Zhang's inequality for log-concave functions

B. González Merino*

(joint with D. Alonso-Gutiérrez and J. Bernués)

Murcia

*Author partially funded by Fundación Séneca, proyect 19901/GERM/15, and by MINECO, project MTM2015-63699-P, Spain.

Departamento de Análisis Matemático, Universidad de Sevilla

XVI Encuentros Análisis Funcional Murcia-Valencia, 15th
December 2018

To the memory of Bernardo Cascales

Isoperimetric & Sobolev inequalities

Theorem 1 (Sobolev ineq.)

Let $f: M \to \mathbb{R}$ with $M \subset \mathbb{R}^n$ compact and $f \in \mathcal{C}^1$. Then

$$|n|\mathbb{B}_2^n|^{\frac{1}{n}}\left(\int_{\mathbb{R}^n}|f|^{\frac{n}{n-1}}\right)^{\frac{n-1}{n}}\leq \int_{\mathbb{R}^n}|\nabla f|^{\frac{n}{n-1}}$$

"=" iff $f = \chi_{\mathbb{B}_2^n}$.

Isoperimetric & Sobolev inequalities

Theorem 1 (Sobolev ineq.)

Let $f: M \to \mathbb{R}$ with $M \subset \mathbb{R}^n$ compact and $f \in \mathcal{C}^1$. Then

$$|n|\mathbb{B}_2^n|^{\frac{1}{n}}\left(\int_{\mathbb{R}^n}|f|^{\frac{n}{n-1}}\right)^{\frac{n-1}{n}}\leq \int_{\mathbb{R}^n}|\nabla f|^{\frac{n}{n-1}}$$

"=" iff $f = \chi_{\mathbb{B}_2^n}$.

Theorem 2 (Isoperimetric ineq.)

Let $M \subset \mathbb{R}^n$ with "good boundary" and \overline{M} compact. Then

$$n|\mathbb{B}_2^n|^{\frac{1}{n}}|M|^{\frac{n-1}{n}}\leq \partial(M).$$

"=" iff
$$M = \mathbb{B}_2^n$$
.

Definitions

• K is a convex body, i.e., a convex and compact set of \mathbb{R}^n .

Definitions

- K is a convex body, i.e., a convex and compact set of \mathbb{R}^n .
- K^n is the set of all n-dimensional convex bodies.

Definitions

- K is a convex body, i.e., a convex and compact set of \mathbb{R}^n .
- K^n is the set of all n-dimensional convex bodies.
- The polar projection body $\Pi^*(K)$ of $K \in \mathcal{K}^n$ is the unit ball of the norm

$$||x||_{\Pi^*(K)} := |x||P_{x^{\perp}}K|.$$

Petty projection inequality

Theorem 3 (Petty 1971)

Let $K \in \mathcal{K}^n$. Then

$$|K|^{n-1}|\Pi^*(K)| \le \frac{\pi^{\frac{n}{2}}\Gamma\left(\frac{n+1}{2}\right)^n}{\Gamma\left(\frac{n+2}{2}\right)^n}.$$

"=" iff K is an ellipsoid.

Petty projection inequality

Theorem 3 (Petty 1971)

Let $K \in \mathcal{K}^n$. Then

$$|K|^{n-1}|\Pi^*(K)| \leq \frac{\pi^{\frac{n}{2}}\Gamma\left(\frac{n+1}{2}\right)^n}{\Gamma\left(\frac{n+2}{2}\right)^n}.$$

"=" iff K is an ellipsoid.

Theorem 4 (Zhang 1991)

Let $K \in \mathcal{K}^n$. Then

$$|K|^{n-1}|\Pi^*(K)| \geq \frac{\binom{2n}{n}}{n^n}.$$

"=" iff K is a simplex.

