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Some notation

X,Y real Banach spaces
BX closed unit ball

SX unit sphere

X∗ topological dual

L(X,Y ) Banach space of all bounded linear operators from X to Y

L(X) Banach algebra of all bounded linear operators from X to X
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Main definition and leading problem

Lipschitz function
M , N (complete) metric spaces. A map F : M −→ N is Lipschitz if there exists a
constant k > 0 such that

d(F (p), F (q)) 6 k d(p, q) ∀ p, q ∈M

The least constant so that the above inequality works is called the Lipschitz constant of
F , denoted by L(F ):

L(F ) = sup
{
d(F (p), F (q))

d(p, q) : p 6= q ∈M
}

If N = Y is a normed space, then L(·) is a seminorm in the vector space of all
Lipschitz maps from M into Y .
F attain its Lipschitz number if the supremum defining it is actually a maximum.

Leading problem
Let M be a metric space, let Y be a Banach and let F : M −→ Y be a Lipschitz map.
Can F be approximated by Lipschitz functions from M to Y which attain their
Lipschitz number?
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First examples

Finite sets
If M is finite, obviously every Lipschitz map attains its Lipschitz number.
F This characterizes finiteness of M .

Example (Kadets–Martín–Soloviova, 2016)
M = [0, 1], A ⊆ [0, 1] closed with empty interior and positive Lebesgue measure. Then,
the Lipschitz function f : [0, 1] −→ R given by

f(t) =
∫ t

0
χA(s) ds,

cannot be approximated by Lipschitz functions which attain their Lipschitz number.

Objective
To extend those results (to more interesting ones).
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More definitions

Pointed metric space
M is pointed if it carries a distinguished element called base point.

Space of Lipschitz maps
M pointed metric space, Y Banach space.
Lip0(M,Y ) is the Banach space of all Lipschitz maps from M to Y which are zero
at the base point, endowed with the Lipschitz number as norm.

Strongly norm attaining Lipschitz map
M pointed metric space. F ∈ Lip0(M,Y ) strongly attains its norm,
writing F ∈ SNA(M,Y ), if there exist p 6= q ∈M such that

L(F ) = ‖F‖ = ‖F (p)− F (q)‖
d(p, q) .

Our objective is then
to study when SNA(M,Y ) is norm dense in the Banach space Lip0(M,Y )
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Some more definitions

Evaluation functional, Lipschitz-free space, molecule
M pointed metric space.

p ∈M , δp ∈ Lip0(M,R)∗ given by δp(f) = f(p) is the evaluation functional at p;
F(M) := span{δp : p ∈M} ⊆ Lip0(M,R)∗ is the Lipschitz-free space of M ;
For p 6= q ∈M , mp,q := δp−δq

d(p,q) ∈ F(M) is a molecule;
Mol (M) := {mp,q : p, q ∈M, p 6= q}.
BF(M) = conv(Mol (M)).

Very important property (Arens-Eells, Kadets, Godefroy-Kalton, Weaver. . . )
M pointed metric space.

δ : M  F(M), p 7−→ δp, is an isometric embedding;
F(M)∗ ∼= Lip0(M,R);
Actually, Y Banach space, F ∈ Lip0(M,Y ),
∃ (a unique) F̂ ∈ L(F(M), Y ) such that F = F̂ ◦ δ,
and so ‖F̂‖ = ‖F‖.

M Y

F(M)

F

δ
F̂

F In particular, Lip0(M,Y ) ∼= L(F(M), Y ).
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Two ways of attaining the norm

We have two ways of attaining the norm
M pointed metric space, Y Banach space, F ∈ Lip0(M,Y ) ∼= L(F(M), Y ).

F̂ ∈ NA(F(M), Y ) if exists ξ ∈ BF(M) such that ‖F‖ = ‖F̂‖ = ‖F̂ (ξ)‖;
F ∈ SNA(M,Y ) if exists mp,q ∈ Mol (M) such that

‖F‖ = ‖F̂‖ = ‖F̂ (mp,q)‖ = ‖F (p)− F (q)‖
d(p, q) .

