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Montel’s theorem

Theorem (Jacobi, 1834)
The following claims hold true:

(a) A meromorphic function f : C→ Ĉ is constant if and only if it
solves a system of functional equations of the form

∆h1 f (z) = ∆h2 f (z) = ∆h3 f (z) = 0 (z ∈ C)

for three independent “periods” {h1, h2, h3} ⊆ C.

(b) There exist non-constant meromorphic functions f : C→ Ĉ with
two independent periods
(These are the so called “elliptic functions”, which are extremely
important in Complex Function Theory).

Note: {h1, h2, h3} are independent if hi 6∈ hjZ + hkZ for all (i, j, k)
such that {i, j, k} = {1, 2, 3}.

J. M. Almira Universidad de Jaén
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Montel’s theorem

Theorem (P. Montel, 1937)
If f : C→ C is an analytic function satisfying

∆m
h1

f (t) = ∆m
h2

f (t) = ∆m
h3

f (z) = 0 for all z ∈ C

for three independent “periods” {h1, h2, h3} ⊆ C Then

f (z) = a0 + a1z + · · ·+ am−1zm−1

for all z ∈ C and certain complex numbers a0, a1, · · · , am−1.

J. M. Almira Universidad de Jaén
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Montel’s theorem

Theorem (P. Montel, 1937)
If f : R→ C is a continuous function satisfying

∆m
h1

f (t) = ∆m
h2

f (t) = 0 for all t ∈ R

and certain h1, h2 ∈ R \ {0} such that h1/h2 6∈ Q, then

f (t) = a0 + a1t + · · ·+ am−1tm−1

for all t ∈ R and certain complex numbers a0, a1, · · · , am−1.

J. M. Almira Universidad de Jaén
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Montel’s theorem

It is important, for our talk, to note that Montel’s Theorem claims
that certain properties which hold true for ∆h can be proved for
the operators ∆m

h .

J. M. Almira Universidad de Jaén
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Anselone-Korevaar’s Theorem

X denotes either the space of continuous functions f : R→ C or the
space of complex valued Schwartz distributions.

Definition (Translation operator τh : X → X)

τh(f )(t) = f (t + h) if f is an ordinary function and
τh(f ){φ} = f{τ−h(φ)} if f is a distribution and φ is a test function.

Definition
A subspace V of X is translation invariant if for all h ∈ R we have that
τh(V) ⊆ V .

J. M. Almira Universidad de Jaén
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Anselone-Korevaar’s Theorem

Theorem (P. M. Anselone, J. Korevaar)
Let V be a finite dimensional subspace of X which is translation
invariant. Then V is the space of solutions of some homogeneous
linear differential equation with constant coefficients

x(n) + a1x(n−1) + · · ·+ an−1x′ + anx = 0

(here x : R→ C and a1, · · · , an ∈ C for some n ∈ N).

These spaces are generated by a set of monomials of the form

tk−1eλt, k = 1, · · · ,m(λ) and λ ∈ {λ0, λ1, · · · , λs} ⊂ C, (0.1)

so that their elements are exponential polynomials. We assume, by
convention, that λ0 = 0 and that m(λ0) = 0 means that this set does
not contain elements of the form tk with k ∈ N.

J. M. Almira Universidad de Jaén
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Anselone-Korevaar’s Theorem

Theorem (P. M. Anselone, J. Korevaar)
Assume that one of the following conditions hold true:

(a) V is a finite dimensional subspace of X and τh1(V) ⊆ V,
τh2(V) ⊆ V for certain non-zero real numbers h1, h2 such that
h1/h2 6∈ Q

(b) V is a finite dimensional subspace of C(0,∞) and τhk(V) ⊆ V
for an infinite sequence of positive real numbers {hk}∞k=1 which
converges to zero,

Then V admits a basis of the form

tk−1eλt, k = 1, · · · ,m(λ) and λ ∈ {λ0, λ1, · · · , λs} ⊂ C,

Note. ∆h = τh − I. Hence

V is τh-invariant if and only if it is ∆h-invariant.

J. M. Almira Universidad de Jaén
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∆m-invariant subspaces: characterization

Question:
What about the finite dimensional ∆m

h -invariant subspaces of X?

