Ergodic properties of convolution operators

Enrique Jordá

Instituto Universitario de Matemática Pura y Aplicada. UPV

Joint work with Jorge Galindo,

Universitat Jaume I (Spain).

Murcia2018, Universitat de Murcia, December 13-15, 2018 Dedicated to the memory of Bernardo Cascales. X is a Banach space.

L(X) is the space of all continuous linear operators on X.

Power bounded operators

An operator $T \in L(X)$ is said to be power bounded if $\{T^m\}_{m=1}^{\infty}$ is an equicontinuous subset of L(X) if and only if $\sup_m ||T^m|| < \infty$ if and only if the orbits $\{T^m(x)\}_{m=1}^{\infty}$ of all the elements $x \in X$ are bounded (uniform boundedness principle).

Mean ergodic operators

An operator $T \in L(X)$ is said to be mean ergodic if

$$\exists Px := \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} T^m x, \quad \forall x \in X.$$

If the limit converges in $(L(X), \|\cdot\|)$, then T is called uniformly mean ergodic.

Remark

If T is mean ergodic then $\lim_n T^n(x)/n = 0$ for all $x \in X$ and $||T^n||/n$ is bounded by Banach Steinhauss. If T is uniformly mean ergodic then $\lim_n ||T^n||/n = 0$. Let T be a power bounded operator.

T is mean ergodic
$$\iff X = \operatorname{Ker}(I - T) \oplus \overline{\operatorname{Im}(I - T)}$$

Here, $\operatorname{Ker}(P) = \overline{\operatorname{Im}(I - T)}$ and $\operatorname{Im} P = \operatorname{Ker}(I - T)$.

- Let T be a bounded linear operator on a Banach space X:
 - If r(T) < 1 then T is uniformly mean ergodic (further, Tⁿ converges to 0 in the norm operator topology).
 - **2** If r(T) > 1 then $||T^n||/n$ is not bounded. Hence T is not mean ergodic.
 - If T is power bounded and ||Tⁿ − K|| < 1 for some n ∈ N and K ∈ K(X) then T is uniformly mean ergodic (Yosida-Kakutani).

Classic results for mean ergodicity in Banach spaces

Let X be a Banach space and $T \in L(X)$.

Theorem (Lotz, 1985)

Let X be a Banach space with the GDP property. Let T be an operator such that $\|T^n\|/n \to 0$:

T mean ergodic \iff T is uniformly mean ergodic.

 $H^{\infty}(\mathbb{D})$, \mathcal{B} , ℓ_{∞} and L^{∞} have the GDP property.

Yosida, 1960 (it contains classical Von Neumann theorem and Lorch's theorem

Let X be a Banach space. The operator $T \in L(X)$ is mean ergodic if and only if it $\lim_{n\to\infty} \frac{1}{n}T^n = 0$, in $L_s(X)$ and

 $\{T_{[n]}x\}_{n=1}^{\infty}$ is relatively $\sigma(X, X^*)$ -compact, $\forall x \in X$. (1)

As a corollary, if $(T^n)_n$ converges to T_0 in the WOT then $T_{[n]}$ is convergent to T_0 in the SOT.

Hille, 1945

There exist mean ergodic operators T on $L_1([0,1])$ which are not power bounded.

Dunford-Lin Theorem

Let $T \in L(X)$. The following are equivalent:

• T is uniformly mean ergodic.

(I – T)²(X) is closed and
$$\lim_{n \to \infty} \frac{\|T^n\|}{n} = 0$$
.

Either 1 ∈ ρ(T) or 1 is a pole of order 1 of the resolvent mapping
 ρ(T) → (L(X), || · ||), z ↦ R(z, T) := (zI - T)⁻¹ and lim_n ||Tⁿ||/n| = 0.(this
 implies that 1 cannot be an accumulation point of σ(T)).

•
$$(I - T)(X)$$
 is closed and $\lim_n \frac{\|T^n\|}{n} = 0$.

$$(I - T)(X) \text{ is closed, } X = (I - T)(X) \oplus \text{Ker}(I - T) \text{ and } \lim_{n \to \infty} \frac{||T^n||}{n} = 0.$$

Proposition

Let *H* be a Hilbert space and let $T \in B(H)$ be a normal operator.

- (a) The operator ${\cal T}$ is mean ergodic if and only if ${\cal T}$ is power bounded if and only if $\|{\cal T}\| \leq 1$
- (b) T is uniformly mean ergodic if and only if ||T|| ≤ 1 and 1 is not an accumulation point of σ(T).