Clearly, SNA(M,Y ) ⊆ NA(F(M), Y ).
Therefore, if SNA(M,Y ) is dense in Lip0(M,Y ),
then NA(F(M), Y ) is dense in L(F(M), Y );
But the opposite direction is NOT true:

Example
NA(F(M),R) = L(F(M),R) for every M by the Bishop–Phelps theorem,
But SNA([0, 1],R) 6= Lip0([0, 1],R).
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A little of geometry of the unit ball of F(M) (A–G–GL–P–P–R–W)

Preserved extreme point
ξ ∈ BF(M), TFAE:

ξ is extreme in BF(M)∗∗ ,
ξ is a denting point,
ξ = mp,q and for every ε > 0 ∃ δ > 0
s.t. d(p, t) + d(t, q)− d(p, q) > δ when
d(p, t), d(t, q) > ε.

F M boundedly compact, it is equivalent to:
d(p, q) < d(p, t) + d(t, q) ∀t /∈ {p, q}.

Strongly exposed point
ξ ∈ BF(M), TFAE:

ξ strongly exposed point,
ξ = mp,q and ∃ ρ = ρ(p, q) > 0 such
that

d(p, t) + d(t, q)− d(p, q)
min{d(p, t), d(t, q)}

> ρ

when t /∈ {p, q}.

Concave metric space
M is concave if mp,q is a preserved extreme
point for all p 6= q.
F Examples: y = x3, SX if X unif. convex. . .

Uniform Gromov rotundity
M ⊂ Mol (M) is uniformly Gromov rotund if
∃ρ0 > 0 such that

d(p, t) + d(t, q)− d(p, q)
min{d(p, t), d(t, q)}

> ρ0

when mp,q ∈M, t /∈ {p, q}.
⇐⇒ M is a set of uniformly strongly exposed
points (same relation ε− δ)

F Mol (M) uniformly Gromov rotund when:
M = ([0, 1], | · |θ),
M finite and concave,
1 6 d(p, q) 6 D < 2 ∀p, q ∈M , p 6= q.

F T is concave but Mol (T) not u. Gromov r.
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Negative results

Previous result (Kadets–Martín–Soloviova, 2016)
If M is metrically convex (or “geodesic”), then SNA(M,R) is not dense in Lip0(M,R).

Definition (length space)
Let M be a metric space. We say that M is length if d(p, q) is equal to the infimum of
the length of the rectifiable curves joining p and q for every pair of points p, q ∈M .

F Equivalently (Avilés, García, Ivankhno, Kadets, Martínez, Prochazka, Rueda, Werner)

M is local (i.e. the Lipschitz constant of every function can be approximated in
pairs of arbitrarily closed points);
The unit ball of F(M) has no strongly exposed points;
Lip0(M,R) (and so F(M)) has the Daugavet property.

Theorem
Let M be a length pointed metric space. Then,

SNA(M,R) 6= Lip0(M,R)
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Other type of negative results

Observation
All the previous examples of M ’s such that SNA(M,R) is not dense in Lip0(M,R)
are arc-connected metric spaces and “almost convex”.

Let’s present two different kind of examples:

Example
M “fat” Cantor set, then SNA(M,R) 6= Lip0(M,R) and M is totally disconnected.

Example
M = T, then SNA(M,R) 6= Lip0(M,R).
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Possible sufficient conditions

Observation (previously commented)
SNA(M,Y ) dense in Lip0(M,Y ) =⇒ NA(F(M), Y ) dense in L(F(M), Y ).

Therefore, it is reasonable to discuss the known sufficient conditions for a Banach
space X to have NA(X,Y ) = L(X,Y ) for every Y :

RNP,
Property α,
Property quasi-α,
the existence of a norming set of uniformly strongly exposed points.

In the next slice we will relate all these properties for Lipschitz-free spaces:
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Sufficient conditions for the density of SNA(M, Y ) for every Y : relations

Property α

Property
quasi-α

BF(M) = conv(S)
S unif. str. exp.

SNA(M,Y )
dense for all Y

NA(F(M), Y )
dense ∀Y

finite
dimensional

Reflexive

RNP
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The RNP

Theorem (García-Lirola–Petitjean–Procházka–Rueda-Zoca, 2018)
Let M be a pointed metric space. Assume that F(M) has the RNP. Then,

SNA(M,Y ) = Lip0(M,Y ) for every Banach space Y

Proof
Bourgain, 1977:
X RNP =⇒ {T ∈ L(X,Y ) : T strongly exposes BX} is dense in L(X,Y );
T strongly exposing operator, then T attains its norm at a strongly exposed point;
Weaver, 1999: strongly exposed points of BF(M) are molecules.