Note
In general, if L : X → X is a linear operator, the inclusion Lm(V) ⊆ V
may be not related to L(V) ⊆ V.
For example, if

L 6= λI for any λ but Lm ∈ {0, I}

then:

All subspaces of X are Lm-invariant

There exists v0 ∈ X such that L(v0) 6∈ span{v0}. Hence
V = span{v0} is not L-invariant.

J. M. Almira Universidad de Jaén
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Invariant subspaces of linear operators defined on Cn

I. Gohberg, P. Lancaster, L. Rodman
Invariant subspaces of matrices with applications, Classic in Applied
Mathematics 51 SIAM, 2006.

Definition
Given T : Cn → Cn a linear transformation and λ ∈ σ(T), we define
the root subspace associated to λ and T by the formula

Rλ(T) = ker(T − λI)n.

Theorem (Characterization of invariant subspaces)

Let σ(T) = {λ0, · · · , λt} be all (pairwise distinct) eigenvalues of
T : Cn → Cn. The subspace V ⊆ Cn is T-invariant if and only if

V = (V ∩ Rλ0(T))⊕ (V ∩ Rλ1(T))⊕ · · · ⊕ (V ∩ Rλt(T))

and each subspace Vi = (V ∩ Rλi(T)) is T-invariant.
J. M. Almira Universidad de Jaén
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Invariant subspaces of linear operators defined on Cn

Lemma (Important example)

Let E be a vector space with basis β = {vi}n
i=1 and let m ≥ 1 be a

natural number. Assume that T : E → E satisfies

A = Mβ(T) = λI + B,

where λ 6= 0 and B is strictly upper triangular with nonzero entries in
the first superdiagonal. Then:

(a) The full list of T-invariant subspaces of E is given by V0 = {0}
and Vk = span{v1, · · · , vk}, k = 1, · · · , n.

(b) Tm has the same invariant subspaces as T.

J. M. Almira Universidad de Jaén
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Invariant subspaces of linear operators defined on Cn

Let us prove (a): Assume T(V) ⊂ V and v = a1v1 + · · ·+ asvs ∈ V
with as 6= 0. Then w = Tv− λv ∈ V . Moreover,

w = α1v1+· · ·+αs−1vs−1 with αs−1 = bs−1,sas 6= 0, where B = (bi,j)

Hence:

If V is T-invariant and v = a1v1 + · · ·+ asvs ∈ V with as 6= 0, then

span{v1, · · · , vs} ⊆ V.

Take

k0 = max{k : ∃v ∈ V, v = a1v1 + · · ·+ akvk, ak 6= 0}

Then V = span{v1, · · · , vk0}.
Moreover, it is evident that all spaces Vk = span{v1, · · · , vk} are
T-invariant.

J. M. Almira Universidad de Jaén
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Invariant subspaces of linear operators defined on Cn

To demonstrate (b) we take into account that Mβ(Tm) = Am, so that

Mβ(Tm) = Am

= (λI + B)m

=

m∑
k=0

(
m
k

)
λm−kBk

= λmI + mλm−1B +

m∑
k=2

(
m
k

)
λm−kBk

= λmI + C

with C = mλm−1B +
∑m

k=2

(m
k

)
λm−kBk strictly upper triangular with

nonzero entries in the first upperdiagonal (that came from mλm−1B,
with λ 6= 0) Hence we can apply (a) to Tm and both operators share
the same invariant subspaces. This ends the proof.

J. M. Almira Universidad de Jaén
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Finite dimensional ∆m-invariant subspaces are formed by
exponential polynomials

Theorem

Assume that

V is a finite dimensional subspace of X

∆m
h1

(V) ⊆ V, ∆m
h2

(V) ⊆ V for certain non-zero real numbers
h1, h2 such that h1/h2 6∈ Q.

Then there exists a finite dimensional subspace W of X which is
invariant by translations and contains V.
Consequently, all elements of V are exponential polynomials.

J. M. Almira Universidad de Jaén



logo.pdf

Finite dimensional ∆m-invariant subspaces are formed by
exponential polynomials

Lemma

Let E be a vector space and L : E → E be a linear operator defined
on E. If V ⊂ E is an Lm-invariant subspace of E, then the space

�m
L (V) = V + L(V) + L2(V) + · · ·+ Lm(V)

is L-invariant. Furthermore, �m
L (V) is the smallest L-invariant

subspace of E containing V.