Log-concave integrable functions in \mathbb{R}^n

Definition

 $f: \mathbb{R}^n \to [0, \infty)$ is log-concave if $f(x) = e^{-u(x)}$ for some $u: \mathbb{R}^n \to (-\infty, \infty]$ convex,

Log-concave integrable functions in \mathbb{R}^n

Definition

 $f: \mathbb{R}^n \to [0,\infty)$ is log-concave if $f(x) = e^{-u(x)}$ for some $u: \mathbb{R}^n \to (-\infty,\infty]$ convex, i.e., if

$$f((1-\lambda)x + \lambda y) \ge f(x)^{1-\lambda}f(y)^{\lambda}$$

for every $x,y\in\mathbb{R}^n$, $\lambda\in[0,1]$

Log-concave integrable functions in \mathbb{R}^n

Definition

 $f: \mathbb{R}^n \to [0, \infty)$ is log-concave if $f(x) = e^{-u(x)}$ for some $u: \mathbb{R}^n \to (-\infty, \infty]$ convex, i.e., if

$$f((1-\lambda)x + \lambda y) \ge f(x)^{1-\lambda}f(y)^{\lambda}$$

for every $x,y\in\mathbb{R}^n$, $\lambda\in[0,1]$

 $\mathcal{F}(\mathbb{R}^n)$ is the set log-concave integrable functions in \mathbb{R}^n .

• Probability spaces:

• Probability spaces:

▶ gaussian densities

$$a \cdot e^{-b \cdot ||x||_2^2}$$
,

• Probability spaces:

▷ gaussian densities▷ exponentials

 $a \cdot e^{-b \cdot ||x||_2^2},$ $a \cdot e^{-b \cdot ||x||_1},$

• Probability spaces:

- ▶ gaussian densities

$$\begin{aligned} a \cdot e^{-b \cdot ||\mathbf{x}||_2^2}, \\ a \cdot e^{-b \cdot ||\mathbf{x}||_1}, \\ a \cdot \chi_K(\mathbf{x}), \ K \in \mathcal{K}^n. \end{aligned}$$

• Convex Geometry:

- Convex Geometry:
- ▶ Brunn-Minkowski inequality

$$|(1-\lambda)K+\lambda C|^{\frac{1}{n}}\geq (1-\lambda)|K|^{\frac{1}{n}}+\lambda|C|^{\frac{1}{n}}$$

- Convex Geometry:
- ▶ Brunn-Minkowski inequality

$$|(1-\lambda)K+\lambda C|^{\frac{1}{n}}\geq (1-\lambda)|K|^{\frac{1}{n}}+\lambda|C|^{\frac{1}{n}}$$

ightharpoonup marginal densities of convex compact sets $K \in \mathcal{K}^n$

$$f: H \to \mathbb{R}, \quad f(x) := |K \cap (x + H^{\perp})|$$

where *H* is an i-dimensional plane, is $\frac{1}{n-i}$ -concave.

- Convex Geometry:
- ▶ Brunn-Minkowski inequality

$$|(1-\lambda)K + \lambda C|^{\frac{1}{n}} \ge (1-\lambda)|K|^{\frac{1}{n}} + \lambda |C|^{\frac{1}{n}}$$

ightharpoonup marginal densities of convex compact sets $K \in \mathcal{K}^n$

$$f: H \to \mathbb{R}, \quad f(x) := |K \cap (x + H^{\perp})|$$

where *H* is an i-dimensional plane, is $\frac{1}{n-i}$ -concave.

 \triangleright Smallest common concavity in marginals on \mathbb{R}^n for all $n \ge 1$ are the 0-concave integrable functions, i.e., log-concave integrable ones.

Polar projection body of f

For every $f \in \mathcal{F}(\mathbb{R}^n)$, let $\Pi^*(f)$ the polar projection body of f be the unit ball of the norm

$$||x||_{\Pi^*(f)} := 2|x| \int_{x^{\perp}} P_{x^{\perp}} f(y) dy,$$

Polar projection body of f

For every $f \in \mathcal{F}(\mathbb{R}^n)$, let $\Pi^*(f)$ the polar projection body of f be the unit ball of the norm

$$||x||_{\Pi^*(f)} := 2|x| \int_{X^{\perp}} P_{X^{\perp}} f(y) dy,$$

where
$$P_{x^{\perp}}f(y) = \max_{s \in \mathbb{R}} f\left(y + s\frac{x}{|x|}\right)$$
.