Proof

- (a) Is a consequence ||T|| = r(T) and mean ergodicity of power bounded operators in reflexive spaces.
- **(b)** Assume $||T|| \le 1$.

If T is uniformly mean ergodic it follows from Dunford-Lin that 1 cannot be an accumulation point of $\sigma(T)$.

Let see the converse. If $1 \in \varrho(T)$ then (I - T)(H) = H and T is uniformly mean ergodic by Dunford Lin. We assume now that 1 is isolated in $\sigma(T)$. Thus I - T is a normal operator which contains 0 as an isolated point in the spectrum. Hence (I - T)(H) is closed, and then T is uniformly mean ergodic again by Dunford Lin.

Let G be a locally compact metrizable and separable group with Haar measure m_G .

Definition

Let $\mu_1, \mu_2 \in M(G)$. We define:

► The convolution of measures:

$$\langle \mu_1 * \mu_2, f \rangle = \int \int f(xy) \mathrm{d}\mu_1(x) \mathrm{d}\mu_2(y), \text{ for every } f \in C_{00}(G)$$

• The *convolution operator*: $\lambda^{p}(\mu) \colon L_{p}(G) \to L_{p}(G)$ given by

$$\lambda^p(\mu)(f)(s) = (\mu * f)(s) := \int f(x^{-1}s) \mathrm{d}\mu(x), \quad \text{ for all } f \in L_p(G) \text{ and all } s \in G.$$

 If G is Abelian, convolution operators for p = 2 are multiplication operators, via Fourier-Stieltjes transforms

$$\widehat{\lambda^2(\mu)f} = \widehat{(\mu * f)} = \widehat{f} \cdot \widehat{\mu} = M_{\widehat{\mu}}\widehat{f},$$

where $\widehat{\mu} \in CB(\widehat{G})$ with $\widehat{G} = \{\chi \colon G \to \mathbb{T} \colon \chi \text{ a continuous homomorphism}\}$. Every $s \in G$ determines $\chi_s \colon \widehat{G} \to \mathbb{T}$ with $\chi_s(\psi) = \psi(s)$.

- Put $s \in G$, then $\lambda^2(\delta_s)$ corresponds with M_{χ_s} .
- ▶ Now, $\widehat{\mathbb{R}} = \mathbb{R}$, $\widehat{\mathbb{T}} = \mathbb{Z}$ and $\widehat{\mathbb{Z}} = \mathbb{T}$ and: For $G = \mathbb{R}$, $\chi_s : \mathbb{R} \to \mathbb{R}$, $\chi_s(t) = e^{2\pi i s t}$. For $G = \mathbb{Z}$, $\chi_s : \mathbb{T} \to \mathbb{T}$, $\chi_s(e^{2\pi i t}) = e^{2\pi i s t}$.And for $G = \mathbb{T}$, $\chi_s : \mathbb{Z} \to \mathbb{T}$, $\chi_s(n) = e^{2\pi i s n}$.
- ▶ If K is a compact subgroup of G, then $m_K \in M(G)$ and $\widehat{m_K} = \mathbf{1}_{K^{\perp}}$.

Definition

A measure $\mu \in M(G)$ is said to be normal if $\lambda^2(\mu)$ is a normal operator. If G is abelian $\lambda^2(\mu)$ is normal for every $\mu \in M(G)$.

- (a) If G abelian always $\sigma(\lambda^2(\mu)) = \{\widehat{\mu}(\chi) : \chi \in \widehat{G}\} \subseteq \sigma(\lambda^p(\mu))$ for any $1 \le p \le \infty$, $p \ne 2$.
- (b) If μ is normal then λ²(μ) is mean ergodic if and only if ||μ|| ≤ 1 and λ²(μ) is uniformly mean ergodic if and only if 1 is not an accumulation point of σ(λ²(μ)). If G is an abelian compact group and μ̂ ∈ C₀(Ĝ) (μ ∈ M₀(G)) then λ²(μ) is mean ergodic if and only if it is uniformly mean ergodic.

Proposition

Let G be a locally compact group and let $\mu \in M(G)$. Assume that $\lambda^2(\mu)$ is uniformly mean ergodic. Let $1 \le p < \infty$. Then $\lambda^p(\mu)$ is uniformly mean ergodic if and only if $\lim \|\lambda^p(\mu^{*,n})\|/n = 0$ and 1 is an isolated point of $\sigma(\lambda^p(\mu))$.

