Approximation
of Lipschitz functions
preserving boundary values.

R Deville, C. Mudarra.



Problem. Let 2 be an open subset of a Banach space and
ug : 2 — IR be a Lipschitz function.

Is it possible to approximate ug uniformly on €2 by a func-
tion u : Q — IR having the same Lipschitz constant as ug,
such that w is C*-smooth and u = ug on 9Q ?



Theorem 1. Let X be a finite dimensional Banach space. Let €2 be
an open subset of X and let ug : 2 — IR be a Lipschitz function such
that Lip(ug, 02) < Lip(ug, 2).

Given € > 0, there exists a function v : Q — IR such that
1) v is of class C°°(£2),

2) v is Lipschitz on Q with Lip(v, Q) = Lip(ug, 2),

3) v = ug on 0%2,

4) |lv—ugl| < e on Q.



Theorem 1. Let X be a finite dimensional Banach space. Let €2 be
an open subset of X and let ug : 2 — IR be a Lipschitz function such
that Lip(ug, 02) < Lip(ug, 2).

Given € > 0, there exists a function v : Q — IR such that
1) v is of class C°°(£2),

2) v is Lipschitz on Q with Lip(v, Q) = Lip(ug, 2),

3) v = ug on 0%2,

4) |lv—ugl| < e on Q.

The theorem remains true if X is a separable Hilbert space, or if
X = co(lN).

Whenever X is a non separable Hilbert space, it is only possible
to guarantee that the function v is C1.



Proof of Theorem 1.

Lipschitz extension. Let (X,d) be a metric space.

Let £ and F be two nonempty closed sets such that F C FE,
let ug : E — IR be a 1-Lipschitz such that \g := Lip(ug, F') < 1.
Given € > 0, there exists a function u : E — IR such that

1) lu—ug| <eonkE,

2) u=wug on F,

3) Lip(u, B) < 1 for every bounded subset B of E.
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An approximation property. Let X be a separable Hilbert space
or a finite dimensional normed space. Given a Lipschitz function
f: X — IR and € > 0, there exists a function g of class C*°(X) such
that |g— f| <e on X and Lip(g, B(xg,r)) < Lip(f, B(xzg,r+¢)) +¢ for
every ball B(xg,r) C X.

If dim(X) < 400, g = f*0 with 6 approximate C*° unit.

If X is a non-separable Hilbert space, the statement holds replacing
C'>® smoothness with C1.



Proof of Theorem 1.

Lipschitz extension. Let (X,d) be a metric space.

Let E and F be two nonempty closed sets such that F C FE,
let ug : E — IR be a 1-Lipschitz such that \g := Lip(ug, F) < 1.
Given € > 0, there exists a function u : E — IR such that

1) |lu—wug| <eonkE,

2) u=wug on F,

3) Lip(u,B) < 1 for every bounded subset B of E.

A better approximation property. Let X be a separable Hilbert
space or a finite dimensional normed space, and €2 C X be open.
Let uw: X — IR be 1-Lipschitz and such that Lip(u,B) < 1 for any
bounded subset B of Q2 and let ¢ : 2 — (0, +00).

Then there exists v € C°°(£2) such that, for all x € €2,
lu(z) —v(x)| < e(x) and | Dv(x)|| < 1.



Technical lemma. Let E and F be two nonempty closed subsets
such that FF C E and E\F is bounded and non empty. Letug: E — IR
be a 1-Lipschitz mapping, let u, : F' — IR be pu-Lipschitz, with p < 1,
let $ > 0 and assume that |u, —ug| <6 on F.

For every p < A < 1, there exists a function uy : E — IR such that u) is
A-Lipschitz on E with uy = u, on F and ug—u) < d+e(\,u, E,F) on E,

where e = (A, u, B, F) = 22 (A1) (dz’am(E\F) + dist(E\F, F)) > 0.

Proof of the technical lemma. The set

Cy={u:FE—IR: \—Lipschitz,u <ug-+ 9+ ¢, u|F=uM}

is nonempty, and if uy(x) ;= sup{u(x) : u € Cy}, for x € E,
uy 1S the required solution.

Proof of the Lipschitz extension statement.

Set E, = (Em B(p, n)) UF and F, = E,_1, (\n) T 1 such that

e(An, AM—1, En, Frn) < /2™, and define inductively u, on E, by ap-
plying the technical lemma. The function v : E — IR is defined by
u(x) = un(x) whenever x € E,.



Problem. Let (X,]| -||]) be a finite dimensional normed space with
dim(X) > 2, Let © be an open subset of X, and let ug : Q — IR be
a 1-Lipschitz function.

Given ¢ > 0, does there exist a 1-Lipschitz function w : Q — IR such
that w is differentiable on Q with ||Dw(z)|| = 1 almost everywhere
on 2, w =wug on 9N and |lug —w|| <eon Q7



Theorem . (Deville-Matheron)
X is a finite dimensional Banach space with dim(X) > 2,
€2 is an open subset of X,

Given € > 0, there exists a function v : Q2 — IR such that

1) v is differentiable on €2,

2) v is 1-Lipschitz on Q and ||Dv(x)|| = 1 almost everywhere on €,
3) v =0 on 02,



Theorem 2. (Deville-Mudarra)

X is a finite dimensional Banach space with dim(X) > 2,

€2 is an open subset of X,

ug : 2 — IR be a 1-Lipschitz function such that Lip(ug, 92) < 1.

Given € > 0, there exists a function v : Q2 — IR such that

1) v is differentiable on €2,

2) v is 1-Lipschitz on Q and ||Dv(x)|| = 1 almost everywhere on €,
3) v = ug on 0%2,

4) |lv —ug|| <€ on Q.
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Proof. Let v : Q — IR be C*, such that Lip(v,Q) = Lip(ug, 2),
v =wug on 9 and ||lv — up|| <&/2 on Q.

If F(x,\) = [N+ Dv(xz)|| — 1 the equation F(x,Du(x)) = 0 on
with v = 0 on 92 has an almost classical solution u with [|u|| < e/2.

w = v + u satisfies theorem 2.



The limiting case Lip(ug,92) = 1.

Proposition. If Q C IR? is open and up : Q2 — IR is 1-Lispchitz
for the usual euclidean distance, then there exists w : Q2 — IR such
that :

1) w is differentiable on <2,

2) w is 1-Lipschitz on Q and ||Dw(z)|| = 1 almost everywhere on X2,
3) w = ug on O%2.
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Then ug is 1-Lipschitz, but there is no 1-Lipschitz function u : Q- R
such that v = ug on 92 and w is differentiable at each point of (2.
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that :

1) w is differentiable on <2,
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Counterexample Assume X = (IR?, || - ||1),

Q= {(z,y) € R?; 22+ y2 < 1} and ug(z,y) = |z| — |y| on 9.

Then ug is 1-Lipschitz, but there is no 1-Lipschitz function u : Q- R
such that v = ug on 92 and w is differentiable at each point of (2.

Open problems. What happens whenever X = (IR2,| - ||), where
| - || is an arbitrary norm 7

What happens whenever X = (IR%,| -|]), d > 2, where || - || is the
euclidian norm 7



Proof of the proposition.

By the theory of A, there exists a unique absolutely minimizing
Lipschitz extension v : Q — IR of ug.

In particular v is a 1-Lipschitz extension of ug on Q.
By Savin’s result (which holds only in dimension 2), v is C1 on Q.

According to Deville and Jaramillo, there exists an almost classi-
cal solution of ||Vu + Vv| = 1 on € vanishing on Q.

w=u -+ v is the desired function.



