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Résumé

We define here a pseudo B-Fredholm operator as an operator such that 0 is
isolated in its essential spectrum, then we prove that an operator T is pseudo-
B-Fredholm if and only if T = R + F where R is a Riesz operator and F is a
B-Fredholm operator such that the commutator [R, F ] is compact. Moreover,
we prove that 0 is a pole of the resolvent of an operator T in the Calkin algebra
if and only if T = K + F , where K is a power compact operator and F is
a B-Fredholm operator, such that the commutator [K, F ] is compact. As an
application, we characterize the mean convergence in the Calkin algebra.

1 Introduction

Let X be an infinite dimensional Banach space and let L(X) be the Banach algebra
of bounded linear operators acting on X. The Calkin algebra over X is the quotient
algebra C(X) = B(X)/K(X), where K(X) is the closed ideal of compact operators
on X. For T ∈ L(X), let Ker(T ) denote the null-space and R(T ) the range of T .
An operator T ∈ L(X) is Fredholm if dimKer(T ) < ∞) and codimR(T ) < ∞. For
T ∈ L(X) the Fredholm spectrum, is defined by :

σF (T ) = {λ ∈ C : T − λ is not a Fredholm operator}

Recall that the class of linear bounded B-Fredholm operators were defined in
[5]. If F0(X) is the ideal of finite rank operators in L(X) and π : L(X) −→ A
is the canonical homomorphism, where A = L(X)/F0(X), it is well known by the
Atkinson’s theorem [3, Theorem 0.2.2, p.4], that T ∈ L(X) is a Fredholm operator if
and only if its projection π(T ) in the algebra A is invertible. Similarly, the following
result established an Atkinson-type theorem for B-Fredholm operators.
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Theorem 1.1. [7, Theorem 3.4] Let T ∈ L(X). Then T is a B-Fredholm operator
if and only if π(T ) is Drazin invertible in the algebra L(X)/F0(X).

We conclude from the Atkinson’s theorem and the previous theorem, that invertibi-
lity in the algebra A = L(X)/F0(X) give rises to Fredholm operators, while Drazin
invertibility in this algebra give rises to B-Fredholm operators.

Recall that an element of a unital algebra A is called generalized Drazin invertible
if 0 is not an accumulation point of its spectrum. Then it is natural to ask what
are the properties of those operators whose image under the canonical homorphism
π : L(X) −→ A is generalized Drazin invertible ?

Such operators will be called pseudo B-Fredholm operators, and will be stu-
died in the second section. The scheme Fredholmness-Invertibility, B-Fredholmness-
Drazin invertibility is completed naturally by the couple pseudo-B-Fredholmness-
Generalized Drazin invertibility.

In a recent works, among them [8], [19] and [21], several authors studied pseudo-
B-Fredholm operators as the direct sum of a Fredholm operator and a quasi-nilpotent
operator. As will be seen, this definition is a particular case of our new definition,
and by an example we prove the class of pseudo-B-Fredholm operators we study
here contains strictly the class of operators studied by the authors cited above.

In the main results of the second section we prove that the set pBF (X) of
pseudo-B-Fredholm operators in L(X) is a regularity. Thus, by usual properties of
regularities, this implies that the pseudo-B-Fredholm spectrum σpBF (T ) satisfies the
spectral mapping theorem. Then we show that T ∈ L(X) is a pseudo-B-Fredholm
operator if and only if T = R + F where R is a Riesz operator, F is a B-Fredholm
operator such that the commutator [R,F ] is compact or an inessential operator, and
if and only if T is a compact perturbation of a direct sum of a Fredholm operator
and a Riesz operator.

