On subspaces of distributions which are Δ^{m}-invariant

J. M. Almira
Dedicated to the memory of Prof. Bernardo Cascales

Universidad de Murcia
XVI Encuentros Murcia-Valencia
December, 2018
jmalmira@um.es

Montel's theorem

Theorem (Jacobi, 1834)

The following claims hold true:
(a) A meromorphic function $f: \mathbb{C} \rightarrow \widehat{\mathbb{C}}$ is constant if and only if it solves a system of functional equations of the form

$$
\Delta_{h_{1}} f(z)=\Delta_{h_{2}} f(z)=\Delta_{h_{3}} f(z)=0 \quad(z \in \mathbb{C})
$$

for three independent "periods" $\left\{h_{1}, h_{2}, h_{3}\right\} \subseteq \mathbb{C}$.
(b) There exist non-constant meromorphic functions $f: \mathbb{C} \rightarrow \widehat{\mathbb{C}}$ with two independent periods
(These are the so called "elliptic functions", which are extremely important in Complex Function Theory).

Note: $\left\{h_{1}, h_{2}, h_{3}\right\}$ are independent if $h_{i} \notin h_{j} \mathbb{Z}+h_{k} \mathbb{Z}$ for all (i, j, k) such that $\{i, j, k\}=\{1,2,3\}$.

Montel's theorem

Theorem (P. Montel, 1937)

Iff $: \mathbb{C} \rightarrow \mathbb{C}$ is an analytic function satisfying

$$
\Delta_{h_{1}}^{m} f(t)=\Delta_{h_{2}}^{m} f(t)=\Delta_{h_{3}}^{m} f(z)=0 \text { for all } z \in \mathbb{C}
$$

for three independent "periods" $\left\{h_{1}, h_{2}, h_{3}\right\} \subseteq \mathbb{C}$ Then

$$
f(z)=a_{0}+a_{1} z+\cdots+a_{m-1} z^{m-1}
$$

for all $z \in \mathbb{C}$ and certain complex numbers $a_{0}, a_{1}, \cdots, a_{m-1}$.

Montel's theorem

Theorem (P. Montel, 1937)

Iff $: \mathbb{R} \rightarrow \mathbb{C}$ is a continuous function satisfying

$$
\Delta_{h_{1}}^{m} f(t)=\Delta_{h_{2}}^{m} f(t)=0 \text { for all } t \in \mathbb{R}
$$

and certain $h_{1}, h_{2} \in \mathbb{R} \backslash\{0\}$ such that $h_{1} / h_{2} \notin \mathbb{Q}$, then

$$
f(t)=a_{0}+a_{1} t+\cdots+a_{m-1} t^{m-1}
$$

for all $t \in \mathbb{R}$ and certain complex numbers $a_{0}, a_{1}, \cdots, a_{m-1}$.

Montel's theorem

It is important, for our talk, to note that Montel's Theorem claims that certain properties which hold true for Δ_{h} can be proved for the operators Δ_{h}^{m}.

Anselone-Korevaar's Theorem

X denotes either the space of continuous functions $f: \mathbb{R} \rightarrow \mathbb{C}$ or the space of complex valued Schwartz distributions.

Definition (Translation operator $\tau_{h}: X \rightarrow X$)

$\tau_{h}(f)(t)=f(t+h)$ if f is an ordinary function and $\tau_{h}(f)\{\phi\}=f\left\{\tau_{-h}(\phi)\right\}$ if f is a distribution and ϕ is a test function.

Definition

A subspace V of X is translation invariant if for all $h \in \mathbb{R}$ we have that $\tau_{h}(V) \subseteq V$.