J. M. Almira Universidad de Jaén
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Finite dimensional ∆m-invariant subspaces are formed by
exponential polynomials

Proof :
The linearity of L implies that

L(�m
L (V)) = L(V) + L2(V) + L3(V) + · · ·+ Lm(V) + Lm+1(V).

Now, Lm+1(V) = L(Lm(V)) ⊆ L(V) and L(V) + L(V) = L(V), so
that L(�m

L (V)) ⊆ �m
L (V).

On the other hand, let us assume that V ⊆ F ⊆ E and F is an
L-invariant subspace of E. If {vk}m

k=0 ⊆ V , then Lk(vk) ∈ F for all
k ∈ {0, 1, · · · ,m}, so that v0 + L(v1) + · · ·+ Lm(vm) ∈ F. This
proves that �m

L (V) ⊆ F.

J. M. Almira Universidad de Jaén
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Finite dimensional ∆m-invariant subspaces are formed by
exponential polynomials

Lemma

Let E be a vector space and L, S : E → E be two linear operators
defined on E. Assume that LS = SL. If V ⊂ E is a vector subspace of
E which satisfies Lm(V) ∪ Sm(V) ⊆ V, then

Sm(�m
L (V)) ⊆ �m

L (V).

Consequently, the space

�m
L,S(V) = �m

S (�m
L (V))

is L-invariant, S-invariant, and contains V.

J. M. Almira Universidad de Jaén
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Finite dimensional ∆m-invariant subspaces are formed by
exponential polynomials

Proof:

Sm(�m
L (V)) = Sm(V + L(V) + L2(V) + · · ·+ Lm(V))

= Sm(V) + L(Sm(V)) + L2(Sm(V)) + · · ·+ Lm(Sm(V)))

⊆ V + L(V) + L2(V) + · · ·+ Lm(V) = �m
L (V),

since S,L commute. This proves that �m
L (V) is Sm-invariant, and

Lemma above implies that �m
L,S(V) = �m

S (�m
L (V)) is S-invariant.

L(�m
L,S(V)) = L(�m

L (V) + S(�m
L (V)) + · · ·+ Sm(�m

L (V)))

= L(�m
L (V)) + S(L(�m

L (V))) + · · ·+ Sm(L(�m
L (V)))

⊆ �m
L (V) + S(�m

L (V)) + · · ·+ Sm(�m
L (V)) = �m

L,S(V),

so that �m
L,S(V) is L-invariant. Finally, V ⊆ �m

L (V) ⊆ �m
L,S(V).

J. M. Almira Universidad de Jaén
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Finite dimensional ∆m-invariant subspaces are formed by
exponential polynomials

Finite dimensional ∆m-invariant subspaces are formed by
exponential polynomials: The proof

We apply the second Lemma with E = X, L = ∆h1 and S = ∆h2

to conclude that V ⊆ W = �m
∆h1 ,∆h2

(V) and W is a finite
dimensional subspace of X satisfying ∆hi(W) ⊆ W , i = 1, 2.

Hence we can apply Anselone-Korevaar’s Theorem to W and
conclude that this space admits an algebraic basis of the form

tk−1eλt, k = 1, · · · ,m(λ) and λ ∈ {λ0, λ1, · · · , λs} ⊂ C,

In particular, all elements of V are exponential polynomials.

J. M. Almira Universidad de Jaén
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Application: Montel’s Theorem for distributions

Corollary (Montel’s Theorem for distributions)
Assume that f is a complex valued distribution such that
∆m

h1
f = ∆m

h2
f = 0 for certain non-zero real numbers h1, h2 such that

h1/h2 6∈ Q. Then f is an ordinary polynomial of degree ≤ m− 1.

J. M. Almira Universidad de Jaén
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Application: Montel’s Theorem for distributions

Assume that ∆m
h1

f = ∆m
h2

f = 0. Then V = span{f} is a
1-dimensional space of complex valued distributions and:

∆m
h1

(V) = ∆m
h2

(V) = {0} ⊆ V

Hence all elements of V are exponential polynomials. In particular, f
is an exponential polynomial,

f (t) =

m(0)−1∑
k=0

a0,ktk +

s∑
i=1

m(λi)−1∑
k=0

ai,ktkeλit

and we can assume that m(0) ≥ m with no loss of generality.