In the third section, we will answer successively the following three questions. The
first one is : given a pseudo-B-Fredholm operator T, when 0 is a pole of its resolvent
in the Calkin algebra C(X) ? We show that this holds if and only if T = K + B,
where B is a B-Fredholm operator and K is a power compact one, such that the
commutator [K, B] is compact. The second question is about the relation between
the order of 0 as a pole of the resolvent of Π(T ) for a B-Fredholm operator T and
the essential ascent ae(T ) and the essential descent de(T ) of T, where Π : L(X) −→
L(X)/K(X) is the canonical homomorphism. We show that if 0 is a pole of order n,
then n ≤ ae(T ) = de(T ). Moreover we prove that n = ae(T ) = de(T ) if and only if
R(Tn) is closed. The third question is : if 0 is a pole of the resolvent of Π(T ) of order
n, when T is then a B-Fredholm operator with n = ae(T ) = de(T ) ? The answer is
that this happens if and only if R(Tn) and R(Tn+1) are closed. With the answer to
those questions, we retrieve in particular some similar results established in the case
of Hilbert spaces in [4].

As an application, we characterize mean ergodic convergence in the Calkin al-



3

gebra. Precisely, we show that the sequence (Π(Mn(T )))n converges in the Calkin

algebra if and only if ||Π(T )n||
n → 0 as n → ∞ and there exists a power compact

operator K such that ae(I − T + K) and de(I − T + K) are both finite and the

commutator [T, K] is compact, where Mn(T ) = 1+T+T 2+...Tn

n , n ∈ N and T ∈ L(X).
We define now some tools that will be needed later. For n ∈ N and T ∈ L(X),

we set cn(T ) = dimR(Tn)/R(Tn+1) and c′n(T ) = dimN(Tn+1)/N(Tn). From [14,
Lemmas 3.1 and 3.2] it follows that cn(T ) = codim (R(T ) + N(Tn)) and c′n(T ) =
dim(N(T )∩R(Tn)). Obviously, the sequences (cn(T ))n and (c′n(T ))n are decreasing.
The descent δ(T ) and the ascent a(T ) of T are defined by δ(T ) = inf{n ∈ N : cn(T ) =
0} = inf{n ∈ N : R(Tn) = R(Tn+1)} and a(T ) = inf{n ∈ N : c′n(T ) = 0} = inf{n ∈
N : N(Tn) = N(Tn+1)}. We set formally inf ∅ =∞.

The essential descent δe(T ) and the essential ascent ae(T ) of T are defined by
δe(T ) = inf{n ∈ N : cn(T ) <∞} and ae(T ) = inf{n ∈ N : c′n(T ) <∞}.

Given a Banach algebra A and an element a of A, the left multiplication operator
La : A → A is defined by La(x) = ax, for all x ∈ A. It is well known that the
spectrum of a is equal to the spectrum of La. We are particularly interested in the
case when A is the Calkin algebra and a = Π(T ) for T ∈ L(X).

The ascent and the descent of a Banach algebra element a ∈ A are defined
respectively as the ascent and the descent of the operator La.

Now we give the definition of operators of topological uniform descent, studied
in [11].

Definition 1.2. Let T ∈ L(X) and let d ∈ N. Then T has a uniform descent for
n ≥ d if R(T ) +N(Tn) = R(T ) +N(T d) for all n ≥ d.

If in addition R(T )+N(T d) is closed, then T is said to have a topological uniform
descent for n ≥ d.

The radical of a unital Banach algebra A is the set :

{d ∈ A : 1−ad is invertible for all a ∈ A} = {d ∈ A : 1−da is invertible for all a ∈ A}.

The set of all operators A ∈ L(X) satisfying Π(A) ∈ Rad(C(X)), is the set of
inessential operators, denoted by I(X).

For more details about those definitions, we refer the reader to [1].

2 Pseudo-B-Fredholm operators

Definition 2.1. [16] Let A be an algebra over the field of complex numbers with a
unit e. A non-empty subset R of A is called a regularity if it satisfies the following
conditions :

— If a ∈ A and n ≥ 1 is an integer, then a ∈ R if and only if an ∈ R,
— If a, b, c, d ∈ A are mutually commuting elements satisfying ac+ bd = e, then

ab ∈ R if and only if a, b ∈ R.
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Recall also that an element a ∈ A is said to be Drazin invertible if there exists
b ∈ A such that bab = b, ab = ba and aba− a is a nilpotent element in A.

Definition 2.2. An element a of a Banach algebra A will be said to be generalized
Drazin invertible if there exists b ∈ A such that bab = b, ab = ba and aba − a is a
quasinilpotent element in A.

