Extremal structure of Lipschitz-free spaces

Luis C. García-Lirola

Kent State University

Joint work with Colin Petitjean, Antonin Procházka and Abraham Rueda Zoca

In memory of Bernardo Cascales

XVI Encuentro Murcia-Valencia December, 2018

Research partially supported by

García-Lirola, L., A. Procházka, and A. Rueda Zoca. "A characterisation of the Daugavet property in spaces of Lipschitz functions". In: *J. Math. Anal. Appl.* 464.1 (2018), pp. 473–492. García-Lirola, L., C. Petitjean, A. Procházka, and A. Rueda Zoca. "Extremal structure and duality of Lipschitz free spaces". In: *Mediterr. J. Math.* 15.2 (2018), Art. 69, 23.

Spaces of Lipschitz functions and Lipschitz-free spaces

Given a complete metric space (M, d) and a distinguished point 0 ∈ M, the space

 $\operatorname{Lip}_{0}(M) := \{f \colon M \to \mathbb{R} : f \text{ is Lipschitz}, f(0) = 0\}$

is a dual Banach space when equipped with the norm

$$||f||_L := \sup \left\{ \frac{|f(x) - f(y)|}{d(x, y)} : x \neq y \right\}.$$

The canonical predual of Lip₀(M) is the Lipschitz-free space (also called Arens-Eells space)

$$\mathcal{F}(M) = \overline{\operatorname{span}} \{ \delta_x : x \in M \} \subset \operatorname{Lip}_0(M)^*,$$

where $\langle f, \delta_x \rangle = f(x)$.

Spaces of Lipschitz functions and Lipschitz-free spaces

Theorem (Arens-Eells, Kadets, Godefroy-Kalton, Weaver)

Let $f: M \to N$ be a Lipschitz map such that f(0) = 0. Then there exists an operator $T: \mathcal{F}(M) \to \mathcal{F}(N)$ such that $||T_f|| = ||f||_L$ and the following diagram commutes:

$$\begin{array}{ccc} M & \stackrel{f}{\longrightarrow} & N \\ \delta \downarrow & & \delta \downarrow \\ \mathcal{F}(M) & \stackrel{T_f}{\longrightarrow} & \mathcal{F}(N) \end{array}$$

Example

Isometric properties of Lipschitz-free spaces

When is $\mathcal{F}(M)$...

- isometric to a dual space? Sufficient conditions found by Weaver (1999), Kalton (2004), Dalet (2015), GL-P-P-RZ (2018).
- isometric to a subspace of L_1 ? Godard (2010).
- isometric to a ℓ_1 ? Dalet-Kaufmann-Procházka (2016).
- octahedral? Becerra-López-Rueda Zoca (2018), Procházka-Rueda Zoca (2018).
- Daugavet property? lvakhno-Kadets-Werner (2007), GL-P-RZ (2018), Avilés-Martínez Cervantes (2018).
- extreme points? Weaver (1999), Aliaga-Guirao (2017), Aliaga-Pernecka (2018), GL-P-P-RZ, GL-P-RZ (2018).

Some distinguished types of points in B_X

Let X be a Banach space and $x \in B_X$.

- x is an extreme point if $x = \frac{y+z}{2}$, $y, z \in B_X$, implies x = y = z.
- x is an **exposed point** if there is $f \in X^*$ such that

f(x) > f(y) for all $y \in B_X \setminus \{x\}$.

- x is a **preserved extreme point** if it is an extreme point of $B_{X^{**}}$. Equivalently, the slices of B_X containing x are a neighbourhood basis for x in the weak topology.
- x is a **denting point** if the slices of B_X containing x are a neighbourhood basis for x in the norm topology.
- x is a weak-strongly exposed point if there is f ∈ X* providing slices that form a neighbourhood basis for x in the weak topology.
- *x* is a strongly exposed point if there is *f* ∈ *X*^{*} providing slices that form a neighbourhood basis for *x* in the norm topology.

