Approximation of Lipschitz functions preserving boundary values.

R Deville, C. Mudarra.

Problem. Let Ω be an open subset of a Banach space and $u_0: \overline{\Omega} \to \mathbb{R}$ be a Lipschitz function.

Is it possible to approximate u_0 uniformly on Ω by a function $u : \overline{\Omega} \to \mathbb{R}$ having the same Lipschitz constant as u_0 , such that u is C^k -smooth and $u = u_0$ on $\partial \Omega$?

Theorem 1. Let X be a finite dimensional Banach space. Let Ω be an open subset of X and let $u_0 : \overline{\Omega} \to \mathbb{R}$ be a Lipschitz function such that $Lip(u_0, \partial \Omega) < Lip(u_0, \overline{\Omega})$.

Given $\varepsilon > 0$, there exists a function $v : \overline{\Omega} \to I\!\!R$ such that 1) v is of class $C^{\infty}(\Omega)$, 2) v is Lipschitz on Ω with $Lip(v,\overline{\Omega}) = Lip(u_0,\overline{\Omega})$, 3) $v = u_0$ on $\partial\Omega$, 4) $||v - u_0|| \le \varepsilon$ on $\overline{\Omega}$. **Theorem 1.** Let X be a finite dimensional Banach space. Let Ω be an open subset of X and let $u_0 : \overline{\Omega} \to \mathbb{R}$ be a Lipschitz function such that $Lip(u_0, \partial \Omega) < Lip(u_0, \overline{\Omega})$.

Given $\varepsilon > 0$, there exists a function $v : \overline{\Omega} \to I\!\!R$ such that 1) v is of class $C^{\infty}(\Omega)$, 2) v is Lipschitz on Ω with $Lip(v,\overline{\Omega}) = Lip(u_0,\overline{\Omega})$, 3) $v = u_0$ on $\partial\Omega$, 4) $||v - u_0|| \le \varepsilon$ on $\overline{\Omega}$.

The theorem remains true if X is a separable Hilbert space, or if $X = c_0(\Gamma)$.

Whenever X is a non separable Hilbert space, it is only possible to guarantee that the function v is C^1 .

Proof of Theorem 1.

Lipschitz extension. Let (X,d) be a metric space. Let E and F be two nonempty closed sets such that $F \subset E$, let $u_0 : E \to I\!\!R$ be a 1-Lipschitz such that $\lambda_0 := Lip(u_0, F) < 1$. Given $\varepsilon > 0$, there exists a function $u : E \to I\!\!R$ such that 1) $|u - u_0| \le \varepsilon$ on E, 2) $u = u_0$ on F, 3) Lip(u, B) < 1 for every bounded subset B of E. Proof of Theorem 1.

Lipschitz extension. Let (X,d) be a metric space. Let E and F be two nonempty closed sets such that $F \subset E$, let $u_0 : E \to \mathbb{R}$ be a 1-Lipschitz such that $\lambda_0 := Lip(u_0, F) < 1$. Given $\varepsilon > 0$, there exists a function $u : E \to \mathbb{R}$ such that 1) $|u - u_0| \le \varepsilon$ on E, 2) $u = u_0$ on F, 3) Lip(u, B) < 1 for every bounded subset B of E.

An approximation property. Let X be a separable Hilbert space or a finite dimensional normed space. Given a Lipschitz function $f: X \to \mathbb{R}$ and $\varepsilon > 0$, there exists a function g of class $C^{\infty}(X)$ such that $|g - f| \le \varepsilon$ on X and $Lip(g, B(x_0, r)) \le Lip(f, B(x_0, r + \varepsilon)) + \varepsilon$ for every ball $B(x_0, r) \subset X$.

If $dim(X) < +\infty$, $g = f * \theta$ with θ approximate C^{∞} unit.

If X is a non-separable Hilbert space, the statement holds replacing C^{∞} smoothness with C^{1} .

Proof of Theorem 1.

Lipschitz extension. Let (X,d) be a metric space. Let E and F be two nonempty closed sets such that $F \subset E$, let $u_0 : E \to \mathbb{R}$ be a 1-Lipschitz such that $\lambda_0 := Lip(u_0, F) < 1$. Given $\varepsilon > 0$, there exists a function $u : E \to \mathbb{R}$ such that 1) $|u - u_0| \le \varepsilon$ on E, 2) $u = u_0$ on F, 3) Lip(u, B) < 1 for every bounded subset B of E.