Proof

- We only have to show that if 1 is isolated in $\sigma(\lambda^p(\mu))$ then $B(1,r) \setminus \{0\} \rightarrow L(L_p(G)), \ z \mapsto R(z) := (z-1)(zI - \lambda^p(\mu))^{-1}$ can be extended holomorphically to 1.
- ► R is holomorphic on B(1, r) \ {0}. From uniform mean ergodicity in L²(G) and Theorem of Dunford-Lin we get

$$\langle (z-1)R(z,\lambda^q(\mu)(f),g\rangle$$

admits a holomorphic extension for each $f, g \in C_{00}(G)$.

▶ We conclude from $R(z, \lambda^q(\mu)(f) = R(z, \lambda^p(\mu)(f))$ for each $f \in C_{00}(G)$ that the function $\langle (z-1)R(z, \lambda(\mu)(f), g \rangle$ admits a holomorphic extension to 1 for each $f, g \in C_{00}(G)$. Thus R can be holomorphically extended by a criterion due to Grosse-Erdmann.

If $\mu \in M(G)_+$ for G amenable then $r(\lambda^p(\mu)) = \|\lambda^p(\mu)\| = \|\mu\|$ for every $1 \le p \le \infty$.

Theorem

- If $\mu \in M(G)_+$ is normal and G is amenable then
 - λ^p(μ) is mean ergodic if and only if it is power bounded if and only if ||μ|| ≤ 1 for 1

 - (a) $\lambda^1(\mu)$ is mean ergodic if and only if $\langle \text{ supp } \mu \rangle$ is compact and $\|\mu\| \leq 1$.
 - λ[∞](μ) is (uniformly) mean ergodic if and only if λ¹(μ) is uniformly mean ergodic if and only (supp μ) is compact and 1 is not an accumulation point of σ(μ)(σ(μ) denotes the spectrum of μ in M(G)).

$G = \mathbb{R}^n$

Let $\mu \in M_0(\mathbb{R}^n)_+$ and $1 . Then <math>\lambda^p(\mu)$ is mean ergodic if and only if $\mu \leq 1$ and $\lambda^p(\mu)$ is uniformly ergodic if and only if $\|\mu\| < 1$ if and only if $1 \notin \{\hat{\mu}(\chi) : \chi \in \mathbb{R}^n\}.$

$G = \mathbb{T}$

Let $\mu \in M_0(\mathbb{T})_+$ and $1 . Then <math>\lambda^p(\mu)$ is mean ergodic if and only if $\lambda^p(\mu)$ is uniformly mean ergodic if and only if $\|\mu\| < 1$ if and only if $1 \notin \{\widehat{\mu}(\chi) : \chi \in \mathbb{Z}\}$.

If $\mu = (1/2)(\delta_1 - \delta_2) \in M(\mathbb{Z})$, then $\sigma(\lambda^2(\mu)) \cap \mathbb{T} = \{-1\}$ and $\lambda^p(\mu)$ is uniformly mean ergodic for every 1 .

p-harmonic measures

Let $\mu \in M(G)$ with $\|\mu\| \le 1$ and $H := \langle \text{supp}\mu \rangle$ is not compact. Then $1 \notin \sigma_p(\lambda^p(\mu))$ for each 1 .

measures with amenable support

If $\mu \in M(G)_+$ and $H := \langle \mathsf{supp} \mu
angle$ is amenable then $1 \in \sigma(\lambda^p(\mu))$

Proposition

Let $\mu \in M(G)_+$ such that $H := \langle \text{supp} \mu \rangle$ is not compact. Then $\lambda^p(\mu)$ is uniformly mean ergodic if and only if $r(\lambda^p(\mu)) < 1$.

Proposition

Let $\mu \in M(G)_+$ such that $\|\mu\| \le 1$ and suppose that $H := \langle \text{supp}\mu \rangle$ is not compact. Then $\lambda^p(\mu)$ is uniformly mean ergodic if and only if $\|\mu\| < 1$.

This is a consequence of $Ker(I - \lambda^p(\mu)) = \{0\}$, and Dunford-Lin theorem implies $(I - \lambda^p(\mu))(L_p(G)) = L_p(G)$

Definition

A measure $\mu \in M(G)$ is said to be ergodic if and only if $(\sum_{n=1}^{N} \mu^{*,n})/N$ is convergent in the $\sigma(M(G), C_0(G))$ topology to a measure μ_c .

