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Theorem 2 (Isoperimetric ineq.)

Let M C R" with "good boundary” and M compact. Then

n—

n[B3|» |M|"F < O(M).

"="iff M = BJ.
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e K is a convex body, i.e., a convex and compact set of R".
e " is the set of all n-dimensional convex bodies.

e The polar projection body M*(K) of K € K" is the unit ball of
the norm
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Petty projection inequality

Theorem 3 (Petty 1971)
Let K € K". Then
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Theorem 4 (Zhang 1991)

Let K € £". Then
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=" iff K is a simplex.
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Log-concave integrable functions in R”

Definition
f :R" — [0,00) is log-concave if f(x) = e~“() for some
u:R" — (—o0, 0] convex, i.e., if

F((1 = N)x+ Ay) > F(x) 2 (y)

for every x,y € R", A € [0,1]

F(R"™) is the set log-concave integrable functions in R".
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e Probability spaces:
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Impact of log-concave functions

e Convex Geometry:
> Brunn-Minkowski inequality

(1= N)K + AC|» > (1= M)|K|» + A|C|
> marginal densities of convex compact sets K € K"
f:H—=R, f(x):=|Kn(x+H)

L --CONncCave.

where H is an i-dimensional plane, is =

> Smallest common concavity in marginals on R” for all n > 1 are
the 0-concave integrable functions, i.e., log-concave integrable
ones.

| .
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Polar projection body of f

For every f € F(R"), let [1*(f) the polar projection body of f be
the unit ball of the norm

Il =2 [ | Pus F(5)dy,

where P 1 f(y) = maxser f (y + si).

Ix]



Functional affine inequalities

Theorem 5 (Zhang 1999)
Let f € F(R") NCL. Then
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Theorem 5 (Zhang 1999)
Let f € F(R") NCL. Then
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Functional affine inequalities

Theorem 6 (Alonso-Gutiérrez, Bernués, G.M. 4-2018)

Let f € F(R"). Then

[ mintf), f0yaye < 2l Ll 177101

"= F(x) = e~ Ixla for 2 simplex A 3 0.




Functional affine inequalities

Theorem 6 (Alonso-Gutiérrez, Bernués, G.M. 4-2018)

Let f € F(R"). Then

[ mintf), f0yaye < 2l Ll 177101

=" iff f(x) = e~ IIxlla for a simplex A 3 0.

Observation
If £(x) = e~ Il with K € K" then Thm. 6 becomes Thm. 4, i.e.

2n
&) < K" (K)I-
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Proof of Theorem 6

Definition
Let f € F(R"). Then
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Proof of Theorem 6

Let £ € F(R"). Then

Ki(f) == {x e R": f(x) > e f|loo} Vt=>0.

Let f € F(R"). The covariogram g : R” — R of f

g(x) = /OOO e 'IK:(F) N (x + Ke(F))|dt

= [ min {2 N2

is even and g € F(R").




Proof of Theorem 6

Let f € F(R") and g its covariogram. For every 0 < Ao < 1 then

. K_ 1og(1-2)(&)
2l (F) = (| —E=

0<A< Ao
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Since |K:| — |K: N ()\|x||X7| + Kt))| < Alx|| Py K¢| then

/°° ot |Ke| = [Ke O (Alx[ g + Ke)l
0 A

dt < |x]/ e '|P, L K| dt
0
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Proof of Theorem 6

Therefore if

x|

w0 <2l [ e Kl =2 [ fdx

n

then x € K_og(1-1)(g)/A and thus

K- Iog(l—/\)(g)

2]l (F) € =5

for every 0 < A < 1. O



Proof of Theorem 6

Definition (Ball 1988)
Let f € F(R") with £(0) > 0. Then
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Proof of Theorem 6

Let f € F(R") with £(0) > 0. Then

K(f) := {X eR": n/OO f(rx)r"tdr > f(O)}
0
fulfills K(f) € K™ and |K(f)| = ||f]l1/f(0).

Let g € F(R") with g(0) > 0. If 0 <t < n/e then

t -
(n!)%K(g) C Ki(g).

" =" iff g(x) = e I¥llx for some K € K" with 0 € K.
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Proof of Theorem 6. By Lem. 1 we apply Lem. 3 to g and then for
every 0 < \p < 1— e we have

—log(1 = \) ~ K_os(1—2(&

N Vg ot
0<a<n (M)A 0<A< A

which by Lem. 2 is equivalent to

~logl = A) ¢ 2|| £l M (F).
O<Q)\o ()N (&) < 2[|f[l.N"(f)
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Since h(\) := —log(1 — \)/\ is increasing in A € (0,1) and
limy_o+ h(A\) =1, then

1
(nl)

Taking volumes we can then conclude

rK(g) C 2I|f[:1*(F).

n nir* 1 -
27N (A = 1K (e)]
1 1

= —W . g(x)dx

:nfw Lo L e f e
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