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Spaces of Lipschitz functions and Lipschitz-free spaces

Given a complete metric space (M, d) and a distinguished point
0 ∈ M, the space

Lip0(M) := {f : M → R : f is Lipschitz, f (0) = 0}

is a dual Banach space when equipped with the norm

‖f ‖L := sup

{
|f (x)− f (y)|

d(x , y)
: x 6= y

}
.

The canonical predual of Lip0(M) is the Lipschitz-free space (also
called Arens-Eells space)

F(M) = span{δx : x ∈ M} ⊂ Lip0(M)∗,

where 〈f , δx〉 = f (x).



Spaces of Lipschitz functions and Lipschitz-free spaces

Theorem (Arens-Eells, Kadets, Godefroy-Kalton, Weaver)

Let f : M → N be a Lipschitz map such that f (0) = 0. Then there exists
an operator T : F(M)→ F(N) such that ‖Tf ‖ = ‖f ‖L and the following
diagram commutes:

M
f−→ N

δ ↓ δ ↓
F(M)

Tf−→ F(N)

Example

F(N) = `1 (δn 7→ e1 + . . .+ en).

F(R) = L1 (δx 7→ χ(0,x)).



Isometric properties of Lipschitz-free spaces

When is F(M)...

isometric to a dual space? Sufficient conditions found by Weaver
(1999), Kalton (2004), Dalet (2015), GL-P-P-RZ (2018).

isometric to a subspace of L1? Godard (2010).

isometric to a `1? Dalet-Kaufmann-Procházka (2016).

octahedral? Becerra-López-Rueda Zoca (2018), Procházka-Rueda
Zoca (2018).

Daugavet property? Ivakhno-Kadets-Werner (2007), GL-P-RZ
(2018), Avilés-Mart́ınez Cervantes (2018).

extreme points? Weaver (1999), Aliaga-Guirao (2017),
Aliaga-Pernecka (2018), GL-P-P-RZ, GL-P-RZ (2018).



Some distinguished types of points in BX

Let X be a Banach space and x ∈ BX .

x is an extreme point if x = y+z
2 , y , z ∈ BX , implies x = y = z .

x is an exposed point if there is f ∈ X ∗ such that

f (x) > f (y) for all y ∈ BX \ {x}.

x is a preserved extreme point if it is an extreme point of BX∗∗ .
Equivalently, the slices of BX containing x are a neighbourhood basis
for x in the weak topology.

x is a denting point if the slices of BX containing x are a
neighbourhood basis for x in the norm topology.

x is a weak-strongly exposed point if there is f ∈ X ∗ providing
slices that form a neighbourhood basis for x in the weak topology.

x is a strongly exposed point if there is f ∈ X ∗ providing slices that
form a neighbourhood basis for x in the norm topology.



How is BF(M)?

‖δx − δy‖ = d(x , y).

The elements of the form

δx − δy
d(x , y)

, x , y ∈ M, x 6= y

are called (elementary) molecules.

BF(M) = conv
{
δx−δy
d(x ,y) : x , y ∈ M

}
.



Extremal structure of BF(M) and molecules

Question
δx−δy
d(x ,y) is extreme if and only if d(x , z) + d(z , y) > d(x , y) ∀z ∈ M \ {x , y}.

True if M:

compact (Aliaga-Guirao).

bounded and uniformly discrete (GL-P-P-RZ).

The general case has just been solved by Aliaga and Pernecka.
Moreover, Petitjean and Procházka have shown that

δx−δy
d(x ,y) is exposed

whenever it is an extreme point.

Question

If µ ∈ F(M) is a extreme point, then µ =
δx−δy
d(x ,y) for some x , y ∈ M.

True if M is compact and the metric is of the form dα, 0 < α < 1
(GL-P-P-RZ).



Extremal structure of BF(M) and molecules

Theorem (Weaver, 1995)

Every preserved extreme point of BF(M) is a molecule.

Definition

Let f ∈ SLip0(M). We say that f is peaking at (x , y) if

f (x)− f (y)

d(x , y)
= 1 and lim

n→∞

f (un)− f (vn)

d(un, vn)
= 1⇒ un → x , vn → y

Theorem (Weaver, 1999)

Assume that there is a Lipschitz function f peaking at (x , y). Then
δx−δy
d(x ,y)

is a preserved extreme point.



Strongly exposed points in BF(M)

Theorem (G.-L. – Procházka – Rueda Zoca)

Let x , y ∈ M, x 6= y . The following are equivalent.

