On a theorem of Helson for general Dirichlet series

A talk dedicated to my friend Bernardo Cascales

Joint work of: Andreas Defant and Ingo Schoolmann Workshop: XVI Encuentros de Análisis Funcional Murcia-Valencia 2018

Bernardo with Klaus and Andreas, 1987

Antonio with Sunke and Andreas, 2014

Carleson-Hunt theorem, 1966

The Fourier series of every $f \in L_p(\mathbb{T}), 1 converges almost everywhere on <math>\mathbb{T}$.

Bohr's fundamental theorem, 1914

Let $D = \sum a_n n^{-s}$ be a Dirichlet series. Then the abscissa of uniform convergence and the abscissa of boundedness coincide.

Helson's theorem.....

Appetizer – Riemann's conjecture is true 'almost everywhere':

For almost all completely multiplicative arithmetic functions $\chi:\mathbb{N}\to\mathbb{T}$ the radomized $\zeta\text{-function}$

$$\sum \chi(n) \frac{1}{n^s}$$

converges on $[Re > \frac{1}{2}]$ and has no zeros there.

Almost everywhere?

$$\Xi \longrightarrow \mathbb{T}^{\infty}, \ \chi \mapsto (\chi(p_k))$$
 group isomorphism

Helson's theorem, 1969

Let $D = \sum a_n n^{-s}$ be a Dirichlet series such that $(a_n) \in \ell_2$. Then

$$\sum \chi(n) a_n n^{-s}$$

converges for almost all $\chi \in \Xi$ on [Re > 0].

Carleson-Hunt theorem, 1966

The Fourier series of every $f \in L_p(\mathbb{T}), 1 converges almost everywhere on <math>\mathbb{T}$.

Bohr's theorem, 1914

Let $D = \sum a_n n^{-s}$ be a Dirichlet series. Then the abscissa of uniform convergence and the abscissa of boundedness coincide.

Helson's theorem, 1969

Let $D = \sum a_n n^{-s}$ be a Dirichlet series such that $(a_n) \in \ell_2$. Then $\sum \chi(n)a_n(D)n^{-s}$ converges for almost all χ on [Re > 0].

These three apparently very different results are in fact linked!

A natural class of λ -Dirichlet series

$$\mathcal{D}_{\infty}(\lambda) = \left\{ D = \sum a_n e^{-\lambda_n s} \colon D \text{ is bdd and holo on } [\operatorname{Re} > 0] \right\}$$

Theorem

 $\mathcal{D}_{\infty}(\lambda)$ is a Banach space whenever λ satisfies Bohr's condition (BC):

$$\exists l = l(\lambda) > 0 \forall \delta > 0 \; \exists \; C > 0 \; \forall \; n \in \mathbb{N} : \lambda_{n+1} - \lambda_n \ge C e^{-(l+\delta)\lambda_n}$$

Obvious

There is a bijective isometry

$$\mathcal{D}_{\infty}((n)) = H_{\infty}(\mathbb{T}), \ D = \sum a_n e^{-ns} \mapsto f = \sum a_n z^n.$$

Theorem, Bohr-Hedenmalm-Lindqvist-Seip, 1998

There is a bijective isometry

$$\mathcal{D}_{\infty}((\log n)) = H_{\infty}(\mathbb{T}^{\infty}), \ D \mapsto f$$

which preserves the coefficients, i.e. $a_n(D) = \hat{f}(\alpha)$ whenever $n \in \mathbb{N}$ and $\alpha = (\alpha_1, \ldots, \alpha_N, 0, \ldots) \in \mathbb{N}_0^{(\mathbb{N})}$ are such that

$$n = p_1^{\alpha_1} \times \ldots \times p_N^{\alpha_N} \,.$$

One of the crucial tools

The continuous group homomorphism

$$\beta : \mathbb{R} \to \mathbb{T}^{\infty}, \ t \mapsto (p_k^{-it})_{k=1}^{\infty}$$

has dense range, and for each n and α with $n=\mathfrak{p}^\alpha$ the following diagram commutes

Bayart's Hardy spaces of Dirichlet series, 2002 For $1 \le p \le \infty$ $\mathcal{H}_p := \left\{ D = \sum a_n n^{-s} \colon \exists f \in H_p(\mathbb{T}^\infty) : a_n(D) = \hat{f}(\alpha) \text{ if } n = \mathfrak{p}^\alpha \right\}$ together with $\|D\|_p = \|f\|_p$ defines a Banach space.