J. M. Almira Universidad de Jaén
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Application: Montel’s Theorem for distributions

Let

β = {tk−1eλit, k = 1, · · · ,m(λi) and i = 0, 1, 2, · · · , s}

and E = span{β} be such that V ⊆ E.
Let us consider the linear map ∆h : E → E induced by the operator
∆h when restricted to E.

J. M. Almira Universidad de Jaén
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Application: Montel’s Theorem for distributions

The matrix associated to this operator with respect to the basis β is
block diagonal, A = diag[A0,A1, · · · ,As], with

A0 =


0 h h2 · · · hm(0)−1

0 0 2h · · ·
(m(0)−1

2

)
hm(0)−2

...
...

. . . · · ·
...

0 0 0 · · ·
(m(0)−1

m(0)−2

)
h

0 0 0 · · · 0


and

Ai =


eλih − 1 heλih h2eλih · · · hm(i)−1eλih

0 eλih − 1 2heλih · · ·
(m(i)−1

2

)
hm(i)−2eλih

...
...

. . . · · ·
...

0 0 0 · · ·
(m(i)−1

m(i)−2

)
heλih

0 0 0 · · · eλih − 1

 ,

for i = 1, 2, . . . , s.
J. M. Almira Universidad de Jaén



logo.pdf

Application: Montel’s Theorem for distributions

It follows that the matrix associated to (∆m
h )|E with respect to the

basis β is given by Am = diag[Am
0 ,A

m
1 , · · · ,Am

s ]. Obviously, the
matrices Am

i (i = 1, 2, · · · , s) are invertible since the corresponding Ai

are so. On the other hand, rank(Am
0 ) = m(0)− m and

ker(Am
0 ) = span{(0, 0, · · · , 0, 1(i-th position), 0, · · · , 0) : i = 1, 2, · · · ,m}.

It follows that rank(Am) = dimC E − m, so that dimC ker(Am) = m.
On the other hand, a simple computation shows that the space of
ordinary polynomials of degree ≤ m− 1, which we denote by Πm−1,
is contained into ker(∆m

h ). Hence ker(∆m
h ) = Πm−1, since both

spaces have the same dimension. This, in conjunction with
f ∈ ker(∆m

h ), ends the proof.

J. M. Almira Universidad de Jaén
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∆m-invariant subspaces: structure

Theorem

Assume that V is a finite dimensional subspace of X which satisfies
∆m

h (V) ⊆ V for all h ∈ R. Then there exist vector spaces P ⊂ C[t]
and E ⊂ C(R) such that

V = P ⊕ E

and E is invariant by translations. Consequently,

V is invariant by translations if and only if P is so.

J. M. Almira Universidad de Jaén
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∆m-invariant subspaces: structure

Proof: We use the Characterization of invariant subspaces of any
linear operator based on root subspaces.
We have already shown that V ⊆ E with E = span{β} as above, and
that

Mβ((∆h)|E) = diag[A0,A1, · · · ,As]

with matrices Ai as shown in the previous slides. In particular,

Mβ((∆m
h )|E) = diag[Am

0 ,A
m
1 , · · · ,Am

s ]

J. M. Almira Universidad de Jaén
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∆m-invariant subspaces: structure

An easy computation shows that:

R0((∆m
h )|E) = Πm(0)−1 = span{tk}m(0)−1

k=0

and

R(eλih−1)m((∆m
h )|E) = Πm(0)−1 = span{tkeλit}m(λi)−1

k=0 =: Ei

Hence V is ∆m
h -invariant if and only if

V = V0 ⊕ V1 ⊕ · · · ⊕ Vs

with V0 ⊆ Πm(0)−1 and Vi ⊂ Ei ∆m
h -invariant subspaces (for all i).

J. M. Almira Universidad de Jaén



logo.pdf

∆m-invariant subspaces: structure

Now:

βi = {tkeλit}m(λi)−1
k=0 is a basis of Ei and Mβi((∆h)|Ei) = Ai,

which is a matrix of the special form λI + B that we studied in
Lemma (Important Example).