F(M) has the RNP when. . .
M = (N, dθ) for (N, d) boundedly compact and 0 < θ < 1 (Weaver, 1999 - 2018);
M is uniformly discrete (Kalton, 2004);
M is countable and compact (Dalet, 2015);
M ⊂ R with Lebesgue measure 0 (Godard, 2010).
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Property alpha

Property alpha
X Banach space. X has property α if there exist a balanced subset {xλ}λ∈Λ ⊆ X and
a subset {x∗λ}λ∈Λ ⊆ X∗ such that
‖xλ‖ = ‖x∗λ‖ = |x∗λ(xλ)| = 1 ∀λ ∈ Λ;
There exists 0 6 ρ < 1 such that |x∗λ(xµ)| 6 ρ ∀xµ 6= ±xλ;
co({xλ}λ∈Λ) = BX .

Introduced by Schachermayer in 1983 as a sufficient condition for X to get
NA(X,Y ) = L(X,Y ) for every Y ;
Every separable Banach space X can be renormed with property α;
(Godun–Troyanski, 1993): this result extends to Banach spaces with long
biorthogonal systems.
(Schachermayer, 1983): If X has property α, then

{T ∈ L(X,Y ) : T attains its norm at one xk }

is dense in L(X,Y ) for every Y .
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Property alpha and density of SNA(M, Y )

Theorem
M metric space such that F(M) has property α. Then,

SNA(M,Y ) = Lip0(M,Y ) for every Banach space Y.

Examples of M ’s such that F(M) has property alpha
M finite,
M ⊂ R with Lebesgue measure 0,
1 6 d(p, q) 6 D < 2 for all p, q ∈M , p 6= q.

Characterization in the case of concave metric spaces
M concave metric space. TFAE:
F(M) has property α.
M is uniformly discrete, bounded, and Mol (M) is uniformly Gromov rotund.
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A norming uniformly Gromov rotund set of molecules

Theorem
M pointed metric space, A ⊂ Mol (M) uniformly Gromov rotund (i.e. A is a set of
uniformly strongly exposed points) such that co(A) = BF(M).

=⇒ SNA(M,Y ) = Lip0(M,Y ) for every Banach space Y.

Examples
F(M) with property α (with A = {±xλ : λ ∈ Λ});
M = ([0, 1], | · |θ) (with A = Mol (M)). This one does not have property α.

Particular case (uniformly Gromov concave metric spaces)
M pointed metric space. Suppose that

d(p, t) + d(t, q)− d(p, q)
min{d(p, t), d(t, q)} > ρ0 > 0 ∀p 6= q 6= t.

Then, SNA(M,Y ) = Lip0(M,Y ) for every Banach space Y .
F We will see that something stronger happens.
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Let us summarize the relations

(1): [0, 1]θ, 0 < θ < 1
(2): can be easily constructed in `1
(3): exists M s.t. SNA(M,Y ) dense ∀Y ,

but F(M) no RNP, no α, no CUSE
(4): can be constructed

Property α

BF(M) = conv(S)
S unif. str. exp.

SNA(M,Y )
dense for all Y

NA(F(M), Y )
dense ∀Y

RNP

\

(1)

?

\ (2)
\

(4)

\ (4)

\
(3)\

(3)

\

(3)
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Two paradigmatic examples

Koch curve
Let M1 = ([0, 1], | · |θ), 0 < θ < 1.

F(M1) has RNP, so
SNA(M1, Y ) = Lip0(M1, Y ) ∀Y .
Every molecule is strongly exposed,
even more, Mol (M1) is uniformly
Gromov rotund.

F For θ = log(3)/ log(4), M1 is
bi-Lipschitz equivalent to the Koch curve:

Microscopically, an small piece of M1 is
equivalent to M1 itself.

The unit circle
Let M2 be the upper half of the unit circle:

We know that SNA(M2,R)
is not dense in Lip0(M2,R).
So, F(M2) has NOT the RNP.
However, every molecule is strongly
exposed. . .
but NO subset A ⊂ Mol (M2) which
is uniformly Gromov rotund can be
norming for Lip0(M2,R).