The Bohr-Hedenmalm-Lindqvist-Seip theorem revisited

 $\mathcal{D}_{\infty}((\log n)) = \mathcal{H}_{\infty}$

From ordinary to general Dirichlet series

- ... a big step!
- A few heros in alphabetical order: Bohr, Besikovitch, Bohnenblust, Hardy, Helson, Hille, Kahane, Landau, Perron, M. Riesz, Neder,...

Under construction

... an \mathcal{H}_p -theory of λ -Dirichlet series modelled along Bayart's 'ordinary theory'

λ -Dirichlet groups

Given a frequency $\lambda,$ we call a pair (G,β) a $\lambda\text{-Dirichlet group if}$

- G is a compact abelian group and $\beta:\mathbb{R}\to G$ a continuous group homomorphism with dense range.
- For each character $e^{-i\lambda_n t}$ there is some character $h_{\lambda_n}(\boldsymbol{\omega})$ (then unique) such that

Definition – **Hardy spaces of general Dirichlet series** Let (G, β) be a λ -Dirichlet group, and $1 \le p \le \infty$. Then

 $\mathcal{H}_p(\lambda)$

consists of all $D=\sum a_n e^{-\lambda_n s}$ for which there is some $f\in L_p(G)$ (then unique) such that

- $\hat{f}: \hat{G} \to \mathbb{C}$ is supported by all $h_{\lambda_n}, n \in \mathbb{N}$
- $a_n(D) = \hat{f}(h_{\lambda_n})$ for all n

Essential

- The H_p(λ)'s are Banach spaces which are independent of the chosen λ-Dirichlet group.
- For $\lambda_n = \log n$ we may choose $G = \mathbb{T}^{\infty}$ and the Kronecker flow $\beta : \mathbb{R} \to \mathbb{T}^{\infty}, \ t \mapsto (p_k^{-it})_{k=1}^{\infty}$. Hence Bayart's \mathcal{H}_p -theory is incorporated.
- There are plenty of ways to 'realize' the groups in this result! For arbitrary λ 's the Bohr compactification $\overline{\mathbb{R}}$ or $\widehat{\mathbb{Q}}^{\infty}$ always do the job, and for certain classes of 'nice' λ 's the groups $\mathbb{T}^{\infty} = \widehat{\mathbb{Z}}^{\infty}$ and Ξ ...
- The general motto is: Choose the group which fits with your frequency and your problem!

The Bohr-Hedenmalm-Lindqvist-Seip theorem for general Dirichlet series

Let λ satisfy (BC). Then

$$\mathcal{D}_{\infty}(\lambda) = \mathcal{H}_{\infty}(\lambda)$$

The proof needs an extension of Helson's theorem

Recall that the idea of this talk was to explain how the following results are linked?

Carleson-Hunt theorem

The Fourier series of every $f \in L_p(\mathbb{T}), 1 converges almost everywhere on <math>\mathbb{T}$.

Bohr's theorem

Let $D = \sum a_n n^{-s}$ be a Dirichlet series. Then the abscissa of uniform convergence and the abscissa of boundness coincide.

Helson's theorem

Let $D = \sum a_n n^{-s}$ be a Dirichlet series such that $(a_n) \in \ell_2$. Then $\sum \chi(n)a_n(D)n^{-s}$ converges for almost all χ on [Re > 0].

Assume that λ satisfies (BC) and (G, β) be a λ -Dirichlet group.