Anselone-Korevaar's Theorem

Theorem (P. M. Anselone, J. Korevaar)

Let V be a finite dimensional subspace of X which is translation invariant. Then V is the space of solutions of some homogeneous linear differential equation with constant coefficients

$$
x^{(n)}+a_{1} x^{(n-1)}+\cdots+a_{n-1} x^{\prime}+a_{n} x=0
$$

(here $x: \mathbb{R} \rightarrow \mathbb{C}$ and $a_{1}, \cdots, a_{n} \in \mathbb{C}$ for some $n \in \mathbb{N}$).
These spaces are generated by a set of monomials of the form

$$
\begin{equation*}
t^{k-1} e^{\lambda t}, k=1, \cdots, m(\lambda) \text { and } \lambda \in\left\{\lambda_{0}, \lambda_{1}, \cdots, \lambda_{s}\right\} \subset \mathbb{C} \tag{0.1}
\end{equation*}
$$

so that their elements are exponential polynomials. We assume, by convention, that $\lambda_{0}=0$ and that $m\left(\lambda_{0}\right)=0$ means that this set does not contain elements of the form t^{k} with $k \in \mathbb{N}$.

Anselone-Korevaar's Theorem

Theorem (P. M. Anselone, J. Korevaar)

Assume that one of the following conditions hold true:
(a) V is a finite dimensional subspace of X and $\tau_{h_{1}}(V) \subseteq V$, $\tau_{h_{2}}(V) \subseteq V$ for certain non-zero real numbers h_{1}, h_{2} such that $h_{1} / h_{2} \notin \mathbb{Q}$
(b) V is a finite dimensional subspace of $\mathbf{C}(0, \infty)$ and $\tau_{h_{k}}(V) \subseteq V$ for an infinite sequence of positive real numbers $\left\{h_{k}\right\}_{k=1}^{\infty}$ which converges to zero,
Then V admits a basis of the form

$$
t^{k-1} e^{\lambda t}, k=1, \cdots, m(\lambda) \text { and } \lambda \in\left\{\lambda_{0}, \lambda_{1}, \cdots, \lambda_{s}\right\} \subset \mathbb{C}
$$

Note. $\Delta_{h}=\tau_{h}-I$. Hence
V is τ_{h}-invariant if and only if it is Δ_{h}-invariant.

Δ^{m}-invariant subspaces: characterization

Question:

What about the finite dimensional Δ_{h}^{m}-invariant subspaces of X ?

Note

In general, if $L: X \rightarrow X$ is a linear operator, the inclusion $L^{m}(V) \subseteq V$ may be not related to $L(V) \subseteq V$.
For example, if

$$
L \neq \lambda I \text { for any } \lambda \text { but } L^{m} \in\{0, I\}
$$

then:

- All subspaces of X are L^{m}-invariant
- There exists $v_{0} \in X$ such that $L\left(v_{0}\right) \notin \mathbf{s p a n}\left\{v_{0}\right\}$. Hence $V=\boldsymbol{\operatorname { p p a n }}\left\{v_{0}\right\}$ is not L-invariant.

Invariant subspaces of linear operators defined on \mathbb{C}^{n}

I. Gohberg, P. Lancaster, L. Rodman

Invariant subspaces of matrices with applications, Classic in Applied Mathematics 51 SIAM, 2006.

Definition

Given $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ a linear transformation and $\lambda \in \sigma(T)$, we define the root subspace associated to λ and T by the formula

$$
R_{\lambda}(T)=\operatorname{ker}(T-\lambda I)^{n}
$$

Theorem (Characterization of invariant subspaces)

Let $\sigma(T)=\left\{\lambda_{0}, \cdots, \lambda_{t}\right\}$ be all (pairwise distinct) eigenvalues of $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$. The subspace $V \subseteq \mathbb{C}^{n}$ is T-invariant if and only if

$$
V=\left(V \cap R_{\lambda_{0}}(T)\right) \oplus\left(V \cap R_{\lambda_{1}}(T)\right) \oplus \cdots \oplus\left(V \cap R_{\lambda_{t}}(T)\right)
$$

and each subspace $V_{i}=\left(V \cap R_{\lambda_{i}}(T)\right)$ is T-invariant.

Invariant subspaces of linear operators defined on \mathbb{C}^{n}

Lemma (Important example)

Let E be a vector space with basis $\beta=\left\{v_{i}\right\}_{i=1}^{n}$ and let $m \geq 1$ be a natural number. Assume that $T: E \rightarrow E$ satisfies

$$
A=M_{\beta}(T)=\lambda I+B,
$$

where $\lambda \neq 0$ and B is strictly upper triangular with nonzero entries in the first superdiagonal. Then:
(a) The full list of T-invariant subspaces of E is given by $V_{0}=\{0\}$ and $V_{k}=\operatorname{span}\left\{v_{1}, \cdots, v_{k}\right\}, k=1, \cdots, n$.
(b) T^{m} has the same invariant subspaces as T.