Hence Vi ⊆ Ei is ∆m
h -invariant if and only if it is ∆h-invariant.

This proves the result with P = V0 and E = V1 ⊕ V2 ⊕ · · · ⊕ Vs.

J. M. Almira Universidad de Jaén
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Other results

Theorem (∆m-invariant subspaces of C(0,∞))

Let V be a finite dimensional subspace of the space of continuous
complex valued functions defined on the semi-infinite interval (0,∞)
and assume that ∆m

hk
(V) ⊆ V for an infinite sequence of positive real

numbers {hk}∞k=1 which converges to zero. Then all elements of V are
exponential polynomials.

J. M. Almira Universidad de Jaén
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Other results

Theorem

Assume that V is a finite dimensional subspace of X. Then the
following statements are equivalent:

(i) ∆m
h (V) ⊆ V for all h ∈ R.

(ii) ∆h1h2···hm(V) ⊆ V for all (h1, h2, · · · , hm) ∈ Rm.

J. M. Almira Universidad de Jaén
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Other results

Theorem
Given σ : R→ R continuous, consider the space:

W(σ) = span{σ(w · xt + b) : w ∈ Rd, ‖w‖2 = 1 and b ∈ R},

where a · bt =
∑d

k=1 akbk is the dot product of vectors. There are
exactly two possibilities: Either

σ is an ordinary polynomial (In which case dim W(σ) <∞).

or

W(σ) is a dense subset of C(Rd) with the topology of uniform
convergence on compact subsets of Rd.

J. M. Almira Universidad de Jaén
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Other results

There is a similar result substituting σ by a function of several
variables and W(σ) by

Γ(σ) = span{σ(w ◦ x + b) : b,w ∈ Rd},

where a ◦ b = (a1b1, a2b2, · · · , adbd) is the componentwise product
of the vectors.
In that case, either

dim Γ(σ) <∞ (and σ is a polynomial in d variables)

or

Γ(σ) is dense in C(Rd).

J. M. Almira Universidad de Jaén
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Some open problems

Many of the results above hold true in several variables setting.
In particular, this is so for Montel’s Theorem and for the
Characterizations of ∆m

h -invariant subspaces of continuous
functions and distributions.

On the other hand, our proof that ∆m
h -invariant and

∆h1h2···hm-invariant finite dimensional subspaces are the same,
does not apply for the multivariate setting (and it is still open
question to know the corresponding result)

J. M. Almira Universidad de Jaén
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Some open problems

The paper:

M. Engert
Finite dimensional translation invariant subspaces, Pacific J. Math. 32
(2) (1970) 333-343

contains an analogous result to Anselone-Korevaar’s theorem for the
case of measurable functions on σ-compact locally compact abelian
groups.

Do the results of this talk hold true for measurable functions?
(We conjeture: No.
In any case, the proofs should be different!!)

J. M. Almira Universidad de Jaén
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Some open problems

What about the questions of this talk if formulated for Lie
Groups? (Here the functions can be of the form
f : (G, ∗)→ (H, ◦) and the associated operators are
τhg(x) = g(x ∗ h), ∆hg(x) = g(x ∗ h) ◦ g(x)−1).

It would be of interest to study spaces of functions which are
invariant under certain geometrically motivated operators. For
example, given N > 0, we can consider the operators

Lh(f )(z) =
1
N

N−1∑
k=0

f (z + wkh),

with w any primitive N-th root of 1.

Is there any natural way to characterize the spaces of solutions of
linear EDO’s x′(t) = A(t)x(t) with A(t) periodic matrix function?

J. M. Almira Universidad de Jaén
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Some open problems

Is it possible to prove a Montel’s type theorem for Popoviciu’s
functional equation?

det


f (x) f (x + h) · · · f (x + nh)

f (x + h) f (x + 2h) · · · f (x + (n + 1)h)
...

...
. . .

...
f (x + nh) f (x + (n + 1)h) · · · f (x + 2nh)

 = 0

J. M. Almira Universidad de Jaén
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By now... This is the End

Thank you for your attention!!

J. M. Almira Universidad de Jaén


