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Smooth surjections

In the geometric nonlinear theory of Banach spaces, smooth
surjections and their relations with nonlinear quotients play an
interesting role.

If E and F are infinite-dimensional Banach spaces, a first issue
is the existence of smooth surjective mappings from E onto F .

Theorem [Bates, 1997]. If E and F are infinite-dimensional
separable Banach spaces, there always exists a C 1-smooth sur-
jective map f : E → F .

Can we obtain a surjection with a higher degree of smoothness?
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Existence of smooth surjections

Bates also gave sufficient conditions for the existence of C∞-
smooth surjections.

Theorem [Bates, 1997]. If E and F are infinite-dimensional
separable Banach spaces and E is super-reflexive, there exists
a C∞-smooth surjective mapping f : E → F .

J. A. Jaramillo Smooth Surjections



Introduction
Restricting smooth surjections

Surjective restrictions

Critical values

Furthermore, the C∞-smooth mapping f : E → F constructed
by Bates satisfies that rank(Df (x)) ≤ 1, for every x ∈ E .

In particular, every value of f is a critical value, that is, the
image of a point where the derivative is not onto.

This shows a strong failure of Morse-Sard Theorem in infinite
dimension.
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Non-existence of smooth surjections

Theorem [Hajék, 1998]. If E = c0(N) and F is an infinite-
dimensional super-reflexive space, there is no C 2-smooth sur-
jective mapping from E onto F .

Guirao, Hajék and Montesinos (2010) proved that the existence
of C 2-smooth surjections from c0(ω1) to `2(N) depends on
additional axioms of set theory.
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Our aim

We are interested in the following problem concerning the res-
trictions of smooth surjections.

Main Question (Aron): Suppose that f : E → F is a smooth
surjective map between Banach spaces, where E is non-separable
and F is separable. We ask whether there is a separable subspa-
ce G ⊂ E such that the restriction of f to G remains surjective.
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The linear case

Let T : E → F be a continuous linear surjection between
Banach spaces.

The classical Bartle-Graves selection theorem asserts that there
is a continuous section s : F → E of T . This means that s is
continuous and T (s(y)) = y for every y ∈ F .

Consider the closed subspace G of E generated by s(F ). If F
is separable, then also G is separable, and it is clear that the
restriction of T to G remains surjective.
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Smooth nonlinear surjections

As we will see, the situation in the case of general smooth
nonlinear surjections will be different.

Remark. Let E a Banach space and f : E → R a continuous
surjection. For every q ∈ Q there exists some xq ∈ E such
that f (xq) = q. Then the closed linear space G generated
by the xq’s is separable, and f (G ) is a connected subset of R
containing Q, so that f (G ) = R.
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Smooth nonlinear surjections

Theorem [Aron, J. and Ransford, 2013]. Let E be a Banach space
with Cm-cellularity ≥ 2ℵ0 , and let F be a separable Banach space
with dimension ≥ 2. Then there exists a Cm-smooth map f : E → F
such that:

1 f is surjective.

2 When restricted to any separable subspace of E , f is not sur-
jective.

3 rank(Df (x)) ≤ 1, for every x ∈ E , so in particular every value
of f is a critical value.
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Cellularity

Let E be a Banach space, and 1 ≤ m ≤ ∞. We say that a
subset U of E is a Cm-cozero set if

U = {x ∈ E : f (x) 6= 0},

where f is a Cm smooth real function on E .

We say that E is Cm-smooth if there is a bounded Cm-cozero
set in E .

Now let κ be a cardinal number. We say that E has Cm-
cellularity ≥ κ if there exists a disjoint, locally finite family
{Wγ}γ∈Γ of Cm-cozero sets of E , with cardinality κ.
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Large cellularity

If Γ is a set with cardinality ≥ κ, for 1 ≤ p < ∞ the space
`p(Γ) has C∞-cellularity ≥ κ.

If Γ is a set with cardinality ≥ κ, the space c0(Γ) also has
C∞-cellularity ≥ κ.

For any infinite set I, the space `∞(I) has C∞-cellularity ≥
2card(I).
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Cellularity

Lemma. Let E be a Banach space, and consider a cardinal κ > ℵ0.
The following conditions are equivalent:

E has Cm-cellularity ≥ κ.

There exist a set Γ with cardinality κ and a Cm-smooth map-
ping φ : E → c0(Γ), whose range contains the unit vector basis
{eγ}γ∈Γ of c0(Γ).

There exist a Cm-smooth Banach space Z and a Cm-smooth
mapping φ : E → Z , whose range has density character ≥ κ.
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Smooth surjections

The previous Theorem applies, in particular, to smooth surjec-
tions from `p(2ℵ0) to R2.

We wonder what happens with smooth surjections from `p(ω1)
to R2.

Theorem [Hajék and Johannis, 2018]. Let E be a non-separable
super-reflexive Banach space and let F be a separable Banach
space with dimension ≥ 2. Then there exists a C∞-smooth
surjection f : E → F , such that the restriction of f to any
separable subspace of E fails to be surjective.
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Uniformly open maps

A map f : X → Y between metric spaces is said to be uniformly
open (or co-uniformly continuous) if, for every ε > 0, there
exists δ > 0 such that, for every x ∈ X :

f (B(x , ε)) ⊃ B(f (x), δ).

We say that f is a co-Lipschitz map if there is a constant C > 0
such that δ = ε/C .

We say that f is a Lipschitz quotient if it is both Lipschitz and
co-Lipschitz.
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Uniformly open surjections

Theorem [Aron, J. and Le Donne, 2017]. Let f : X → Y be a
continuous, uniformly open surjection between metric spaces,
where X is complete. Then there is a subset Z ⊂ X such that
dens(Z ) = dens(Y ) and the restriction f |Z remains surjective.

The density character dens(X ) is the smallest cardinality of a
dense subset of X .
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Regular smooth surjections

Corollary. Let f : E → F be a C 1-smooth surjection between
Banach spaces. If the set of critical values of f has cardinality
≤ dens(F ), there is a subspace G of E such that dens(G ) =
dens(F ) and the restriction f |G remains surjective. In particular
this applies when the set of critical values of f is countable.

Example [Aron, J. and Le Donne, 2017]. There exists a C∞-
smooth surjection f : `2(2ℵ0)→ R2 such that:

1 When restricted to any separable subspace of `2(2ℵ0), f is not
surjective.

2 The set of critical values of f has zero-measure in R2.
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Uniformly open surjections: refinement

Theorem [Kania and Rmoutil, 2017]. Let f : X → Y be a
continuous, uniformly open surjection between metric spaces,
where X is complete. Then there is a subset Z ⊂ X with
dens(Z ) = dens(Y ), such that the restriction f |Z remains uni-
formly open and surjective.
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Open surjections

Theorem [J., Le Donne and Rajala, 2019]. Let f : X → Y be
a continuous, open surjection between metric spaces, where X
is complete. Then there is a subset Z ⊂ X with dens(Z ) =
dens(Y ), such that the restriction f |Z remains surjective.
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