Invariant subspaces of linear operators defined on \mathbb{C}^{n}

Let us prove (a) : Assume $T(V) \subset V$ and $v=a_{1} v_{1}+\cdots+a_{s} v_{s} \in V$ with $a_{s} \neq 0$. Then $w=T v-\lambda v \in V$. Moreover,
$w=\alpha_{1} v_{1}+\cdots+\alpha_{s-1} v_{s-1}$ with $\alpha_{s-1}=b_{s-1, s} a_{s} \neq 0$, where $B=\left(b_{i, j}\right)$
Hence:
If V is T-invariant and $v=a_{1} v_{1}+\cdots+a_{s} v_{s} \in V$ with $a_{s} \neq 0$, then

$$
\boldsymbol{\operatorname { s p a n }}\left\{v_{1}, \cdots, v_{s}\right\} \subseteq V
$$

Take

$$
k_{0}=\max \left\{k: \exists v \in V, v=a_{1} v_{1}+\cdots+a_{k} v_{k}, a_{k} \neq 0\right\}
$$

Then $V=\boldsymbol{\operatorname { s p a n }}\left\{v_{1}, \cdots, v_{k_{0}}\right\}$.
Moreover, it is evident that all spaces $V_{k}=\boldsymbol{\operatorname { s p a n }}\left\{v_{1}, \cdots, v_{k}\right\}$ are T-invariant.

Invariant subspaces of linear operators defined on \mathbb{C}^{n}

To demonstrate (b) we take into account that $M_{\beta}\left(T^{m}\right)=A^{m}$, so that

$$
\begin{aligned}
M_{\beta}\left(T^{m}\right) & =A^{m} \\
& =(\lambda I+B)^{m} \\
& =\sum_{k=0}^{m}\binom{m}{k} \lambda^{m-k} B^{k} \\
& =\lambda^{m} I+m \lambda^{m-1} B+\sum_{k=2}^{m}\binom{m}{k} \lambda^{m-k} B^{k} \\
& =\lambda^{m} I+C
\end{aligned}
$$

with $C=m \lambda^{m-1} B+\sum_{k=2}^{m}\binom{m}{k} \lambda^{m-k} B^{k}$ strictly upper triangular with nonzero entries in the first upperdiagonal (that came from $m \lambda^{m-1} B$, with $\lambda \neq 0$) Hence we can apply (a) to T^{m} and both operators share the same invariant subspaces. This ends the proof.

Finite dimensional Δ^{m}-invariant subspaces are formed by exponential polynomials

Theorem

Assume that

- V is a finite dimensional subspace of X
- $\Delta_{h_{1}}^{m}(V) \subseteq V, \Delta_{h_{2}}^{m}(V) \subseteq V$ for certain non-zero real numbers h_{1}, h_{2} such that $h_{1} / h_{2} \notin \mathbb{Q}$.
Then there exists a finite dimensional subspace W of X which is invariant by translations and contains V.
Consequently, all elements of V are exponential polynomials.

Finite dimensional Δ^{m}-invariant subspaces are formed by exponential polynomials

Lemma

Let E be a vector space and $L: E \rightarrow E$ be a linear operator defined on E. If $V \subset E$ is an L^{m}-invariant subspace of E, then the space

$$
\square_{L}^{m}(V)=V+L(V)+L^{2}(V)+\cdots+L^{m}(V)
$$

is L-invariant. Furthermore, $\square_{L}^{m}(V)$ is the smallest L-invariant subspace of E containing V.