A better approximation property. Let *X* be a separable Hilbert space or a finite dimensional normed space, and $\Omega \subset X$ be open. Let $u : X \to \mathbb{R}$ be 1-Lipschitz and such that Lip(u, B) < 1 for any bounded subset *B* of Ω and let $\varepsilon : \Omega \to (0, +\infty)$.

Then there exists $v \in C^{\infty}(\Omega)$ such that, for all $x \in \Omega$,

 $|u(x) - v(x)| \le \varepsilon(x)$ and ||Dv(x)|| < 1.

Technical lemma. Let E and F be two nonempty closed subsets such that $F \subset E$ and $E \setminus F$ is bounded and non empty. Let $u_0 : E \to \mathbb{R}$ be a 1-Lipschitz mapping, let $u_{\mu} : F \to \mathbb{R}$ be μ -Lipschitz, with $\mu < 1$, let $\delta \geq 0$ and assume that $|u_{\mu} - u_0| \leq \delta$ on F.

For every $\mu < \lambda < 1$, there exists a function $u_{\lambda} : E \to \mathbb{R}$ such that u_{λ} is λ -Lipschitz on E with $u_{\lambda} = u_{\mu}$ on F and $u_0 - u_{\lambda} \leq \delta + \varepsilon(\lambda, \mu, E, F)$ on E, where $\varepsilon = \varepsilon(\lambda, \mu, E, F) = \frac{1 - \lambda}{\lambda - \mu} (\lambda + \mu) \left(diam(\overline{E \setminus F}) + dist(\overline{E \setminus F}, F) \right) > 0$.

Proof of the technical lemma. The set

 $C_{\lambda} = \{ u : E \to I\!\!R : \lambda - \text{Lipschitz}, u \leq u_0 + \delta + \varepsilon, u_{|_F} = u_{\mu} \}$ is nonempty, and if $u_{\lambda}(x) := \sup\{u(x) : u \in C_{\lambda}\}$, for $x \in E$, u_{λ} is the required solution.

Proof of the Lipschitz extension statement.

Set $E_n = (E \cap B(p, n)) \cup F$ and $F_n = E_{n-1}$, $(\lambda_n) \uparrow 1$ such that $\varepsilon(\lambda_n, \lambda_{n-1}, E_n, F_n) \leq \varepsilon/2^n$, and define inductively u_n on E_n by applying the technical lemma. The function $u : E \to \mathbb{R}$ is defined by $u(x) = u_n(x)$ whenever $x \in E_n$.

Problem. Let $(X, \|\cdot\|)$ be a finite dimensional normed space with $dim(X) \ge 2$, Let Ω be an open subset of X, and let $u_0 : \overline{\Omega} \to \mathbb{R}$ be a 1-Lipschitz function.

Given $\varepsilon > 0$, does there exist a 1-Lipschitz function $w : \overline{\Omega} \to \mathbb{R}$ such that w is differentiable on Ω with $\|Dw(x)\| = 1$ almost everywhere on Ω , $w = u_0$ on $\partial\Omega$ and $\|u_0 - w\| \le \varepsilon$ on Ω ?

Theorem . (Deville-Matheron) X is a finite dimensional Banach space with $dim(X) \ge 2$, Ω is an open subset of X,

Given $\varepsilon > 0$, there exists a function $v : \overline{\Omega} \to \mathbb{R}$ such that 1) v is differentiable on Ω , 2) v is 1-Lipschitz on $\overline{\Omega}$ and ||Dv(x)|| = 1 almost everywhere on Ω , 3) v = 0 on $\partial\Omega$,

Theorem 2. (Deville-Mudarra)

X is a finite dimensional Banach space with $dim(X) \ge 2$,

 Ω is an open subset of X,

 $u_0: \overline{\Omega} \to \mathbb{R}$ be a 1-Lipschitz function such that $Lip(u_0, \partial \Omega) < 1$.

Given $\varepsilon > 0$, there exists a function $v : \overline{\Omega} \to \mathbb{R}$ such that 1) v is differentiable on Ω , 2) v is 1-Lipschitz on $\overline{\Omega}$ and ||Dv(x)|| = 1 almost everywhere on Ω , 3) $v = u_0$ on $\partial\Omega$, 4) $||v - u_0|| \le \varepsilon$ on Ω . Theorem 2. (Deville-Mudarra)

X is a finite dimensional Banach space with $dim(X) \ge 2$,

 Ω is an open subset of X,

 $u_0: \overline{\Omega} \to \mathbb{R}$ be a 1-Lipschitz function such that $Lip(u_0, \partial \Omega) < 1$.