Theorem 5 (Zhang 1999)

Let $f \in \mathcal{F}(\mathbb{R}^n) \cap \mathcal{C}^1$. Then

$$||f||_{\frac{n}{n-1}}|\Pi^*(f)|^{\frac{1}{n}} \leq \frac{\pi^{\frac{1}{2}}\Gamma\left(\frac{n+1}{2}\right)}{2\Gamma\left(\frac{n+2}{2}\right)}.$$

"=" iff $f = \chi_E$ with E an ellipsoid.

Theorem 5 (Zhang 1999)

Let $f \in \mathcal{F}(\mathbb{R}^n) \cap \mathcal{C}^1$. Then

$$||f||_{\frac{n}{n-1}}|\Pi^*(f)|^{\frac{1}{n}} \leq \frac{\pi^{\frac{1}{2}}\Gamma\left(\frac{n+1}{2}\right)}{2\Gamma\left(\frac{n+2}{2}\right)}.$$

"=" iff $f = \chi_E$ with E an ellipsoid. More generally

$$\|f\|_{\frac{n}{n-1}}\left(\int_{\mathbb{S}^{n-1}}\|\nabla_{u}f\|_{1}^{-n}du\right)^{\frac{1}{n}}\leq \frac{n^{\frac{1}{n}}\pi^{\frac{1}{2}}\Gamma\left(\frac{n+1}{2}\right)}{2\Gamma\left(\frac{n+2}{2}\right)}.$$

Theorem 6 (Alonso-Gutiérrez, Bernués, G.M. +2018)

Let $f \in \mathcal{F}(\mathbb{R}^n)$. Then

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \min\{f(y), f(x)\} dy dx \le 2^n n! \|f\|_{\infty} \|f\|_1^{n+1} |\Pi^*(f)|.$$

"=" iff $f(x) = e^{-\|x\|_{\triangle}}$ for a simplex $\triangle \ni 0$.

Theorem 6 (Alonso-Gutiérrez, Bernués, G.M. +2018)

Let $f \in \mathcal{F}(\mathbb{R}^n)$. Then

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \min\{f(y), f(x)\} dy dx \le 2^n n! \|f\|_{\infty} \|f\|_1^{n+1} |\Pi^*(f)|.$$

"=" iff $f(x) = e^{-\|x\|_{\triangle}}$ for a simplex $\triangle \ni 0$.

Observation

If $f(x) = e^{-\|x\|_K}$ with $K \in \mathcal{K}^n$ then Thm. 6 becomes Thm. 4, i.e.

$$\frac{\binom{2n}{n}}{n^n} \leq |K|^{n-1}|\Pi^*(K)|.$$

Definition

Let $f \in \mathcal{F}(\mathbb{R}^n)$. Then

$$K_t(f) := \{x \in \mathbb{R}^n : f(x) \ge e^{-t} ||f||_{\infty}\} \quad \forall \ t \ge 0.$$

Definition

Let $f \in \mathcal{F}(\mathbb{R}^n)$. Then

$$K_t(f) := \{x \in \mathbb{R}^n : f(x) \ge e^{-t} ||f||_{\infty}\} \quad \forall t \ge 0.$$

Lemma 1

Let $f \in \mathcal{F}(\mathbb{R}^n)$. The covariogram $g : \mathbb{R}^n \to \mathbb{R}$ of f

$$g(x) := \int_0^\infty e^{-t} |K_t(f) \cap (x + K_t(f))| dt$$
$$= \int_{\mathbb{R}^n} \min \left\{ \frac{f(y)}{\|f\|_\infty}, \frac{f(y - x)}{\|f\|_\infty} \right\} dy$$

is even and $g \in \mathcal{F}(\mathbb{R}^n)$.