Finite dimensional Δ^{m}-invariant subspaces are formed by exponential polynomials

Proof :

The linearity of L implies that

$$
L\left(\square_{L}^{m}(V)\right)=L(V)+L^{2}(V)+L^{3}(V)+\cdots+L^{m}(V)+L^{m+1}(V)
$$

Now, $L^{m+1}(V)=L\left(L^{m}(V)\right) \subseteq L(V)$ and $L(V)+L(V)=L(V)$, so that $L\left(\square_{L}^{m}(V)\right) \subseteq \square_{L}^{m}(V)$.
On the other hand, let us assume that $V \subseteq F \subseteq E$ and F is an L-invariant subspace of E. If $\left\{v_{k}\right\}_{k=0}^{m} \subseteq V$, then $L^{k}\left(v_{k}\right) \in F$ for all $k \in\{0,1, \cdots, m\}$, so that $v_{0}+L\left(v_{1}\right)+\cdots+L^{m}\left(v_{m}\right) \in F$. This proves that $\square_{L}^{m}(V) \subseteq F$.

Finite dimensional Δ^{m}-invariant subspaces are formed by exponential polynomials

Lemma

Let E be a vector space and $L, S: E \rightarrow E$ be two linear operators defined on E. Assume that $L S=S L$. If $V \subset E$ is a vector subspace of E which satisfies $L^{m}(V) \cup S^{m}(V) \subseteq V$, then

$$
S^{m}\left(\square_{L}^{m}(V)\right) \subseteq \square_{L}^{m}(V)
$$

Consequently, the space

$$
\diamond_{L, S}^{m}(V)=\square_{S}^{m}\left(\square_{L}^{m}(V)\right)
$$

is L-invariant, S-invariant, and contains V.

Finite dimensional Δ^{m}-invariant subspaces are formed by exponential polynomials

Proof:

$$
\begin{aligned}
S^{m}\left(\square_{L}^{m}(V)\right) & =S^{m}\left(V+L(V)+L^{2}(V)+\cdots+L^{m}(V)\right) \\
& \left.=S^{m}(V)+L\left(S^{m}(V)\right)+L^{2}\left(S^{m}(V)\right)+\cdots+L^{m}\left(S^{m}(V)\right)\right) \\
& \subseteq V+L(V)+L^{2}(V)+\cdots+L^{m}(V)=\square_{L}^{m}(V)
\end{aligned}
$$

since S, L commute. This proves that $\square_{L}^{m}(V)$ is S^{m}-invariant, and Lemma above implies that $\diamond_{L, S}^{m}(V)=\square_{S}^{m}\left(\square_{L}^{m}(V)\right)$ is S-invariant.

$$
\begin{aligned}
L\left(\diamond_{L, S}^{m}(V)\right) & =L\left(\square_{L}^{m}(V)+S\left(\square_{L}^{m}(V)\right)+\cdots+S^{m}\left(\square_{L}^{m}(V)\right)\right) \\
& =L\left(\square_{L}^{m}(V)\right)+S\left(L\left(\square_{L}^{m}(V)\right)\right)+\cdots+S^{m}\left(L\left(\square_{L}^{m}(V)\right)\right) \\
& \subseteq \square_{L}^{m}(V)+S\left(\square_{L}^{m}(V)\right)+\cdots+S^{m}\left(\square_{L}^{m}(V)\right)=\diamond_{L, S}^{m}(V),
\end{aligned}
$$

so that $\diamond_{L, S}^{m}(V)$ is L-invariant. Finally, $V \subseteq \square_{L}^{m}(V) \subseteq \diamond_{L, S}^{m}(V)$.

Finite dimensional Δ^{m}-invariant subspaces are formed by exponential polynomials

Finite dimensional Δ^{m}-invariant subspaces are formed by exponential polynomials: The proof

- We apply the second Lemma with $E=X, L=\Delta_{h_{1}}$ and $S=\Delta_{h_{2}}$ to conclude that $V \subseteq W=\diamond_{\Delta_{h_{1}}, \Delta_{h_{2}}}^{m}(V)$ and W is a finite dimensional subspace of X satisfying $\Delta_{h_{i}}(W) \subseteq W, i=1,2$.
- Hence we can apply Anselone-Korevaar's Theorem to W and conclude that this space admits an algebraic basis of the form

$$
t^{k-1} e^{\lambda t}, k=1, \cdots, m(\lambda) \text { and } \lambda \in\left\{\lambda_{0}, \lambda_{1}, \cdots, \lambda_{s}\right\} \subset \mathbb{C}
$$

- In particular, all elements of V are exponential polynomials.