Grenander's theorem

If G is a separable and metrizable locally compact group and μ is a probability measure then μ is ergodic.

Proposition

Let G be a locally compact group. The mapping $\lambda_{\rho}: (M(G), w^*) \rightarrow (L(L_{\rho}(G)), WOT), \mu \mapsto \lambda^{\rho}(\mu)$ is sequentially continuous for every $1 < \rho < \infty$.

Proof

- If (µn) be convergent in the vague topology to µ ∈ M(G). It follows that (||µn||) is bounded (we assume that by 1).
- ► Thus also (||λ^p(μ_n)||) is consequently also bounded, i.e. (λ^p(μ_n)) is equicontinuous.
- Since C₀₀(G) is strongly dense in L_p(G) we only need to show that (λ^p(μ_n)(f)) is weakly convergent to λ^p(μ)(f) in L_p(G) for each f ∈ C₀₀(G).
- We fix f ∈ C₀₀(G). Since (λ^p(μ_n)(f)) is a weakly bounded sequence it is relatively weakly compact, and hence weak convergence of the sequence is equivalent to convergence in σ(L_p(G), C₀₀(G)), since C₀₀(G) is dense in L_q(G).
- Let $g \in C_{00}(G)$ be fixed and let $M := \max\{f(x) : x \in G\}$. We get

$$\left|\int_{G} f(x^{-1}s)d\mu_n(x)g(s)\right| \leq \int_{G} \left|f(x^{-1}s)\right| d|\mu_n|(x)|g(s)| \leq M|g(s)|$$

for each $s \in G$, $n \in \mathbb{N}$.

By hypothesis $(\int_G f(x^{-1}s)d\mu_n(x))$ is convergent to $\int_G f(x^{-1}s)d\mu(x)$ for each $s \in G$. By Lebesgue theorem we conclude

$$\lim_n \int_G \int_G f(x^{-1}s) d\mu_n(x)g(s) dm(s) = \int_G \int_G f(x^{-1}s) d\mu(x)g(s) dm(s).$$

- If µ ∈ M(G) satisfies that (||µⁿ||) is bounded then µ is ergodic.From the continuity of λ and the mean ergodicity of λ²(µ) we get that (µⁿ) has a unique w*-cluster point (bounded sets of (M(G), w*) are metrizable in our context).
- Let G be amenable and let µ ∈ M(G)₊. A measure µ is ergodic if and only if λ^p(µ) is mean ergodic for each 1

NonAmenable groups

Theorem

Let F(X) be a free discrete group and let $S \subseteq F(X)$. Consider

 $\mu_{S} = \sum_{s \in S} \delta_{s} \in M(F(X))_{+}$. Then:

• (Akemann and Ostrand, 1976) If S is a free set, then $\|\lambda^2(\mu_S)\|_{\mathcal{L}(L_2(G))} = 2\sqrt{|S|-1}.$

② (strong Haagerup inequality. Kemp and Speicher, 2007) If S consists of words of length n in the semigroup generated by X: ||λ²(μ_S)||_{L (L2(G)}) ≤ e√n+1||μ_S||₂.

Example (Mean ergodic convolution operators of large norm.)

Let $G = F(x_1, x_2, x_3)$ a free group. Put $\nu = (\delta_{x_1} + \delta_{x_2} + \delta_{x_3})$, and $\mu := \alpha \nu$. Then:

- $||\lambda^2(\mu^n)||_{\mathcal{L}(L_2(G))} \leq \left(\sqrt{3}\alpha\right)^n e\sqrt{n+1}.$
- $\blacktriangleright \|\mu^n\|_{M(G)} = (3\alpha)^n.$

$$\|\mu\|_{M(G)} = 3\alpha > \|\lambda^2(\mu)\|_{\mathcal{L}(L_2(G))} = 2\sqrt{2}\alpha > 1 > \sqrt{3}\alpha \ge r(\lambda^2(\mu)).$$

With $\frac{1}{2\sqrt{2}} < \alpha < \frac{1}{\sqrt{3}}$, $\lambda^2(\mu)$ is UME while $\|\lambda^2(\mu)\|_{\mathcal{L}(L_2(G))} > 1$ and $\lim_n \frac{\|\mu^n\|_{\mathcal{M}(G)}}{n} = \infty$, hence μ is not ergodic.