Lemma 2

Let $f \in \mathcal{F}(\mathbb{R}^n)$ and g its covariogram. For every $0 < \lambda_0 < 1$ then

$$2\|f\|_1\Pi^*(f)=\bigcap_{0<\lambda<\lambda_0}\frac{K_{-\log(1-\lambda)}(g)}{\lambda}.$$

$$\left\{x\in\mathbb{R}^n: \int_0^\infty e^{-t}|K_t\cap(\lambda x+K_t)|dt\geq (1-\lambda)\int_0^\infty e^{-t}|K_t|dt\right\}=$$

$$\begin{cases} x \in \mathbb{R}^n : \int_0^\infty e^{-t} |K_t \cap (\lambda x + K_t)| dt \ge (1 - \lambda) \int_0^\infty e^{-t} |K_t| dt \end{cases} = \\ \begin{cases} x \in \mathbb{R}^n : \int_0^\infty e^{-t} \frac{|K_t| - |K_t \cap (\lambda |x| \frac{x}{|x|} + K_t)|}{\lambda} dt \le \int_0^\infty e^{-t} |K_t| dt \end{cases}.$$

$$\left\{x \in \mathbb{R}^n : \int_0^\infty e^{-t} |K_t \cap (\lambda x + K_t)| dt \ge (1 - \lambda) \int_0^\infty e^{-t} |K_t| dt \right\} = \\
\left\{x \in \mathbb{R}^n : \int_0^\infty e^{-t} \frac{|K_t| - |K_t \cap (\lambda |x| \frac{x}{|x|} + K_t)|}{\lambda} dt \le \int_0^\infty e^{-t} |K_t| dt \right\}.$$

Since
$$|K_t| - |K_t \cap (\lambda |x| \frac{x}{|x|} + K_t))| \le \lambda |x| |P_{x^{\perp}} K_t|$$
 then

$$\begin{cases} x \in \mathbb{R}^n : \int_0^\infty e^{-t} |K_t \cap (\lambda x + K_t)| dt \ge (1 - \lambda) \int_0^\infty e^{-t} |K_t| dt \end{cases} = \\ \begin{cases} x \in \mathbb{R}^n : \int_0^\infty e^{-t} \frac{|K_t| - |K_t \cap (\lambda |x| \frac{x}{|x|} + K_t)|}{\lambda} dt \le \int_0^\infty e^{-t} |K_t| dt \end{cases}.$$

Since
$$|K_t| - |K_t \cap (\lambda |x| \frac{x}{|x|} + K_t))| \le \lambda |x| |P_{x^{\perp}} K_t|$$
 then

$$\int_0^\infty e^{-t} \frac{|K_t| - |K_t \cap (\lambda |x| \frac{x}{|x|} + K_t)|}{\lambda} dt \le |x| \int_0^\infty e^{-t} |P_{x^{\perp}} K_t| dt$$

Proof. Since $K_{-\log(1-\lambda)}(g)/\lambda$ rewrites as

$$\begin{cases} x \in \mathbb{R}^n : \int_0^\infty e^{-t} |K_t \cap (\lambda x + K_t)| dt \ge (1 - \lambda) \int_0^\infty e^{-t} |K_t| dt \end{cases} = \\ \begin{cases} x \in \mathbb{R}^n : \int_0^\infty e^{-t} \frac{|K_t| - |K_t \cap (\lambda |x| \frac{x}{|x|} + K_t)|}{\lambda} dt \le \int_0^\infty e^{-t} |K_t| dt \end{cases}.$$

Since $|K_t| - |K_t \cap (\lambda |x| \frac{x}{|x|} + K_t))| \le \lambda |x| |P_{x^{\perp}} K_t|$ then

$$\int_0^\infty e^{-t} \frac{|K_t| - |K_t \cap (\lambda |x| \frac{x}{|x|} + K_t)|}{\lambda} dt \le |x| \int_0^\infty e^{-t} |P_{x^{\perp}} K_t| dt$$
$$= \frac{\|x\|_{\Pi^*(f)}}{2\|f\|_{\infty}}.$$