Koliha [15] proved that a ∈ A is generalized Drazin invertible if and only if there
exists ε > 0, such that for all λ such that 0 <| λ |< ε, the element a−λe is invertible.

In the case of a general unital agebra, not necessarily a normed algebra, we
adopt this characterization as the definition of generalized Drazin invertibility in
such algebra. This is in particular the case of the algebra A = L(X)/F0(X).

Proposition 2.3. Let T ∈ L(X). Then π(T ) is generalized Drazin invertible in the
algebra A = L(X)/F0(X) if and only if Π(T ) is generalized Drazin invertible in the
Calkin algebra C(X).

Proof. This is a direct consequence of the well known characterization of Fredholm
operators.

Definition 2.4. Let T ∈ L(X). Then T is said to be a pseudo-B-Fredholm operator
if π(T ) is generalized Drazin invertible in the algebra L(X)/F0(X).

If K ⊂ C, then accK is the set of accumulation points of K.

Proposition 2.5. Let T ∈ L(X). Then T is a pseudo-B-Fredholm operator if and
only if 0 /∈ accσF (T ).

Proof. This is a direct consequence of the Definition 2.4, the characterisation of
generalized Drazin invertible operators and the characterization of Fredholm opera-
tors.

It is proved in [17] that the set of generalized Drazin invertible elements in a
unital Banach algebra is a regularity, from Proposition 2.3 we obtain immediately
the following result.

Theorem 2.6. The set pBF (X) of pseudo-B-Fredholm operators in L(X) is a re-
gularity.

Let σpBF (T ) = {λ ∈ C | T − λI is not a pseudo-B-Fredholm operator } be the
spectrum generated by the regularity pBF (X), for T ∈ L(X), then we have the
following spectral mapping theorem.

Theorem 2.7. If f an analytic function in a neighborhood of the usual spectrum
σ(T ) of an operator T in L(X), which is non-constant on any connected component
of σ(T ), then f(σpBF(T )) = σpBF(f(T )).
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Proof. This is a direct consequence of the properties of regularities.

Remark 2.8. We say that an operator T ∈ L(X) is polynomially Riesz if there
exists a non-zero complex polynomial P (z) such that P (T ) is a Riesz operator.
Every polynomially Riesz operator in L(X) is a pseudo-B-Fredholm operator. Indeed
if T is polynomially Riesz, then P (T ) is Riesz for a non-zero complex polynomial
P (z). As it is well known that the Fredholm spectrum satisfies the spectral mapping
theorem, then we have P (σF (T )) = σF (P (T )) = {0}. Hence σF (T ) is finite because
a polynomial has a finite set of roots. So it has no accumulation points and from
Proposition 2.5, T is pseudo-B-Fredholm.

For T ∈ L(X), we will say that a subspace M of X is T -invariant if T (M) ⊂M.
We define T|M : M → M as T|M (x) = T (x), x ∈ M . If M and N are two closed
T -invariant subspaces of X such that X = M ⊕ N , we say that T is completely
reduced by the pair (M,N) and it is denoted by (M,N) ∈ Red(T ). In this case we
write T = T|M ⊕ T|N and say that T is a direct sum of T|M and T|N .

It is said that T ∈ L(X) admits a generalized Kato decomposition, abbrevia-
ted as GKD, if there exists (M,N) ∈ Red(T ) such that T|M is Kato and T|N is
quasinilpotent. Recall that an operator T ∈ L(X) is Kato if R(T ) is closed and
Ker(T ) ⊂ R(Tn) for every n ∈ N.

Definition 2.9. T ∈ L(X) is called a Riesz-Fredholm operator if there exists
(M,N) ∈ Red(T ) such that T|M is a Riesz operator and T|N is a Fredholm ope-
rator.

It is known that the sum of a Fredholm operator and a Riesz operator whose com-
mutator is compact (or only an inessential operator) is again a Fredholm operator.
In the following theorem we show that an operator T ∈ L(X) is pseudo-B-Fredholm
if and only it is the sum of a B-Fredholm operator and a Riesz operator whose
commutator is a compact (an inessential) operator.