Microscopically, an small piece of M2 is
very closed to be an interval.
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Weak density

Theorem
M metric space =⇒ SNA(M,R) is weakly sequentially dense in Lip0(M,R).

Previously known
F(M) RNP;
Kadets–Martín–Soloviova, 2016: when M is length.

The tool
{fn} ⊂ Lip0(M,R) bounded with pairwise disjoint supports =⇒ {fn} weakly null.

Observations
The linear span of SNA(M,R) is always norm-dense in Lip0(M,R);
F(M) RNP =⇒ Lip0(M,R) = SNA(M,R)− SNA(M,R).
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A by-product of our construction

Theorem
If M ′ is infinite or M is discrete but no uniformly discrete or M is compact (infinite)
=⇒ then the norm of F(M)∗∗ is octahedral.

Octahedral norm
The norm of X is octahedral iff ∀Y 6 X finite-dimensional, ∀ε > 0, ∃x ∈ SX s.t.

‖y + λx‖ > (1− ε)
(
‖y‖+ |λ|

) (
y ∈ Y, λ ∈ R

)
.

Equivalently
If M ′ is infinite or M is discrete but no uniformly discrete or M is compact (infinite)
=⇒ every convex combination of slices of BLip0(M,R) has diameter two.
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From scalar-valued to vector-valued and viceversa

From vector-valued to scalar-valued
M metric space, SNA(M,Y ) dense in Lip0(M,Y ) for some Y
=⇒ SNA(M,R) dense in Lip0(M,R)

F We do not know if the density for scalar functions implies the density for all
vector-valued maps, but there are some cases in which this happens:

From scalar-valued to vector-valued
M metric space such that SNA(M,R) = Lip0(M,R), Y Banach space.

If Y has property β (e.g. c0 6 Y 6 `∞), then SNA(M,Y ) = Lip0(M,Y ).
For compact Lipschitz maps, the same is true for Y = C(K).

F These results are proved using the concepts of ACKρ-spaces and Γ-flat operators
from Cascales–Guirao–Kadets–Soloviova, 2018.
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The strongly Lipschitz BPB property

The strongly Lipchitz Bishop-Phelps-Bollobás
M metric space, Y Banach space. (M,Y ) has the Lip-BPBp if for every ε > 0 there is
η > 0 such that for F0 ∈ Lip0(M,Y ) with ‖F0‖ = 1, p 6= q ∈M s.t.

‖F0(p)− F0(q)‖
d(p, q) > 1− η,

there exist F ∈ Lip0(M,Y ) and x 6= y ∈M such that

1 = ‖F‖ = ‖F (x)− F (y)‖
d(x, y) , ‖F0 − F‖ < ε and d(p, x) + d(q, y)

d(p, q) < ε.

F It is the Lipschitz version of the so-called BPBp for linear operators:

The BPB property for linear operators (Acosta–Aron–García–Maestre, 2008)
X, Y Banach spaces. (X,Y ) has the BPBp if for every ε > 0 there is η > 0 such that
whenever T ∈ L(X,Y ), ‖T‖ = 1, x ∈ SX satisfy ‖Tx‖ > 1− η, there exist
S ∈ L(X,Y ), y ∈ SX verifying that

1 = ‖S‖ = ‖Sy‖ and ‖x− y‖, ‖T − S‖ < ε.
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The strongly Lipschitz BPB property. II

Positive result (uniformly Gromov concave metric spaces)
Mol (M) uniformly Gromov rotund, Y arbitrary =⇒ (M,Y ) has Lip-BPBp.
F Some particular cases:

M = [0, 1]θ for 0 < θ < 1,
M finite and concave,
1 6 d(p, q) 6 D < 2 for every p, q ∈M , p 6= q,
M concave such that F(M) has property α.

Partial result
M finite, Y finite-dimensional =⇒ (M,Y ) has the Lip-BPBp.

Negative examples
Exists M finite and Y (infinite-dimensional) such that (M,Y ) fails Lip-BPBp.
M = N with the distance inherited from R, then (M,R) fails Lip-BPBp.
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