_1, \dots, \alpha_n, \mathsf{o}, \mathsf{o}, \dots) \text{ with } \alpha_i \in \mathbb{Z} \text{ for } i = 1, \dots, n \text{ and } n \in \mathbb{N}
$$

\n
$$
\hat{f}(\alpha) = \int_{\mathbb{T}^\infty} f(z) z^{-\alpha} dz
$$

Hardy space

$$
H_p(\mathbb{T}^\infty,X)=\big\{f\in L_p(\mathbb{T}^\infty,X)\colon \exists i,\,\alpha_i<0\Rightarrow \hat{f}(\alpha)=0\big\}
$$

Moreover

$$
\left\|\sum a_n n^{-s}\right\|_{\mathscr{H}_p(X)}=\|f\|_{H_p(\mathbb{T}^\infty,X)}
$$

What do we aim at?

Conditions that in some sense relate the $\mathcal{H}_p(X)$ -norm with the coefficients

What do we know?

Cotype

X has cotype $2 \le q \le \infty$ if there is $C > 1$ so that

$$
\Big(\sum_{n=1}^N \|x_n\|_X^q\Big)^{\frac{1}{q}} \le C\int_{\mathbb{T}^N}\Big\|\sum_{n=1}^N x_nz_n\Big\|_X dz
$$

for every choice $x_1, \ldots, x_N \in X$.

[Carando-Defant-S]

If *X* has cotype *q* then for every $\sigma > 1 - \frac{1}{q} = \frac{1}{q'}$ we have

$$
\sum_{n=1}^{\infty} \frac{\|a_n\|_X}{n^{\sigma}} \leq C \Big\| \sum a_n n^{-s} \Big\|_{\mathscr{H}_1(X)}
$$

Problem

The inequality is too weak ... can we do better?

Hausdorff-Young inequality – scalar valued

We consider the operator

$$
f:\mathbb{T}\to\mathbb{C}\leadsto\big(\hat{f}(n)\big)_{n\in\mathbb{Z}}
$$

Easy

$$
L_1(\mathbb{T}) \longrightarrow \ell_\infty(\mathbb{Z}) \text{ bounded}
$$

Plancherel

$$
\mathsf{L}_2(\mathbb{T})\longrightarrow \ell_2(\mathbb{Z})\text{ isometry}
$$

Interpolating (Haussdorff-Young)

$$
L_p(\mathbb{T}) \longrightarrow \ell_{p'}(\mathbb{Z}) \text{ bounded}
$$
 for $1 \le p \le 2$ and $\frac{1}{p} + \frac{1}{p'} = 1$.

Hausdorff-Young inequality – scalar valued

In particular

$$
\Big(\sum_{n=0}^{\infty}|\hat{f}(n)|^{p'}\Big)^{\frac{1}{p'}}\leq C||f||_{p}
$$

for every $f \in H_p(\mathbb{T})$

This transfers to \mathbb{T}^{∞} and gives

$$
\Big(\sum_{n=1}^{\infty}|a_n|^{p'}\Big)^{\frac{1}{p'}}\leq C\Big\|\sum a_nn^{-s}\Big\|_{\mathscr{H}_p(\mathbb{C})}
$$

for every $1 \leq p \leq 2$.

With a similar idea (taking an operator $\ell_1 \rightarrow L_\infty$ and $\ell_2 \rightarrow L_2$ and interpolating...) one gets another HY inequality and, from it, deduces

$$
\left\|\sum a_n n^{-s}\right\|_{\mathscr{H}_p(\mathbb{C})}\leq C\Big(\sum_{n=1}^\infty |a_n|^{p'}\Big)^{\frac{1}{p'}}
$$

for $2 \le p \le \infty$.

Hausdorff-Young inequality – vector valued?

Still easy

$$
L_1(\mathbb{T},X) \longrightarrow \ell_{\infty}(\mathbb{Z},X)
$$
 bounded

Unfortunately Plancherel does not hold in general ...

Fourier cotype

X has Fourier cotype $2 \le q \le \infty$ if there is $C > 1$ so that

$$
\left(\sum_{n=1}^m \|x_n\|_X^q\right)^{\frac{1}{q}} \le C\Big(\int_{\mathbb{T}}\Big\|\sum_{n=1}^m x_n z^n\Big\|_X^{q'}dz\Big)^{\frac{1}{q'}}
$$

for every choice $x_1, \ldots, x_m \in X$.