Theorem 2.10. Let T ∈ L(X). Then the following properties are equivalent :

1. T is a pseudo-B-Fredholm operator.

2. T is a compact perturbation of a Riesz-Fredholm operator.

3. T = R + B where R is a Riesz operator, B is a B-Fredholm operator such
that the commutator [R,B] is compact.

4. T = R + B where R is a Riesz operator, B is a B-Fredholm operator such
that the commutator [R,B] is an inessential operator.

Proof. 1)⇔ 2) Suppose that T is a pseudo-B-Fredholm operator. If T is Fredholm,
then the statement 2 holds. Further, suppose that T is not Fredholm, then 0 is
an isolated point of σ(Π(T )). Let R ∈ C(X) be the spectral idempotent of Π(T )
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corresponding to λ = 0, then R 6= 0, Π(T ) and R commute, Π(T )R is quasinilpotent
and Π(T ) + R is invertible according to [15, Theorem 3.1]. From [2, Lemma 1] we
know that there exists an idempotent P ∈ L(X) such that Π(P ) = R. Therefore,
Π(TP ) is quasinilpotent and Π(T+P ) is invertible. Since Π(T ) and Π(P ) commutes,
we have that Π(PTP ) = Π(TP ) and Π((I −P )T (I −P )) = Π(T (I −P )). It follows
that PTP is Riesz, TP = PTP + K1, T (I − P ) = (I − P )T (I − P ) + K2, where
K1,K2 ∈ K(X), and so,

T = TP + T (I − P ) = PTP + (I − P )T (I − P ) +K,

where K = K1 + K2 ∈ K(X). We have that (R(P ), R(I − P )) ∈ Red(PTP ),
(R(P ), R(I − P )) ∈ Red((I − P )T (I − P )),

PTP = (PTP )|R(P ) ⊕ (PTP )|R(I−P ) = (PTP )|R(P ) ⊕ 0

and

(I − P )T (I − P ) = ((I − P )T (I − P ))|R(P ) ⊕ ((I − P )T (I − P ))|R(I−P )

= 0⊕ ((I − P )T (I − P ))|R(I−P ).

Therefore,
T = (PTP )|R(P ) ⊕ ((I − P )T (I − P ))|R(I−P ) +K. (2.1)

It’s easily seen that (PTP )|R(P ) is Riesz and further we prove that ((I−P )T (I−
P ))|R(I−P ) is Fredholm. Since Π(T +P ) is invertible there exists S ∈ L(X) such that
Π(S)Π(T + P ) = Π(T + P )Π(S) = Π(I). As Π(P ) and Π(T + P ) commute, then
Π(P ) and Π(S) commute and hence

(I − P )(T + P )(I − P )(I − P )S(I − P ) = I − P + F1,

(I − P )S(I − P )(I − P )(T + P )(I − P ) = I − P + F2,

where F1 and F2 are compact. As I − P is the identity on R(I − P ), it follows that
((I −P )T (I −P ))|R(I−P ) = ((I −P )(T +P )(I −P ))|R(I−P ) is a Fredholm operator.
According to (2.1), we see that T is a compact perturbation of a Riesz-Fredholm
operator.

Conversely let T = T1⊕ T2 +K where T1 is Riesz, T2 Fredholm and K ∈ K(X).
It’s clear that 0 is not an accumulation point of σF (T1 ⊕ T2) = σF (T ) and

according to Proposition 2.5, we get that T is a pseudo-B-Fredholm operator.
1)⇒ 3) If T is a pseudo-B-Fedholm operator, then

T = (PTP )|R(P ) ⊕ ((I − P )T (I − P ))|R(I−P ) +K

= [((PTP )|R(P ) ⊕ 0) +K] + [0⊕ ((I − P )T (I − P ))|R(I−P )],

where [((PTP )|R(P )⊕0)+K] is a Riesz operator and from [5, Theorem 2.7], [0⊕((I−
P )T (I −P ))|R(I−P )] is a B-Fredholm operator, here P is the same idempotent as in
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the previous part of the proof. It is clear that the commutator of ((PTP )|R(P )⊕0)+K
and 0⊕ ((I − P )T (I − P ))|R(I−P ) is compact.

