Smooth surjections and surjective restrictions

Jesús A. Jaramillo

Universidad Complutense de Madrid (Madrid, Spain)

December 13, 2018

Dedicated to the memory of our friend Bernardo

Based on joint work with:

- Richard M. Aron
- Enrico Le Donne
- Tapio Rajala
- Thomas Ransford

- 2 Restricting smooth surjections
- 3 Surjective restrictions

- 2 Restricting smooth surjections
- 3 Surjective restrictions

Smooth surjections

- In the geometric nonlinear theory of Banach spaces, *smooth surjections* and their relations with nonlinear quotients play an interesting role.
- If *E* and *F* are infinite-dimensional Banach spaces, a first issue is the existence of smooth surjective mappings from *E* onto *F*.
- Theorem [Bates, 1997]. If E and F are infinite-dimensional separable Banach spaces, there always exists a C¹-smooth surjective map f : E → F.
- Can we obtain a surjection with a higher degree of smoothness?

Introduction Restricting smooth surjections Surjective restrictions

Existence of smooth surjections

 Bates also gave sufficient conditions for the existence of C[∞]smooth surjections.

Theorem [Bates, 1997]. If E and F are infinite-dimensional separable Banach spaces and E is super-reflexive, there exists a C[∞]-smooth surjective mapping f : E → F.

Critical values

- Furthermore, the C[∞]-smooth mapping f : E → F constructed by Bates satisfies that rank(Df(x)) ≤ 1, for every x ∈ E.
- In particular, *every* value of *f* is a *critical value*, that is, the image of a point where the derivative is *not* onto.
- This shows a strong failure of Morse-Sard Theorem in infinite dimension.

Non-existence of smooth surjections

- Theorem [Hajék, 1998]. If E = c₀(ℕ) and F is an infinitedimensional super-reflexive space, there is no C²-smooth surjective mapping from E onto F.
- Guirao, Hajék and Montesinos (2010) proved that the existence of C^2 -smooth surjections from $c_0(\omega_1)$ to $\ell_2(\mathbb{N})$ depends on additional axioms of set theory.

1 Introduction

- 2 Restricting smooth surjections
- 3 Surjective restrictions

Our aim

• We are interested in the following problem concerning the restrictions of smooth surjections.

Main Question (Aron): Suppose that f : E → F is a smooth surjective map between Banach spaces, where E is non-separable and F is separable. We ask whether there is a separable subspace G ⊂ E such that the restriction of f to G remains surjective.

- Let $T : E \to F$ be a continuous linear surjection between Banach spaces.
- The classical Bartle-Graves selection theorem asserts that there is a continuous section s : F → E of T. This means that s is continuous and T(s(y)) = y for every y ∈ F.
- Consider the closed subspace G of E generated by s(F). If F is separable, then also G is separable, and it is clear that the restriction of T to G remains surjective.

Smooth nonlinear surjections

- As we will see, the situation in the case of general smooth nonlinear surjections will be different.
- Remark. Let E a Banach space and f : E → R a continuous surjection. For every q ∈ Q there exists some x_q ∈ E such that f(x_q) = q. Then the closed linear space G generated by the x_q's is separable, and f(G) is a connected subset of R containing Q, so that f(G) = R.

Smooth nonlinear surjections

Theorem [Aron, J. and Ransford, 2013]. Let E be a Banach space with C^m -cellularity $\geq 2^{\aleph_0}$, and let F be a separable Banach space with dimension ≥ 2 . Then there exists a C^m -smooth map $f : E \to F$ such that:

- *f* is surjective.
- When restricted to any separable subspace of *E*, *f* is not surjective.
- rank(Df(x)) ≤ 1, for every x ∈ E, so in particular every value of f is a critical value.

Cellularity

Let E be a Banach space, and 1 ≤ m ≤ ∞. We say that a subset U of E is a C^m-cozero set if

$$U=\{x\in E : f(x)\neq 0\},\$$

where f is a C^m smooth real function on E.