How is $B_{\mathcal{F}(M)}$?

- $\|\delta_x \delta_y\| = d(x, y).$
- The elements of the form

$$rac{\delta_x-\delta_y}{d(x,y)},\;x,y\in M,x
eq y$$

are called (elementary) molecules.

•
$$B_{\mathcal{F}(M)} = \overline{\operatorname{conv}} \left\{ \frac{\delta_x - \delta_y}{d(x,y)} : x, y \in M \right\}.$$

Extremal structure of $B_{\mathcal{F}(M)}$ and molecules

Question

 $rac{\delta_x-\delta_y}{d(x,y)}$ is extreme if and only if d(x,z)+d(z,y)>d(x,y) $orall z\in M\setminus\{x,y\}.$

True if M:

- compact (Aliaga-Guirao).
- bounded and uniformly discrete (GL-P-P-RZ).

The general case has just been solved by Aliaga and Pernecka. Moreover, Petitjean and Procházka have shown that $\frac{\delta_x - \delta_y}{d(x,y)}$ is exposed whenever it is an extreme point.

Question

If
$$\mu \in \mathcal{F}(M)$$
 is a extreme point, then $\mu = \frac{\delta_x - \delta_y}{d(x,y)}$ for some $x, y \in M$.

True if *M* is compact and the metric is of the form d^{α} , $0 < \alpha < 1$ (GL-P-P-RZ).

Extremal structure of $B_{\mathcal{F}(M)}$ and molecules

Theorem (Weaver, 1995)

Every preserved extreme point of $B_{\mathcal{F}(M)}$ is a molecule.

Definition

Let $f \in S_{\text{Lip}_n(M)}$. We say that f is **peaking at** (x, y) if

$$\frac{f(x) - f(y)}{d(x, y)} = 1 \text{ and } \lim_{n \to \infty} \frac{f(u_n) - f(v_n)}{d(u_n, v_n)} = 1 \Rightarrow u_n \to x, v_n \to y$$

Theorem (Weaver, 1999)

Assume that there is a Lipschitz function f peaking at (x, y). Then $\frac{\delta_x - \delta_y}{d(x, y)}$ is a preserved extreme point.

Strongly exposed points in $B_{\mathcal{F}(M)}$

Theorem (G.-L. – Procházka – Rueda Zoca) Let $x, y \in M, x \neq y$. The following are equivalent. (i) The molecule $\frac{\delta_x - \delta_y}{d(x,y)}$ is a strongly exposed point of $B_{\mathcal{F}(M)}$. (ii) There is $f \in \text{Lip}_0(M)$ peaking at (x, y).

(iii) There is $\varepsilon > 0$ such that for every $z \in M \setminus \{x, y\}$,

 $d(x,z) + d(y,z) > d(x,y) + \varepsilon \min\{d(x,z), d(y,z)\}$

Condition (iii) comes from a paper by Ivakhno, Kadets and Werner (2007). This result extends a characterisation of peaking functions in subsets of \mathbb{R} -trees due to by Dalet, Kaufmann and Procházka (2016).

Let *M* be a **compact** metric space. Then $Lip_0(M)$ has the Daugavet property if and only if $B_{\mathcal{F}(M)}$ does not have any strongly exposed point.

Recently, Avilés and Martínez-Cervantes have shown that this result holds for complete metric spaces.

Preserved extreme points in $B_{\mathcal{F}(M)}$

Theorem (Aliaga-Guirao, 2018)

 $\frac{\delta_x - \delta_y}{d(x,y)}$ is a preserved extreme point if and only if for every $\varepsilon > 0$ there is $\delta > 0$ such that for every $z \in M \setminus \{x, y\}$,

$$(1-\delta)(d(x,z)+d(z,y)) < d(x,y) \Rightarrow \min\{d(x,z),d(y,z)\} < \varepsilon.$$

This solves a problem posed by Weaver and implies that if M is compact then every molecule which is an extreme point of $B_{\mathcal{F}(M)}$ is also a preserved extreme point.