3)⇒ 4) It follows from the inclusion K(X) ⊂ I(X).
4) ⇒ 1) Let T = R + B, where R is a Riesz operator and B is a B-Fredholm

operator with [R,B] is an inessential operator. From [23, Theorem 10.1] it follows
that

σF (T ) = σF (B). (2.2)

Since B is B-Fredholm, according to [6, Remark A (iii)] there exists ε > 0, such that
if 0 < |λ| < ε, we have that B − λI is Fredholm which together with (2.2) gives
that λ /∈ σF (T ). So 0 /∈ accσF (T ) and thus T is a pseudo-B-Fredholm operator by
Proposition 2.5.

We mention that Boasso considered in [8, Theorem 5.1] isolated points of the
spectrum of Π(T ) for T ∈ L(X) and he concluded the equivalence ((1)⇐⇒(2)) by
studying generalized Drazin invertible elements in the range of a Banach algebra
homomorphism [8, Theorem 3.2], though our proof is more direct.

Corollary 2.11. Let H be a Hilbert space and T ∈ L(H). Then T is a pseudo-
B-Fredholm operator if and only if T = K + Q + B, where K is compact, Q quasi-
nilpotent, B B-Fredholm, with K and [Q,B] compact operators.

Proof. In the case of a Hilbert space, using the West decomposition [20] for a Riesz
operator R ∈ L(H) we have R = K + Q with K compact and Q quasi-nilpotent.
Thus, according to Theorem 2.10, T ∈ L(H) is a pseudo-B-Fredholm operator if
and only if T = K +Q+B, where Q quasi-nilpotent, B B-Fredholm, K and [Q,B]
compact operators.

Remark 2.12. In the recent works [8], [19] and [21], the authors studied pseudo-B-
Fredholm operators as the direct sum of a Fredholm operator and a quasi-nilpotent
one. In [10, Theorem 3.4] it is proved that

T is the direct sum of a Fredholm operator and a quasi− nilpotent one

⇐⇒ (2.3)

T admits a GKD and 0 6∈ accσF (T ).

However there exists operators which are pseudo-B-Fredholm operators in the sense
of Definition 2.4, but do not have a decomposition as the direct sum of a Fredholm
operator and a quasi-nilpotent operator as seen by the following example.

Let T be a compact operator having infinite spectrum. Since Π(T ) = 0, then
T is a pseudo-B-Fredholm operator in the sense of Definition 2.4. We prove that T
cannot be written as the direct sum of a Fredholm operator and a quasi-nilpotent
one. Assume the contrary. We observe first that T is not quasinilpotent, because it
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has non-zero spectrum. Also T is not Fredholm because is compact on the infinite
dimensional space X.

Assume that there exists a pair M,N of closed T − invariant subspaces of X
such that T = T1 ⊕ T2 where T1 = T|M is a quasi-nilpotent operator and T2 = T|N
is a Fredholm operator. Since σ(T ) = σ(T1)∪ σ(T2), it follows that σ(T2) is infinite.
Therefore N is infinite-dimensional and hence σF (T2) 6= ∅. As T2 is Fredholm, it
follows that 0 /∈ σF (T2). Then then there exists λ 6= 0 such that λ ∈ σF (T2). But
σF (T ) = σF (T1) ∪ σF (T2), σF (T ) = {0} and we get a contradiction.

Our example shows that the condition that T admits a GKD cannot be removed
from the equivalence (2.3), in the other words the condition 0 6∈ accσF (T ) does not
imply the condition that T admits a GKD.

3 Poles of the resolvent in the Calkin algebra

Theorem 3.1. Let T ∈ L(X). Then the following properties are equivalent :
1- 0 is a pole of the resolvent of Π(T ) in the Calkin algebra.
2- T is the sum of a B-Fredholm operator B and a power compact operator K,

such that the commutator [K, B] is compact.
3- There exists a power compact operator K such that ae(T +K) and de(T +K)

are both finite, such that the commutator [K, T ] is compact.