Therefore if

$$||x||_{\Pi^*(f)} \le 2||f||_{\infty} \int_0^{\infty} e^{-t} |K_t| dt = 2 \int_{\mathbb{R}^n} f(x) dx$$

Therefore if

$$||x||_{\Pi^*(f)} \le 2||f||_{\infty} \int_0^{\infty} e^{-t} |K_t| dt = 2 \int_{\mathbb{R}^n} f(x) dx$$

then
$$x \in K_{-\log(1-\lambda)}(g)/\lambda$$

Therefore if

$$||x||_{\Pi^*(f)} \le 2||f||_{\infty} \int_0^{\infty} e^{-t} |K_t| dt = 2 \int_{\mathbb{R}^n} f(x) dx$$

then $x \in \mathcal{K}_{-\log(1-\lambda)}(g)/\lambda$ and thus

$$2\|f\|_1\Pi^*(f)\subset \frac{K_{-\log(1-\lambda)}(g)}{\lambda}$$

for every
$$0 < \lambda < 1$$
.

Definition (Ball 1988)

Let $f \in \mathcal{F}(\mathbb{R}^n)$ with f(0) > 0. Then

$$\widetilde{K}(f) := \left\{ x \in \mathbb{R}^n : n \int_0^\infty f(rx) r^{n-1} dr \ge f(0) \right\}$$

fulfills $\tilde{K}(f) \in \mathcal{K}^n$ and $|\tilde{K}(f)| = ||f||_1/f(0)$.

Definition (Ball 1988)

Let $f \in \mathcal{F}(\mathbb{R}^n)$ with f(0) > 0. Then

$$\widetilde{K}(f) := \left\{ x \in \mathbb{R}^n : n \int_0^\infty f(rx) r^{n-1} dr \ge f(0) \right\}$$

fulfills $\tilde{K}(f) \in \mathcal{K}^n$ and $|\tilde{K}(f)| = ||f||_1/f(0)$.

Lemma 3

Let $g \in \mathcal{F}(\mathbb{R}^n)$ with g(0) > 0. If $0 \le t \le n/e$ then

$$rac{t}{(n!)^{rac{1}{n}}} ilde{K}(g)\subset K_t(g).$$

"=" iff $g(x) = e^{-\|x\|_K}$ for some $K \in \mathcal{K}^n$ with $0 \in K$.

Proof of Theorem 6. By Lem. 1 we apply Lem. 3 to g and then for every $0<\lambda_0<1-e^{-\frac{n}{e}}$ we have

Proof of Theorem 6. By Lem. 1 we apply Lem. 3 to g and then for every $0<\lambda_0<1-e^{-\frac{n}{e}}$ we have

$$\bigcap_{0<\lambda<\lambda_0}\frac{-\log(1-\lambda)}{(n!)^{\frac{1}{n}}\lambda}\tilde{K}(g)\subset\bigcap_{0<\lambda<\lambda_0}\frac{K_{-\log(1-\lambda)}(g)}{\lambda},$$

Proof of Theorem 6. By Lem. 1 we apply Lem. 3 to g and then for every $0<\lambda_0<1-e^{-\frac{n}{e}}$ we have

$$\bigcap_{0<\lambda<\lambda_0}\frac{-\log(1-\lambda)}{(n!)^{\frac{1}{n}}\lambda}\tilde{K}(g)\subset\bigcap_{0<\lambda<\lambda_0}\frac{K_{-\log(1-\lambda)}(g)}{\lambda},$$

which by Lem. 2 is equivalent to

Proof of Theorem 6. By Lem. 1 we apply Lem. 3 to g and then for every $0<\lambda_0<1-e^{-\frac{n}{e}}$ we have

$$\bigcap_{0<\lambda<\lambda_0}\frac{-\log(1-\lambda)}{(n!)^{\frac{1}{n}}\lambda}\tilde{K}(g)\subset\bigcap_{0<\lambda<\lambda_0}\frac{K_{-\log(1-\lambda)}(g)}{\lambda},$$

which by Lem. 2 is equivalent to

$$\bigcap_{0<\lambda<\lambda_0}\frac{-\log(1-\lambda)}{(n!)^{\frac{1}{n}}\lambda}\tilde{K}(g)\subset 2\|f\|_1\Pi^*(f).$$