Given $\varepsilon > 0$, there exists a function $v : \overline{\Omega} \to \mathbb{R}$ such that 1) v is differentiable on Ω , 2) v is 1-Lipschitz on $\overline{\Omega}$ and ||Dv(x)|| = 1 almost everywhere on Ω , 3) $v = u_0$ on $\partial\Omega$, 4) $||v - u_0|| \le \varepsilon$ on Ω .

Proof. Let $v : \overline{\Omega} \to \mathbb{R}$ be C^{∞} , such that $Lip(v, \overline{\Omega}) = Lip(u_0, \overline{\Omega})$, $v = u_0$ on $\partial\Omega$ and $||v - u_0|| \le \varepsilon/2$ on $\overline{\Omega}$.

If $F(x,\Lambda) = \|\Lambda + Dv(x)\| - 1$ the equation F(x, Du(x)) = 0 on Ω with u = 0 on $\partial\Omega$ has an almost classical solution u with $\|u\| \le \varepsilon/2$.

w = v + u satisfies theorem 2.

The limiting case $Lip(u_0, \partial \Omega) = 1$.

Proposition. If $\Omega \subset \mathbb{R}^2$ is open and $u_0 : \partial \Omega \to \mathbb{R}$ is 1-Lispchitz for the usual euclidean distance, then there exists $w : \overline{\Omega} \to \mathbb{R}$ such that :

- 1) w is differentiable on Ω ,
- 2) w is 1-Lipschitz on $\overline{\Omega}$ and ||Dw(x)|| = 1 almost everywhere on Ω ,
- 3) $w = u_0$ on $\partial \Omega$.

The limiting case $Lip(u_0, \partial \Omega) = 1$.

Proposition. If $\Omega \subset \mathbb{R}^2$ is open and $u_0 : \partial \Omega \to \mathbb{R}$ is 1-Lispchitz for the usual euclidean distance, then there exists $w : \overline{\Omega} \to \mathbb{R}$ such that :

1) w is differentiable on Ω ,

2) w is 1-Lipschitz on $\overline{\Omega}$ and ||Dw(x)|| = 1 almost everywhere on Ω , 3) $w = u_0$ on $\partial \Omega$.

Counterexample Assume $X = (\mathbb{R}^2, \|\cdot\|_1)$, $\Omega = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 < 1\}$ and $u_0(x, y) = |x| - |y|$ on $\partial\Omega$. Then u_0 is 1-Lipschitz, but there is no 1-Lipschitz function $u : \overline{\Omega} \to \mathbb{R}$ such that $u = u_0$ on $\partial\Omega$ and u is differentiable at each point of Ω .

The limiting case $Lip(u_0, \partial \Omega) = 1$.

Proposition. If $\Omega \subset \mathbb{R}^2$ is open and $u_0 : \partial \Omega \to \mathbb{R}$ is 1-Lispchitz for the usual euclidean distance, then there exists $w : \overline{\Omega} \to \mathbb{R}$ such that :

1) w is differentiable on Ω ,

2) w is 1-Lipschitz on $\overline{\Omega}$ and ||Dw(x)|| = 1 almost everywhere on Ω , 3) $w = u_0$ on $\partial \Omega$.

Counterexample Assume $X = (\mathbb{R}^2, \|\cdot\|_1)$, $\Omega = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 < 1\}$ and $u_0(x, y) = |x| - |y|$ on $\partial\Omega$. Then u_0 is 1-Lipschitz, but there is no 1-Lipschitz function $u : \overline{\Omega} \to \mathbb{R}$ such that $u = u_0$ on $\partial\Omega$ and u is differentiable at each point of Ω .

Open problems. What happens whenever $X = (\mathbb{R}^2, \|\cdot\|)$, where $\|\cdot\|$ is an arbitrary norm?

What happens whenever $X = (\mathbb{R}^d, \|\cdot\|), d > 2$, where $\|\cdot\|$ is the euclidian norm?

Proof of the proposition.

By the theory of Δ_{∞} , there exists a unique absolutely minimizing Lipschitz extension $v : \overline{\Omega} \to \mathbb{R}$ of u_0 .

In particular v is a 1-Lipschitz extension of u_0 on $\overline{\Omega}$.

By Savin's result (which holds only in dimension 2), v is C^1 on Ω .

According to Deville and Jaramillo, there exists an almost classical solution of $\|\nabla u + \nabla v\| = 1$ on Ω vanishing on $\overline{\Omega}$.

w = u + v is the desired function.