Proof. 1⇒ 2) Suppose that 0 is pole of the resolvent of Π(T ) in the Calkin algebra.
Let R ∈ C(X) be the spectral idempotent of Π(T ) corresponding to λ = 0. Then
Π(T ) and R commute, Π(T )R is nilpotent and Π(T ) + R is invertible. From [2,
Lemma 1] it follows that there exists an idempotent P ∈ L(X) such that Π(P ) = R.
Since Π(TP ) = Π(PTP ), it follows that PTP is a power compact operator. As in
the proof of Theorem 2.10, we get that there is K ′ ∈ K(X) such that

T = (PTP )|R(P ) ⊕ ((I − P )T (I − P ))|R(I−P ) +K ′.

SetK = ((PTP )|R(P )⊕0)+K ′ = PTP+K ′ and B = 0⊕((I−P )T (I−P ))|R(I−P ).
Then K is clearly a power compact operator, B is a B-Fredholm operator by [5,
Theorem 2.7] and the commutator [K, B] is compact.

2) ⇒ 3) Assume that T is the sum of a B-Fredholm operator B and a power
compact operator K ′ such that the commutator [K ′, B] is compact. Let K = −K ′,
then B = T + K, and from [6, Theorem 3.1], ae(T + K) and de(T + K) are both
finite. Moreover, the commutator [K, T ] is compact.

3) ⇒ 1) Assume that there exists a power compact operator K such that
ae(T + K) and de(T + K) are both finite and the commutator [K, T ] is compact.
Then from [6, Theorem 3.1], T + K is a B-Fredholm operator. Hence Π(T + K)
is Drazin invertible in the Calkin algebra. As the commutator [K, T ] is compact,
then Π(T )Π(K) = Π(K)Π(T ). Since K is power compact, then Π(K) is nilpotent.
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From [22, Theorem 3] we know that Drazin invertibility is stable under nilpotent
commuting perturbations. Thus it follows that Π(T ) = Π(T +K)−Π(K) is Drazin
invertible in the Calkin algebra and 0 is pole of Π(T ).

As a consequence, in the case of Hilbert spaces, we recover [4, Theorem 2.2].

Corollary 3.2. Let H be a Hilbert space and T ∈ L(H). The following properties
are equivalent :

1- 0 is pole of the resolvent of Π(T ) in the Calkin algebra.
2- There exist a compact operator K such that T +K is a B-Fredholm operator.
3-There exist a compact operator K such that ae(T +K) and de(T +K) are both

finite.

Proof. 1)⇒ 2) As in the proof of Theorem 3.1, there exist an idempotent P ∈ L(H)
and K ∈ K(H) such that T = (PTP )|R(P ) ⊕ ((I − P )T (I − P ))|R(I−P ) +K, where
((I − P )T (I − P ))|R(I−P ) is a Fredholm operator and PTP is a power compact
operator, which implies that (PTP )|R(P ) is a power compact operator. From [13,
Lemma 5], there exists a nilpotent operator N1 and a compact operator K1 defined
on R(P ) such that (PTP )|R(P ) = N1 +K1. Hence

T = [N1 ⊕ ((I − P )T (I − P ))|R(I−P )] + [(K1 ⊕ 0) +K],

(K1 ⊕ 0) + K is clearly a compact operator and by [5, Theorem 2.7] the operator
N1 ⊕ ((I − P )T (I − P ))|R(I−P ) is a B-Fredholm operator.

The proof of the other implications are similar to the corresponding implications
in Theorem 3.1.

Recall that from [12, Theorem 5.3], if T ∈ L(X) has finite essential ascent ae(T )
and finite essential descent de(T ), then they are equal. In the following result, for
a B-Fredholm operator T , we compare the order of 0 as a pole of the resolvent of
Π(T ) and the common value of its essential ascent and its essential descent.

Theorem 3.3. Let T ∈ L(X) be a B-Fredholm operator. Then Π(T ) is Drazin
invertible in the Calkin algebra and if n is the order of 0 as a pole of the resolvent
of Π(T ), then n ≤ ae(T ) = de(T ). Moreover n = ae(T ) = de(T ) if and only if R(Tn)
is closed

Proof. Let d = ae(T ) = de(T ) and assume that d < n. Then from [6, Theorem 3.1]
R(T d) is closed and the operator Td : R(T d)→ R(T d) is a Fredholm operator. Thus
there exists a compact operator Kd in L(R(T d)), an operator Rd in L(R(T d)) such
that RdTd = Id +Kd, where Id is the identity of L(R(T d)). Thus T d −RdT

d+1 is a
compact operator.

