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Problem. Let ⌦ be an open subset of a Banach space and

u0 : ⌦ ! IR be a Lipschitz function.

Is it possible to approximate u0 uniformly on ⌦ by a func-

tion u : ⌦ ! IR having the same Lipschitz constant as u0,

such that u is C

k-smooth and u = u0 on @⌦ ?



Theorem 1. Let X be a finite dimensional Banach space. Let ⌦ be

an open subset of X and let u0 : ⌦ ! IR be a Lipschitz function such

that Lip(u0, @⌦) < Lip(u0,⌦).

Given " > 0, there exists a function v : ⌦ ! IR such that

1) v is of class C

1(⌦),

2) v is Lipschitz on ⌦ with Lip(v,⌦) = Lip(u0,⌦),

3) v = u0 on @⌦,

4) kv � u0k  " on ⌦.

The theorem remains true if X is a separable Hilbert space, or if

X = c0(�).

Whenever X is a non separable Hilbert space, it is only possible

to guarantee that the function v is C

1.
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Proof of Theorem 1.

Lipschitz extension. Let (X, d) be a metric space.
Let E and F be two nonempty closed sets such that F ⇢ E,
let u0 : E ! IR be a 1-Lipschitz such that �0 := Lip(u0, F ) < 1.
Given " > 0, there exists a function u : E ! IR such that
1) |u� u0|  " on E,
2) u = u0 on F ,
3) Lip(u,B) < 1 for every bounded subset B of E.

An approximation property. Let X be a separable Hilbert space
or a finite dimensional normed space. Given a Lipschitz function
f : X ! IR and " > 0, there exists a function g of class C

1(X) such
that |g� f |  " on X and Lip(g,B(x0, r))  Lip(f,B(x0, r+ "))+ " for
every ball B(x0, r) ⇢ X.

If dim(X) < +1, g = f ⇤ ✓ with ✓ approximate C

1 unit.

If X is a non-separable Hilbert space, the statement holds replacing
C

1 smoothness with C

1.
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Let E and F be two nonempty closed sets such that F ⇢ E,
let u0 : E ! IR be a 1-Lipschitz such that �0 := Lip(u0, F ) < 1.
Given " > 0, there exists a function u : E ! IR such that
1) |u� u0|  " on E,
2) u = u0 on F ,
3) Lip(u,B) < 1 for every bounded subset B of E.

A better approximation property. Let X be a separable Hilbert
space or a finite dimensional normed space, and ⌦ ⇢ X be open.
Let u : X ! IR be 1-Lipschitz and such that Lip(u,B) < 1 for any
bounded subset B of ⌦ and let " : ⌦ ! (0,+1).

Then there exists v 2 C

1(⌦) such that, for all x 2 ⌦,

|u(x)� v(x)|  "(x) and kDv(x)k < 1.

If dim(X) < +1, g = f ⇤ ✓ with ✓ approximate C
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Technical lemma. Let E and F be two nonempty closed subsets
such that F ⇢ E and E\F is bounded and non empty. Let u0 : E ! IR

be a 1-Lipschitz mapping, let u

µ

: F ! IR be µ-Lipschitz, with µ < 1,
let � � 0 and assume that |u

µ

� u0|  � on F .
For every µ < � < 1, there exists a function u

�

: E ! IR such that u

�

is
�-Lipschitz on E with u

�

= u

µ

on F and u0�u

�

 �+"(�, µ, E, F ) on E,

where " = "(�, µ, E, F ) = 1��

��µ

(�+µ)
✓
diam(E\F )+dist(E\F , F )

◆
> 0.

Proof of the technical lemma. The set

C

�

= {u : E ! IR : �� Lipschitz,u  u0 + � + ", u|
F

= u

µ

}
is nonempty, and if u

�

(x) := sup{u(x) : u 2 C

�

}, for x 2 E,
u

�

is the required solution.

Proof of the Lipschitz extension statement.
Set E

n

=
⇣
E \B(p, n)

⌘
[ F and F

n

= E

n�1, (�
n

) " 1 such that
"(�

n

,�

n�1, En

, F

n

)  "/2n, and define inductively u

n

on E

n

by ap-
plying the technical lemma. The function u : E ! IR is defined by
u(x) = u

n

(x) whenever x 2 E

n

.



Problem. Let (X, k · k) be a finite dimensional normed space with

dim(X) � 2, Let ⌦ be an open subset of X, and let u0 : ⌦ ! IR be

a 1-Lipschitz function.

Given " > 0, does there exist a 1-Lipschitz function w : ⌦ ! IR such

that w is di↵erentiable on ⌦ with kDw(x)k = 1 almost everywhere

on ⌦, w = u0 on @⌦ and ku0 � wk  " on ⌦ ?



Theorem 2. (Deville-Matheron)

X is a finite dimensional Banach space with dim(X) � 2,

⌦ is an open subset of X,

u0 : ⌦ ! IR be a 1-Lipschitz function such that Lip(u0, @⌦) < 1.

Given " > 0, there exists a function v : ⌦ ! IR such that

1) v is di↵erentiable on ⌦,

2) v is 1-Lipschitz on ⌦ and kDv(x)k = 1 almost everywhere on ⌦,

3) v = 0 on @⌦,

4) kv � u0k  " on ⌦.

Proof. Let v : ⌦ ! IR be C

1, such that Lip(v,⌦) = Lip(u0,⌦),

v = u0 on @⌦ and kv � u0k  "/2 on ⌦.

If F (x,⇤) = k⇤ + Dv(x)k � 1 the equation F (x,Du(x)) = 0 on ⌦

with u = 0 on @⌦ has an almost classical solution u with kuk  "/2.

w = v + u satisfies theorem 2.
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The limiting case Lip(u0, @⌦) = 1.

Proposition. If ⌦ ⇢ IR

2 is open and u0 : @⌦ ! IR is 1-Lispchitz
for the usual euclidean distance, then there exists w : ⌦ ! IR such
that :
1) w is di↵erentiable on ⌦,
2) w is 1-Lipschitz on ⌦ and kDw(x)k = 1 almost everywhere on ⌦,
3) w = u0 on @⌦.

Counterexample Assume X = (IR2
, k · k1),

⌦ = {(x, y) 2 IR

2; x2 + y

2
< 1} and u0(x, y) = |x|� |y| on @⌦.

Then u0 is 1-Lipschitz, but there is no 1-Lipschitz function u : ⌦ ! IR

such that u = u0 on @⌦ and u is di↵erentiable at each point of ⌦.

Open problems. What happens whenever X = (IR2
, k · k), where

k · k is an arbitrary norm ?

What happens whenever X = (IRd

, k · k), d > 2, where k · k is the
euclidian norm ?
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Proof of the proposition.

By the theory of �1, there exists a unique absolutely minimizing

Lipschitz extension v : ⌦ ! IR of u0.

In particular v is a 1-Lipschitz extension of u0 on ⌦.

By Savin’s result (which holds only in dimension 2), v is C

1 on ⌦.

According to Deville and Jaramillo, there exists an almost classi-

cal solution of kru+rvk = 1 on ⌦ vanishing on ⌦.

w = u+ v is the desired function.