- We say that *E* is *C^m*-smooth if there is a bounded *C^m*-cozero set in *E*.
- Now let κ be a cardinal number. We say that E has C^{m} cellularity $\geq \kappa$ if there exists a disjoint, locally finite family $\{W_{\gamma}\}_{\gamma \in \Gamma}$ of C^{m} -cozero sets of E, with cardinality κ .

Large cellularity

- If Γ is a set with cardinality $\geq \kappa$, for $1 \leq p < \infty$ the space $\ell_p(\Gamma)$ has C^{∞} -cellularity $\geq \kappa$.
- If Γ is a set with cardinality $\geq \kappa$, the space $c_0(\Gamma)$ also has C^{∞} -cellularity $\geq \kappa$.
- For any infinite set I, the space $\ell_{\infty}(I)$ has C^{∞} -cellularity $\geq 2^{card(I)}$.

Cellularity

Lemma. Let *E* be a Banach space, and consider a cardinal $\kappa > \aleph_0$. The following conditions are equivalent:

- *E* has C^m -cellularity $\geq \kappa$.
- There exist a set Γ with cardinality κ and a C^m -smooth mapping $\phi : E \to c_0(\Gamma)$, whose range contains the unit vector basis $\{e_{\gamma}\}_{\gamma \in \Gamma}$ of $c_0(\Gamma)$.
- There exist a C^m-smooth Banach space Z and a C^m-smooth mapping φ : E → Z, whose range has density character ≥ κ.

Smooth surjections

- The previous Theorem applies, in particular, to smooth surjections from ℓ_p(2^{ℵ0}) to ℝ².
- We wonder what happens with smooth surjections from ℓ_p(ω₁) to ℝ².
- Theorem [Hajék and Johannis, 2018]. Let E be a non-separable super-reflexive Banach space and let F be a separable Banach space with dimension ≥ 2. Then there exists a C[∞]-smooth surjection f : E → F, such that the restriction of f to any separable subspace of E fails to be surjective.

1 Introduction

- 2 Restricting smooth surjections
- 3 Surjective restrictions

Uniformly open maps

A map f : X → Y between metric spaces is said to be uniformly open (or co-uniformly continuous) if, for every ε > 0, there exists δ > 0 such that, for every x ∈ X:

$$f(B(x,\varepsilon)) \supset B(f(x),\delta).$$

- We say that f is a co-Lipschitz map if there is a constant C > 0 such that δ = ε/C.
- We say that *f* is a *Lipschitz quotient* if it is both Lipschitz and co-Lipschitz.

Uniformly open surjections

- Theorem [Aron, J. and Le Donne, 2017]. Let f : X → Y be a continuous, uniformly open surjection between metric spaces, where X is complete. Then there is a subset Z ⊂ X such that dens(Z) = dens(Y) and the restriction f|_Z remains surjective.
- The *density character* dens(X) is the smallest cardinality of a dense subset of X.

Regular smooth surjections

- Corollary. Let f : E → F be a C¹-smooth surjection between Banach spaces. If the set of critical values of f has cardinality ≤ dens(F), there is a subspace G of E such that dens(G) = dens(F) and the restriction f|_G remains surjective. In particular this applies when the set of critical values of f is countable.
- Example [Aron, J. and Le Donne, 2017]. There exists a C[∞]-smooth surjection f : l₂(2^{ℵ0}) → ℝ² such that:
 - When restricted to any separable subspace of l₂(2^{N₀}), f is not surjective.
 - **2** The set of critical values of f has zero-measure in \mathbb{R}^2 .

Uniformly open surjections: refinement

Theorem [Kania and Rmoutil, 2017]. Let f : X → Y be a continuous, uniformly open surjection between metric spaces, where X is complete. Then there is a subset Z ⊂ X with dens(Z) = dens(Y), such that the restriction f|_Z remains uniformly open and surjective.

Open surjections

Theorem [J., Le Donne and Rajala, 2019]. Let f : X → Y be a continuous, open surjection between metric spaces, where X is complete. Then there is a subset Z ⊂ X with dens(Z) = dens(Y), such that the restriction f|_Z remains surjective.

Introduction Restricting smooth surjections Surjective restrictions

THANK YOU!