Let V ∈ L(X) such that TnV is compact. Then

Tn−1V = (T d −RdT
d+1)Tn−d−1V +RdT

nV



10

is a compact operator. Hence a(Π(T )) ≤ n− 1 < n and this is a contradiction. Thus
n ≤ ae(T ) = de(T ).

If n = ae(T ) = de(T ), then from [6, Theorem 3.1], R(Tn) is closed. Conversely if
R(Tn) is closed, let d = ae(T ) = de(T ). Since Π(T ) is Drazin invertible in the Calkin
algebra, there exists S ∈ L(X), such that the operators TS−ST, STS−S, TnST−Tn

are all compact operators. Let K = STn+1−Tn, then K is a compact operator and
Ker(T )∩R(Tn) ⊂ R(K). As Ker(T )∩R(Tn) is closed, then Ker(T )∩R(Tn) is finite
dimensional. If n < d, then n ≤ d − 1 and Ker(T ) ∩ R(T d−1) ⊂ Ker(T ) ∩ R(Tn).
Hence Ker(T )∩R(T d−1) is finite dimensional and consequently ae(T ) ≤ d−1, which
is a contradiction. Hence n ≥ d. As we know already that n ≤ ae(T ) = de(T ), then
n = ae(T ) = de(T ).

Remark 3.4. Without the hypothesis of the closedness of the range R(Tn), Theorem
3.3 may be false. For example let K be a nilpotent compact operator with infinite
dimensional range, then it is easily seen that the order of 0 as a pole of Π(K) is
equal to one, while K has a finite essential ascent and descent strictly greater than
1, because the range R(K) of K is not closed.

In the following result, we give a sufficient condition which implies the equality of
the order and the common value of the essential ascent and descent. In the case of
Hilbert spaces, this result was proved in [4, proposition 3.3]. While in [4, proposition
3.3], the proof is based on Sadovskii essential enlargment of an operator [18], our
proof is based directly on the definition of the Drazin inverse.

Theorem 3.5. Let T ∈ L(X) be a B-Fredholm operator with finite essential ascent
and finite essential descent equaling d. If d = 0 or R(T d−1) is closed, then 0 is a
pole of the resolvent of Π(T ) of order d.

Proof. If d = 0 then T is a Fredholm operator. So Π(T ) is invertible in the Calkin
algebra and 0 is a pole of the resolvent of Π(T ) of order d.

Assume now that d > 0 and R(T d−1) is closed. Since T is a B-Fredholm operator,
then Π(T ) is Drazin invertible in the Calkin algebra. Let n = a(Π(T )) = d(Π(T )).
Then there exists S ∈ L(X) such that the operators TS−ST, STS−S, TnST −Tn,
are all compact operators. Let K = STn+1−Tn, then K is a compact operator and
Ker(T ) ∩R(Tn) ⊂ R(K).

We already know that n ≤ d. If n < d, then n ≤ d− 1 and Ker(T )∩R(T d−1) ⊂
Ker(T ) ∩R(Tn) ⊂ R(K). As Ker(T ) ∩R(T d−1) is closed, then Ker(T ) ∩R(T d−1)
is finite dimensional. Thus ae(T ) ≤ d− 1. Contradiction. Hence n = d.

Now we give necessary and sufficient conditions to lift a Drazin invertible element
in the Calkin algebra as a B-Fredholm operator. The sufficient condition in the case
Hilbert spaces had been proved in [4, Theorem 3.2], where the proof is based also
on Sadovskii essential enlargment of an operator [18], while we use here properties
of B-Fredholm operators.
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Theorem 3.6. Let T ∈ L(X) such that Π(T ) is Drazin invertible in the Calkin
algebra and 0 is a pole of the resolvent of Π(T ) of order n. Then T is a B-Fredholm
operator with ae(T ) = de(T ) = n if and only if R(Tn) and R(Tn+1) are closed.