In other words

Given $1 < p < 2$,

$$
L_p(\mathbb{T},X)\longrightarrow \ell_{p'}(\mathbb{Z},X)
$$

is bounded if and only if *X* has Fourier cotype p'.

Theorem

Are equivalent

(a) *X* has Fourier cotype *q* (with constant *C*) $\left(\sum \|\hat{f}(\alpha)\|^q\right)^{\frac{1}{q}} \leq C\|f\|_{H_{q'}\left(\mathbb{T}^\infty,\mathcal{X}\right)}$ α (c) $\left(\sum_{i=1}^{\infty}\right)$ *n*=1 $\|a_n\|^q \bigg)^{\frac{1}{q}} \leq C \Big\| \sum a_n n^{-s} \Big\|_{\mathcal{H}_{q'}(X)}$

Problem

Having Fourier cotype is too restrictive

Something in between - reformulating what we know

Polynomial in *n* variables: finite sum

$$
P(z) = \sum_{\alpha \in \mathbb{N}_0^n} x_\alpha z_1^{\alpha_1} \cdots z_n^{\alpha_n} = \sum_{\alpha \in \mathbb{N}_0^n} x_\alpha z^\alpha
$$

Degree: max $\{\alpha_1 + \cdots + \alpha_n\}.$

Cotype *q*

there is $C > 1$ so that for every *n* and every polynomial P of degree 1 in *n* variables

$$
\left(\sum_{\alpha}||x_{\alpha}||_{X}^{q}\right)^{\frac{1}{q}}\leq C||P||_{1}
$$

Fourier cotype *q*

there is $C > 1$ so that for every *m* and every polynomial *P* of degree *m* in *n* variables

$$
\Big(\sum_{\alpha}||x_{\alpha}||_{X}^{q}\Big)^{\frac{1}{q}}\leq C||P||_{q}
$$

Polynomial cotype [CDS]

X has polynomial cotype $2 \le q \le \infty$ if there is $C > 1$ so that for every *m* and *n* and every polynomial of degree *m* in *n* variables

$$
\left(\sum_{\alpha}||x_{\alpha}||_{X}^{q}\right)^{\frac{1}{q}}\leq C^{m}||P||_{1}
$$

Fact

Fourier cotype \Rightarrow polynomial cotype \Rightarrow cotype

Something in between – polynomial cotype

number of primes in the decomposition, counted with multiplicity

(a) X has polynomial cotype *q*;

Theorem

Are equivalent

(b) there exist $\mathsf{C}\geq\mathsf{1}$ and $\mathsf{o}\right\vert \mathsf{<} \mathsf{r}\mathsf{<}\mathsf{1}$ such that

$$
\left(\sum_{n=1}^{\infty} r^{q} \frac{\sqrt{2(n)}}{\|a_n\|^q}\right)^{\frac{1}{q}} \leq C \Big\|\sum a_n n^{-s}\Big\|_{\mathscr{H}_1(X)}
$$

(c) there exist $C \geq 1$ and $0 < r < 1$ such that

$$
\bigg(\sum_{\alpha} r^{q\alpha} \|\widehat{f}(\alpha)\|^q\bigg)^{\frac{1}{q}} \leq C \|f\|_{H_1(\mathbb{T}^\infty, X)}
$$

Moreover...

If *X* has non-trivial type the previous are equivalent to

(d) for every $1 < p < \infty$, there exist constants $C \geq 1$ and $0 < r < 1$ such that every function $f \in L_p({-1, 1}^{\infty}, X)$ satisfies

$$
\bigg(\sum_{\substack{A\subset \mathbb{N}\\ A\text{ finite}}}\mathsf{r}^{q|A|}\|\widehat{f}(A)\|^q\bigg)^{1/q}\leq C\|f\|_{L_p(\{-1,1\}^\infty,X)}
$$

Question

Which spaces have polynomial cotype?

Known [CDS]

- Fourier cotype
- local unconditional structure + cotype

In particular

- \mathscr{L}_p -spaces have polynomial cotype *q* for $q = max(2, p)$
- for $2 \le p \le \infty$, Schatten classes \mathscr{S}_p have polynomial cotype p

Recall polynomial cotype

For every *m* and *n* and every polynomial of degree *m*, $P(\pmb{z}) = \sum_{\alpha \in \mathbb{N}_{0}^{n}} \pmb{\mathsf{x}}_{\alpha} \pmb{z}^{\alpha}$ in *n* variables 0

$$
\left(\sum_{\alpha}||x_{\alpha}||_{X}^{q}\right)^{\frac{1}{q}}\leq C^{m}||P||_{1}
$$
 (*)