Application: Montel's Theorem for distributions

Corollary (Montel's Theorem for distributions)

Assume that f is a complex valued distribution such that $\Delta_{h_{1}}^{m} f=\Delta_{h_{2}}^{m} f=0$ for certain non-zero real numbers h_{1}, h_{2} such that $h_{1} / h_{2} \notin \mathbb{Q}$. Then f is an ordinary polynomial of degree $\leq m-1$.

Application: Montel's Theorem for distributions

Assume that $\Delta_{h_{1}}^{m} f=\Delta_{h_{2}}^{m} f=0$. Then $V=\boldsymbol{\operatorname { s p a n }}\{f\}$ is a 1-dimensional space of complex valued distributions and:

$$
\Delta_{h_{1}}^{m}(V)=\Delta_{h_{2}}^{m}(V)=\{0\} \subseteq V
$$

Hence all elements of V are exponential polynomials. In particular, f is an exponential polynomial,

$$
f(t)=\sum_{k=0}^{m(0)-1} a_{0, k} t^{k}+\sum_{i=1}^{s} \sum_{k=0}^{m\left(\lambda_{i}\right)-1} a_{i, k} t^{k} e^{\lambda_{i} t}
$$

and we can assume that $m(0) \geq m$ with no loss of generality.

Application: Montel's Theorem for distributions

Let

$$
\beta=\left\{t^{k-1} e^{\lambda_{i} t}, \quad k=1, \cdots, m\left(\lambda_{i}\right) \text { and } i=0,1,2, \cdots, s\right\}
$$

and $E=\boldsymbol{\operatorname { s p a n }}\{\beta\}$ be such that $V \subseteq E$.
Let us consider the linear map $\Delta_{h}: E \rightarrow E$ induced by the operator Δ_{h} when restricted to E.

Application: Montel's Theorem for distributions

The matrix associated to this operator with respect to the basis β is block diagonal, $A=\operatorname{diag}\left[A_{0}, A_{1}, \cdots, A_{s}\right]$, with

$$
A_{0}=\left[\begin{array}{ccccc}
0 & h & h^{2} & \cdots & h^{m(0)-1} \\
0 & 0 & 2 h & \cdots & \binom{m(0)-1}{2} h^{m(0)-2} \\
\vdots & \vdots & \ddots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & \binom{m(0)-1}{m(0)-2} h \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

and

$$
A_{i}=\left[\begin{array}{ccccc}
e^{\lambda_{i} h}-1 & h e^{\lambda_{i} h} & h^{2} e^{\lambda_{i} h} & \ldots & h^{m(i)-1} e^{\lambda_{i} h} \\
0 & e^{\lambda_{i} h}-1 & 2 h e^{\lambda_{i} h} & \ldots & \binom{m(i)-1}{2} h^{m(i)-2} e^{\lambda_{i} h} \\
\vdots & \vdots & \ddots & \ldots & \vdots \\
0 & 0 & 0 & \cdots & \binom{m(i)-1}{m(i)-2} h e^{\lambda_{i} h} \\
0 & 0 & 0 & \cdots & e^{\lambda_{i} h}-1
\end{array}\right]
$$

for $i=1,2, \ldots, s$.

Application: Montel's Theorem for distributions

It follows that the matrix associated to $\left(\Delta_{h}^{m}\right)_{\mid E}$ with respect to the basis β is given by $A^{m}=\operatorname{diag}\left[A_{0}^{m}, A_{1}^{m}, \cdots, A_{s}^{m}\right]$. Obviously, the matrices $A_{i}^{m}(i=1,2, \cdots, s)$ are invertible since the corresponding A_{i} are so. On the other hand, $\operatorname{rank}\left(A_{0}^{m}\right)=m(0)-m$ and
$\boldsymbol{\operatorname { k e r }}\left(A_{0}^{m}\right)=\boldsymbol{\operatorname { s p a n }}\left\{\left(0,0, \cdots, 0,1^{(\mathrm{i}-\mathrm{th}}\right.\right.$ position)$\left.\left., 0, \cdots, 0\right): i=1,2, \cdots, m\right\}$.
It follows that $\operatorname{rank}\left(A^{m}\right)=\operatorname{dim}_{\mathbb{C}} E-m$, so that $\operatorname{dim}_{\mathbb{C}} \operatorname{ker}\left(A^{m}\right)=m$. On the other hand, a simple computation shows that the space of ordinary polynomials of degree $\leq m-1$, which we denote by Π_{m-1}, is contained into $\operatorname{ker}\left(\Delta_{h}^{m}\right)$. Hence $\operatorname{ker}\left(\Delta_{h}^{m}\right)=\Pi_{m-1}$, since both spaces have the same dimension. This, in conjunction with $f \in \operatorname{ker}\left(\Delta_{h}^{m}\right)$, ends the proof.