Helson's theorem in $\mathcal{H}_p(\lambda)$'s Let $1 \le p < \infty$. Then for every $D \in \mathcal{H}_p(\lambda)$ the Dirichlet series

$$\sum h_{\lambda_n}(\omega)a_n(D)e^{-\lambda_n s}$$

for almost all $\omega \in G$ converges on [Re > 0].

Assume that λ satisfies (BC) and (G, β) be a λ -Dirichlet group.

Helson's theorem in $\mathcal{H}_p(\lambda)$'s Let $1 \le p < \infty$. Then for every u > 0 and every $D \in \mathcal{H}_p(\lambda)$ the series $\sum a_n(D)e^{-\lambda_n u}h_{\lambda_n}$

converges almost everywhere on \boldsymbol{G} .

Maximal inequality

For every u>0 there is some C=C(u)>0 such that for every $D\in \mathcal{H}_p(\lambda), \ 1\leq p<\infty$

$$\left\|\sup_{N} \left|\sum_{n=1}^{N} a_n(D) e^{-\lambda_n u} h_{\lambda_n}\right|\right\|_{L_p(G)} \le C \|D\|_{\mathcal{H}_p(\lambda)}$$

Credits on the 'almost everywhere part' in the ordinary case:

- p = 2: due to Helson, and Bayart gives a proof with the Menchoff-Rademacher theorem....
- $1 \leq p < \infty$: due to Bayart, and his proof uses so-called hypercontractivity....

In the ordinary case no maximal inequalities were known so far. First application: If in our maximal inequality we let $p \to \infty$, then Bohr's fundamental theorem appears in a natural way.

What about convergence on the imaginary axis – the case u = 0?

Theorem

Let λ be a frequency of integer type and (G, β) a λ -Dirichlet group. Then for every 1 there is a constant <math>C = C(p) > 0 such that for every $D \in \mathcal{H}_p(\lambda)$

$$\left\|\sup_{N} \left|\sum_{n=1}^{N} a_n h_{\lambda_n}\right|\right\|_{L_p(G)} \le C \|D\|_{\mathcal{H}_p(\lambda)}.$$

In particular, the series

$$\sum a_n(D)h_{\lambda_n}$$

converges almost everywhere on G.

Credits

- For $1 and <math display="inline">\lambda = (n)$ this is a reformulation of the Carleson-Hunt theorem.
- For p = 2 and $\lambda = (\log n)$ the result is due to Hedenmalm and Saksman and its proof is based on Carleson's maximal inequality and a technique of Fefferman.
- For 1 the Carleson-Hunt maximal inequality and Feffermans technique.

What does this mean for functions on \mathbb{T}^{∞} ?

Carleson-Hunt type theorem for the infinite dimensional torus Let $1 . Then for every <math>f \in H_p(\mathbb{T}^\infty)$ and for almost all $z \in \mathbb{T}^\infty$

$$f(z) = \lim_{N} \sum_{\mathfrak{p}^{\alpha} \le N} \hat{f}(\alpha) z^{\alpha}$$

and

$$\left\| \sup_{N} \left| \sum_{\mathbf{p}^{\alpha} \leq N} \hat{f}(\alpha) z^{\alpha} \right| \right\|_{L_{p}(\mathbb{T}^{\infty})} \leq C(p) \|f\|_{H_{p}(\mathbb{T}^{\infty})}.$$

Helson's theorem for the infinite dimensional torus

Let $1 \leq p < \infty$. Then for every $f \in H_p(\mathbb{T}^\infty)$, every u > 0 and almost all $z \in \mathbb{T}^\infty$

$$\lim_N \sum_{\mathfrak{p}^\alpha \leq N} \widehat{f}(\alpha) \left(\frac{z}{\mathfrak{p}^u}\right)^\alpha \quad \text{exists}$$

and

$$\left\| \sup_{N} \left| \sum_{\mathbf{p}^{\alpha} \le N} c_{\alpha} \left(\frac{w}{\mathbf{p}^{u}} \right)^{\alpha} \right| \right\|_{L_{p}(\mathbb{T}^{\infty})} \le C(u) \|f\|_{p}.$$