Tetrahedral polynomial

All variables appear with power at most 1, that is

$$
P(z)=\sum_{\alpha\in\{0,1\}^n}X_{\alpha}z^{\alpha}
$$

Theorem

X has polynomial cotype *q* if and only if $(*)$ holds for every tetrahedral polynomial of degree *m* in *n* variables

Other properties that imply polynomial cotype

- Walsh cotype *q* ⇒ polynomial cotype *q*
- non-trivial type + cotype $2 \Rightarrow$ polynomial cotype 2
- Gaussian Approximation Property [Casazza-Nielsen] (+ cotype *q*) ⇒ polynomial cotype *q*
	- l.u.st. + cotype *q*
	- type 2 + cotype *q*
	- Gordon-Lewis property + cotype *q*
- *q*-uniform PL-convex ⇒ polynomial cotype *q*

Spaces with polynomial cotype

Uniform PL-convexity [Davis-Garling-Tomczak Jaegermann]

X is *q*-uniformly PL-convex (for $q > 2$) if there exists $\lambda > 0$ such that

$$
||x||^q + \lambda ||y||^q \le \int_{\mathbb{T}} ||x+zy||^q dz,
$$

for all $x, y \in X$.

Spaces that are *q***-uniformly PL-convex**

- *q*-uniformly convex
- any non-commutative L_1 -space (for $q = 2$) [Haagerup]
- spaces with ARNP (for $q = 2$) [Haagerup-Pisier]
- Schatten classes \mathscr{S}_p (for $q = max(p, 2)$)

In particular

Schatten classes have polynomial cotype $q = max(p, 2)$

Spaces with polynomial cotype

What is left?

We do not know of a Banach space that does not fall into one of the previous classes

Candidate

$L_1(\mathbb{T})/H_1(\mathbb{T})$

is not uniformly PL-convex, but we do not know if it has GAP (or polynomial cotype).

Can we have reversed inequalities?

Recall the 'second' Hausdorff-Young inequality

$$
||f||_{p'} \leq C \Big(\sum_{n\in\mathbb{Z}}|\hat{f}(n)|^p\Big)^{\frac{1}{p}}
$$

for $1 \leq p \leq 2$, that led to

$$
\left\|\sum a_n n^{-s}\right\|_{\mathscr{H}_{p'}(\mathbb{C})} \leq C\Big(\sum_{n=1}^{\infty} |a_n|^p\Big)^{\frac{1}{p}}
$$

Polynomial type

A Banach space *X* has polynomial type $1 \le p \le 2$ if there is $C > 1$ so that for every *m* and *n* and every polynomial of degree *m* in *n* variables

$$
||P||_1 \leq C^m \Big(\sum_{\alpha} ||x_{\alpha}||_X^p\Big)^{\frac{1}{p}}
$$

Polynomial type

Theorem

Are equivalent

(a) X has polynomial type *p*

(b) for some $1 \leq q \leq \infty$ there exist $R, C \geq 1$ such that

$$
\Big\|\sum a_n n^{-s}\Big\|_{\mathscr{H}_q(X)}\leq C\Big(\sum_{n=1}^\infty R^{p\Omega(n)}\|a_n\|^p\Big)^{\frac{1}{p}}
$$

(c) for every $1 \leq q \leq \infty$ there exist $R, C \geq 1$ such that

$$
\Big\|\sum a_n n^{-s}\Big\|_{\mathscr{H}_q(X)}\leq C\Big(\sum_{n=1}^\infty R^{p\Omega(n)}\|a_n\|^p\Big)^{\frac{1}{p}}
$$

and ...

analogous inequalities for $H_q(\mathbb{T}^\infty, X)$ and $L_q(\{-1, 1\}^\infty, X)$.

Relation with cotype

- *X* polynomial type *p* ⇒ *X* [∗] polynomial cotype *p* 0
- *X* polynomial cotype *q* + non-trivial type ⇒ *X* [∗] polynomial type *q* 0

Spaces having polynomial type

- type $2 \Rightarrow$ polynomial type 2
- Gordon-Lewis property + type *p* ⇒ polynomial type *p*
- *p*-uniform smooth ⇒ polynomial type *p*

For example...

 \mathscr{L}_{p} -spaces and Schatten classes \mathscr{S}_{p} have polynomial type min(2, *p*)

Hausdorff-Young type inqualities for vector-valued Dirichlet series

Pablo Sevilla Murcia, 14.12.2018

Joint work with D. Carando and F. Marceca (Universidad de Buenos Aires)