Δ^{m}-invariant subspaces: structure

Theorem

Assume that V is a finite dimensional subspace of X which satisfies $\Delta_{h}^{m}(V) \subseteq V$ for all $h \in \mathbb{R}$. Then there exist vector spaces $\mathcal{P} \subset \mathbb{C}[t]$ and $\mathcal{E} \subset \mathbf{C}(\mathbb{R})$ such that

$$
V=\mathcal{P} \oplus \mathcal{E}
$$

and \mathcal{E} is invariant by translations. Consequently,
V is invariant by translations if and only if \mathcal{P} is so.

Δ^{m}-invariant subspaces: structure

Proof: We use the Characterization of invariant subspaces of any linear operator based on root subspaces.
We have already shown that $V \subseteq E$ with $E=\boldsymbol{\operatorname { s p a n }}\{\beta\}$ as above, and that

$$
M_{\beta}\left(\left(\Delta_{h}\right)_{\mid E}\right)=\operatorname{diag}\left[A_{0}, A_{1}, \cdots, A_{s}\right]
$$

with matrices A_{i} as shown in the previous slides. In particular,

$$
M_{\beta}\left(\left(\Delta_{h}^{m}\right)_{\mid E}\right)=\operatorname{diag}\left[A_{0}^{m}, A_{1}^{m}, \cdots, A_{s}^{m}\right]
$$

Δ^{m}-invariant subspaces: structure

An easy computation shows that:

$$
R_{0}\left(\left(\Delta_{h}^{m}\right)_{\mid E}\right)=\Pi_{m(0)-1}=\boldsymbol{\operatorname { s p a n }}\left\{t^{k}\right\}_{k=0}^{m(0)-1}
$$

and

$$
R_{\left(e^{\lambda_{i} h}-1\right)^{m}}\left(\left(\Delta_{h}^{m}\right)_{\mid E}\right)=\Pi_{m(0)-1}=\boldsymbol{\operatorname { s p a n }}\left\{t^{k} e^{\lambda_{i} t}\right\}_{k=0}^{m\left(\lambda_{i}\right)-1}=: E_{i}
$$

Hence V is Δ_{h}^{m}-invariant if and only if

$$
V=V_{0} \oplus V_{1} \oplus \cdots \oplus V_{s}
$$

with $V_{0} \subseteq \Pi_{m(0)-1}$ and $V_{i} \subset E_{i} \Delta_{h}^{m}$-invariant subspaces (for all i).

Δ^{m}-invariant subspaces: structure

Now:

- $\beta_{i}=\left\{t^{k} e^{\lambda_{i} t}\right\}_{k=0}^{m\left(\lambda_{i}\right)-1}$ is a basis of E_{i} and $M_{\beta_{i}}\left(\left(\Delta_{h}\right){\mid E_{i}}\right)=A_{i}$, which is a matrix of the special form $\lambda I+B$ that we studied in Lemma (Important Example).
- Hence $V_{i} \subseteq E_{i}$ is Δ_{h}^{m}-invariant if and only if it is Δ_{h}-invariant.
- This proves the result with $\mathcal{P}=V_{0}$ and $\mathcal{E}=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{s}$.

Other results

Theorem (Δ^{m}-invariant subspaces of $\mathbf{C}(0, \infty)$)

Let V be a finite dimensional subspace of the space of continuous complex valued functions defined on the semi-infinite interval $(0, \infty)$ and assume that $\Delta_{h_{k}}^{m}(V) \subseteq V$ for an infinite sequence of positive real numbers $\left\{h_{k}\right\}_{k=1}^{\infty}$ which converges to zero. Then all elements of V are exponential polynomials.