Proof. If T is a B-Fredholm operator with ae(T ) = de(T ) = n, then from [6, Theorem
3.1], R(Tn) and R(Tn+1) are closed.

Conversely assume that R(Tn) and R(Tn+1) are closed. Since 0 is a pole of the
resolvent of Π(T ) of order n, then there exists an operator S in L(X), such that
TS−ST, STS−S, TnST−Tn are all compact operators. Let K = STn+1−Tn, then
K is a compact operator. If y ∈ N(T )∩R(Tn), then y ∈ R(K). Since N(T )∩R(Tn)
is closed and K is compact, then N(T ) ∩ R(Tn) is of finite dimension. Let Tn :
R(Tn)→ R(Tn) be the operator induced by T . Then Tn is an upper semi-Fredholm
operator and so, T is a semi-B-Fredholm operator. In particular and from [11] it is
an operator of topological uniform descent. Since 0 is a pole of the resolvent of Π(T )
of order n, if |λ| is small enough and λ 6= 0, then T − λI is a Fredholm operator.
From [11, Theorem 4.7] it follows that T has a finite essential ascent and finite
essential descent. Thus T is a B-Fredholm operator and ae(T ) = de(T ) ≤ n. As T
is a B-Fredholm operator, then from Theorem 3.3, we have n ≤ ae(T ) = de(T ) and
so, ae(T ) = de(T ) = n.

Application
We give now an application of the previous results for the study of the mean

convergence in the Calkin algebra. For the uniform ergodic theorem, we refer the
reader to [9, Theorem 1.5] and the references cited there. Here, using Theorem
3.1, we obtain easily a general characterization of the convergence of the sequence
(Π(Mn(T ))n in the Calkin algebra.

Theorem 3.7. Let T ∈ L(X) and let Mn(T ) = 1+T+T 2+...Tn

n , n ∈ N∗. Then following
conditions are equivalent :

1- The sequence (Π(Mn(T ))n converges in the Calkin algebra.

2- ||Π(T )n||
n → 0 as n → ∞ and there exists a power compact operator K such

that I − T +K is a B-Fredholm operator, and the commutator [T, K] is compact.

3- ||Π(T )n||
n → 0 as n → ∞ and there exists a power compact operator K such

that ae(I − T +K) and de(I − T +K) are both finite and the commutator [T, K] is
compact.

4- ||Π(T )n||
n → 0 as n→∞ and 1 is a pole of the resolvent of Π(T ).

Proof. 1) ⇒ 2) Assume that the sequence (Π(Mn(T ))n converges in the Calkin

algebra. Then from [9, Theorem 1.5], it follows that ||Π(T )n||
n → 0 as n→∞ and 0 is

a pole of the resolvent of Π(I−T ). From Theorem 3.1, there exists a power compact
operator K such that I − T + K is a B-Fredholm operator and the commutator
[T, K] is compact.
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2) ⇒ 3) Assume ||Π(T )n||
n → 0 as n → ∞ and there exists a power compact

operator K such that I −T +K is a B-Fredholm operator. Then ae(I −T +K) and
de(I − T +K) are both finite and the commutator [T, K] is compact.

3)⇒ 4) Assume that ||Π(T )n||
n → 0 as n→∞ and there exists a power compact

operator K such that ae(I − T + K) and de(I − T + K) are both finite, and the
commutator [T, K] is compact. Then from Theorem 3.1, 1 is a pole of the resolvent
of Π(T ).

4)⇒ 1) Assume that ||Π(T )n||
n → 0 as n→∞ and 1 is a pole of the resolvent of

Π(T ). Using [9, Theorem 1.5], it follows that the sequence (Π(Mn(T ))n converges in
the Calkin algebra.

Note that from [9, Theorem 1.5], if T satisfies one of the conditions of Theorem
3.7, then 1 is a pole of the resolvent of Π(T ) of order less or equal to 1.

Remark 3.8. In the case of a Hilbert space, and from Corollary 3.2, the operator
K of Theorem 3.7 can be chosen to be compact.
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