(i) The molecule
δx−δy
d(x ,y) is a strongly exposed point of BF(M).

(ii) There is f ∈ Lip0(M) peaking at (x , y).

(iii) There is ε > 0 such that for every z ∈ M \ {x , y},

d(x , z) + d(y , z) > d(x , y) + εmin{d(x , z), d(y , z)}

Condition (iii) comes from a paper by Ivakhno, Kadets and Werner (2007).
This result extends a characterisation of peaking functions in subsets of
R-trees due to by Dalet, Kaufmann and Procházka (2016).

Let M be a compact metric space. Then Lip0(M) has the Daugavet
property if and only if BF(M) does not have any strongly exposed point.

Recently, Avilés and Mart́ınez-Cervantes have shown that this result holds
for complete metric spaces.



Preserved extreme points in BF(M)

Theorem (Aliaga-Guirao, 2018)
δx−δy
d(x ,y) is a preserved extreme point if and only if for every ε > 0 there is

δ > 0 such that for every z ∈ M \ {x , y},

(1− δ)(d(x , z) + d(z , y)) < d(x , y)⇒ min{d(x , z), d(y , z)} < ε.

This solves a problem posed by Weaver and implies that if M is compact
then every molecule which is an extreme point of BF(M) is also a preserved
extreme point.



Preserved extreme vs denting

Theorem (G.-L. - Petitjean - Procházka - Rueda Zoca)

Every preserved extreme point of BF(M) is a denting point.

Lemma

Assume
δxα−δyα
d(xα,yα)

converges weakly to
δx−δy
d(x ,y) . Then xα → x and yα → y .

Therefore
δxα−δyα
d(xα,yα)

converges in norm to
δx−δy
d(x ,y) .

Proof.

Test the weak convergence against the function

f (t) = max{ε− d(x , t), 0}



Preserved extreme vs denting

Theorem (G.-L. - Petitjean - Procházka - Rueda Zoca)

Every preserved extreme point of BF(M) is a denting point.

Proof.

Denote Mol(M) the set of molecules and let µ ∈ Mol(M) be a preserved
extreme point. Assume there is ε > 0 such that every slice of BF(M)

containing µ has diameter at least ε.
There must be a slice S of BF(M) such that diam(Mol(M) ∩ S) < ε/2.
Otherwise, there would be a net {µα} of molecules that converges weakly
to µ but not in norm, a contradiction. Note that

BF(M) = conv(Mol(M)) = conv(conv(Mol(M) ∩ S) ∪ conv(Mol(M) \ S))

Now, a variation of Asplund–Bourgain–Namioka superlemma provides a
slice of BF(M) containing µ of diameter less than ε, a contradiction.



Example

There is a compact countable metric space M with a denting point of
BF(M) which is not strongly exposed.

bc 0 bc
x∞

bc
x2

bc
x3

bc
x4

bc
x5

bc x6
. . .

b b b b b

Example

Consider the sequence in c0 given by x0 = 0, x1 = 2e1, and
xn = e1 + (1 + 1/n)en for n ≥ 2. Let M = {0} ∪ {xn : n ∈ N}. Aliaga and

Guirao showed that the molecule δ(x1)
2 is not a preserved extreme point of

BF(M). However, it is an extreme point.



Proposition (G.L.-Procházka-Rueda Zoca)

Every weak-strongly exposed point of BF(M) is a strongly exposed point.

Corollary

The norm of Lip0(M) is Gâteaux differentiable at f if and only if it is
Fréchet differentiable at f .



Corollary (Ivakhno-Kadets-Werner, GL-P-P-RZ and Avilés-Mart́ınez
Cervantes)

Let M be a complete metric space. TFAE:

1 M is length, i.e., d(x , y) is the infimum of the length of the curves
joining x , y for all x , y ∈ M.

2 Lip0(M) has the Daugavet property.

3 F(M) has the Daugavet property.

4 The unit ball of F(M) does not have any preserved extreme point.

5 The unit ball of F(M) does not have any strongly exposed point.

6 The norm of Lip0(M) does not have any point of Gâteaux / Fréchet
differentiability.

If moreover M is compact then these conditions are also equivalent to:

7 M is geodesic.

7 ∀x , y ∈ M ∃z ∈ M \ {x , y} such that d(x , y) = d(x , z) + d(z , y).

M geodesic ⇔ extBF(M) = ∅?
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