Other results

Theorem

Assume that V is a finite dimensional subspace of X. Then the following statements are equivalent:
(i) $\Delta_{h}^{m}(V) \subseteq V$ for all $h \in \mathbb{R}$.
(ii) $\Delta_{h_{1} h_{2} \cdots h_{m}}(V) \subseteq V$ for all $\left(h_{1}, h_{2}, \cdots, h_{m}\right) \in \mathbb{R}^{m}$.

Other results

Theorem

Given $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ continuous, consider the space:

$$
W(\sigma)=\operatorname{span}\left\{\sigma\left(w \cdot x^{t}+b\right): w \in \mathbb{R}^{d},\|w\|_{2}=1 \text { and } b \in \mathbb{R}\right\}
$$

where $a \cdot b^{t}=\sum_{k=1}^{d} a_{k} b_{k}$ is the dot product of vectors. There are exactly two possibilities: Either

- σ is an ordinary polynomial (In which case $\operatorname{dim} W(\sigma)<\infty$). or
- $W(\sigma)$ is a dense subset of $C\left(\mathbb{R}^{d}\right)$ with the topology of uniform convergence on compact subsets of \mathbb{R}^{d}.

Other results

There is a similar result substituting σ by a function of several variables and $W(\sigma)$ by

$$
\Gamma(\sigma)=\boldsymbol{\operatorname { s p a n }}\left\{\sigma(w \circ x+b): b, w \in \mathbb{R}^{d}\right\}
$$

where $a \circ b=\left(a_{1} b_{1}, a_{2} b_{2}, \cdots, a_{d} b_{d}\right)$ is the componentwise product of the vectors.
In that case, either

- $\operatorname{dim} \Gamma(\sigma)<\infty$ (and σ is a polynomial in d variables) or
- $\Gamma(\sigma)$ is dense in $C\left(\mathbb{R}^{d}\right)$.

Some open problems

- Many of the results above hold true in several variables setting. In particular, this is so for Montel's Theorem and for the Characterizations of Δ_{h}^{m}-invariant subspaces of continuous functions and distributions.
- On the other hand, our proof that Δ_{h}^{m}-invariant and $\Delta_{h_{1} h_{2} \cdots h_{m}}$-invariant finite dimensional subspaces are the same, does not apply for the multivariate setting (and it is still open question to know the corresponding result)

Some open problems

The paper:

M. Engert

Finite dimensional translation invariant subspaces, Pacific J. Math. 32 (2) (1970) 333-343
contains an analogous result to Anselone-Korevaar's theorem for the case of measurable functions on σ-compact locally compact abelian groups.

- Do the results of this talk hold true for measurable functions? (We conjeture: No.
In any case, the proofs should be different!!)

Some open problems

- What about the questions of this talk if formulated for Lie Groups? (Here the functions can be of the form $f:(G, *) \rightarrow(H, \circ)$ and the associated operators are $\left.\tau_{h} g(x)=g(x * h), \Delta_{h} g(x)=g(x * h) \circ g(x)^{-1}\right)$.
- It would be of interest to study spaces of functions which are invariant under certain geometrically motivated operators. For example, given $N>0$, we can consider the operators

$$
L_{h}(f)(z)=\frac{1}{N} \sum_{k=0}^{N-1} f\left(z+w^{k} h\right)
$$

with w any primitive N-th root of 1 .

- Is there any natural way to characterize the spaces of solutions of linear EDO's $x^{\prime}(t)=A(t) x(t)$ with $A(t)$ periodic matrix function?

Some open problems

- Is it possible to prove a Montel's type theorem for Popoviciu's functional equation?

$$
\operatorname{det}\left[\begin{array}{cccc}
f(x) & f(x+h) & \cdots & f(x+n h) \\
f(x+h) & f(x+2 h) & \cdots & f(x+(n+1) h) \\
\vdots & \vdots & \ddots & \vdots \\
f(x+n h) & f(x+(n+1) h) & \cdots & f(x+2 n h)
\end{array}\right]=0
$$

By now... This is the End

Thank you for your attention!!