Since $h(\lambda):=-\log(1-\lambda)/\lambda$ is increasing in $\lambda\in(0,1)$ and $\lim_{\lambda\to0^+}h(\lambda)=1$, then

Since
$$h(\lambda):=-\log(1-\lambda)/\lambda$$
 is increasing in $\lambda\in(0,1)$ and $\lim_{\lambda\to 0^+}h(\lambda)=1$, then
$$\frac{1}{(n!)^{\frac{1}{n}}}\tilde{K}(g)\subset 2\|f\|_1\Pi^*(f).$$

Since $h(\lambda):=-\log(1-\lambda)/\lambda$ is increasing in $\lambda\in(0,1)$ and $\lim_{\lambda\to0^+}h(\lambda)=1$, then

$$\frac{1}{(n!)^{\frac{1}{n}}}\tilde{K}(g)\subset 2\|f\|_1\Pi^*(f).$$

Since $h(\lambda):=-\log(1-\lambda)/\lambda$ is increasing in $\lambda\in(0,1)$ and $\lim_{\lambda\to0^+}h(\lambda)=1$, then

$$\frac{1}{(n!)^{\frac{1}{n}}}\tilde{K}(g)\subset 2\|f\|_1\Pi^*(f).$$

$$|2^n||f||_1^n|\Pi^*(f)| \ge \frac{1}{n!}|\tilde{K}(g)|$$

Since $h(\lambda):=-\log(1-\lambda)/\lambda$ is increasing in $\lambda\in(0,1)$ and $\lim_{\lambda\to0^+}h(\lambda)=1$, then

$$\frac{1}{(n!)^{\frac{1}{n}}}\tilde{K}(g)\subset 2\|f\|_1\Pi^*(f).$$

$$2^{n} \|f\|_{1}^{n} |\Pi^{*}(f)| \ge \frac{1}{n!} |\tilde{K}(g)|$$

$$= \frac{1}{n!} \frac{1}{g(0)} \int_{\mathbb{R}^{n}} g(x) dx$$

Since $h(\lambda):=-\log(1-\lambda)/\lambda$ is increasing in $\lambda\in(0,1)$ and $\lim_{\lambda\to0^+}h(\lambda)=1$, then

$$\frac{1}{(n!)^{\frac{1}{n}}}\tilde{K}(g)\subset 2\|f\|_1\Pi^*(f).$$

$$2^{n} \|f\|_{1}^{n} |\Pi^{*}(f)| \geq \frac{1}{n!} |\tilde{K}(g)|$$

$$= \frac{1}{n!} \frac{1}{g(0)} \int_{\mathbb{R}^{n}} g(x) dx$$

$$= \frac{1}{n!} \frac{1}{\int \frac{f}{\|f\|_{\infty}}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \min \left\{ \frac{f(y)}{\|f\|_{\infty}}, \frac{f(x)}{\|f\|_{\infty}} \right\} dy dx.$$

Bibliography

- D. Alonso-Gutiérrez, J. Bernués, B. González Merino, Zhang's inequality for log-concave functions, arXiv:1810.07507 (2018).
- K. Ball, Logarithmically concave functions and sections of convex sets in \mathbb{R}^n , Studia Math. 88 (1) (1988), 69-84.
- C. M. Petty, Isoperimetric problems, Proceedings of the Conference on Convexity and Combinatorial Geometry, 26–41. University of Oklahoma, Norman (1971).
- G. Zhang, Restricted chord projection and affine inequalities, Geom. Dedicata 39 (2) (1991), 213–222.
- G. Zhang, The affine Sobolev inequality, J. Differential Geom. 53 (1999), 183–202.

Thank you for your attention!!