Preserved extreme vs denting

Theorem (G.-L. - Petitjean - Procházka - Rueda Zoca)

Every preserved extreme point of $B_{\mathcal{F}(M)}$ is a denting point.

Lemma

Assume
$$\frac{\delta_{x_{\alpha}} - \delta_{y_{\alpha}}}{d(x_{\alpha}, y_{\alpha})}$$
 converges weakly to $\frac{\delta_{x} - \delta_{y}}{d(x, y)}$. Then $x_{\alpha} \to x$ and $y_{\alpha} \to y$.
Therefore $\frac{\delta_{x_{\alpha}} - \delta_{y_{\alpha}}}{d(x_{\alpha}, y_{\alpha})}$ converges in norm to $\frac{\delta_{x} - \delta_{y}}{d(x, y)}$.

Proof.

Test the weak convergence against the function

$$f(t) = \max\{\varepsilon - d(x, t), 0\}$$

Preserved extreme vs denting

Theorem (G.-L. - Petitjean - Procházka - Rueda Zoca)

Every preserved extreme point of $B_{\mathcal{F}(M)}$ is a denting point.

Proof.

Denote Mol(M) the set of molecules and let $\mu \in Mol(M)$ be a preserved extreme point. Assume there is $\varepsilon > 0$ such that every slice of $B_{\mathcal{F}(M)}$ containing μ has diameter at least ε .

There must be a slice S of $B_{\mathcal{F}(M)}$ such that diam $(Mol(M) \cap S) < \varepsilon/2$. Otherwise, there would be a net $\{\mu_{\alpha}\}$ of molecules that converges weakly to μ but not in norm, a contradiction. Note that

$$B_{\mathcal{F}(M)} = \overline{\operatorname{conv}}(\operatorname{Mol}(M)) = \overline{\operatorname{conv}}(\operatorname{Mol}(M) \cap S) \cup \overline{\operatorname{conv}}(\operatorname{Mol}(M) \setminus S))$$

Now, a variation of Asplund–Bourgain–Namioka superlemma provides a slice of $B_{\mathcal{F}(M)}$ containing μ of diameter less than ε , a contradiction.

Example

There is a compact countable metric space M with a denting point of $B_{\mathcal{F}(M)}$ which is not strongly exposed.

Example

Consider the sequence in c_0 given by $x_0 = 0, x_1 = 2e_1$, and $x_n = e_1 + (1 + 1/n)e_n$ for $n \ge 2$. Let $M = \{0\} \cup \{x_n : n \in \mathbb{N}\}$. Aliaga and Guirao showed that the molecule $\frac{\delta(x_1)}{2}$ is not a preserved extreme point of $B_{\mathcal{F}(M)}$. However, it is an extreme point.

Proposition (G.L.-Procházka-Rueda Zoca)

Every weak-strongly exposed point of $B_{\mathcal{F}(M)}$ is a strongly exposed point.

Corollary

The norm of $Lip_0(M)$ is Gâteaux differentiable at f if and only if it is Fréchet differentiable at f.

Corollary (Ivakhno-Kadets-Werner, GL-P-P-RZ and Avilés-Martínez Cervantes)

Let M be a complete metric space. TFAE:

- *M* is length, i.e., d(x, y) is the infimum of the length of the curves joining x, y for all $x, y \in M$.
- 2 $\operatorname{Lip}_0(M)$ has the Daugavet property.
- **③** $\mathcal{F}(M)$ has the Daugavet property.
- The unit ball of $\mathcal{F}(M)$ does not have any preserved extreme point.
- So The unit ball of $\mathcal{F}(M)$ does not have any strongly exposed point.
- The norm of Lip₀(M) does not have any point of Gâteaux / Fréchet differentiability.

If moreover M is compact then these conditions are also equivalent to:

M is geodesic.

M geodesic $\Leftrightarrow \operatorname{ext} B_{\mathcal{F}(M)} = \emptyset$?

Thank you for your attention