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Carleson-Hunt theorem, 1966

The Fourier series of every f 2 Lp(T), 1 < p < 1 converges almost

everywhere on T.

Bohr’s fundamental theorem, 1914

Let D =

P

ann
�s be a Dirichlet series. Then the abscissa of uniform

convergence and the abscissa of boundedness coincide.

Helson’s theorem.....
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Appetizer – Riemann’s conjecture is true ’almost everywhere’:

For almost all completely multiplicative arithmetic functions � : N ! T
the radomized ⇣-function

X

�(n)
1

ns

converges on [Re > 1

2

] and has no zeros there.

Almost everywhere?

⌅ �! T1, � 7! (�(pk)) group isomorphism

Helson’s theorem, 1969

Let D =

P

ann
�s be a Dirichlet series such that (an) 2 `

2

. Then

X

�(n)ann
�s

converges for almost all � 2 ⌅ on [Re > 0].
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Carleson-Hunt theorem, 1966

The Fourier series of every f 2 Lp(T), 1 < p < 1 converges almost

everywhere on T.

Bohr’s theorem, 1914

Let D =

P

ann
�s be a Dirichlet series. Then the abscissa of uniform

convergence and the abscissa of boundedness coincide.

Helson’s theorem, 1969

Let D =

P

ann
�s be a Dirichlet series such that (an) 2 `

2

. Then
P

�(n)an(D)n�s converges for almost all � on [Re > 0].

These three apparently very di↵erent results are in fact linked!
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General Dirichlet series

general Dirichlet series
P

ane
��ns

S
S
S
S
S
Sw

�n = n, z = e�s

◆
◆

◆
◆

◆
◆/

�n = log n

power series
P

anz
n

ordinary case
P

an
1

ns
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A natural class of �-Dirichlet series

D1(�) =
n

D =

X

ane
��ns

: D is bdd and holo on [Re > 0]

o

Theorem

D1(�) is a Banach space whenever � satisfies Bohr’s condition (BC):

9l = l(�) > 08� > 0 9 C > 0 8 n 2 N : �n+1

� �n � Ce�(l+�)�n
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Obvious

There is a bijective isometry

D1((n)) = H1(T) , D =

X

ane
�ns 7! f =

X

anz
n .

Theorem, Bohr-Hedenmalm-Lindqvist-Seip, 1998

There is a bijective isometry

D1((log n)) = H1(T1
) , D 7! f

which preserves the coe�cients, i.e. an(D) =

ˆf(↵) whenever n 2 N
and ↵ = (↵

1

, . . . ,↵N , 0, . . .) 2 N(N)
0

are such that

n = p↵1
1

⇥ . . .⇥ p↵N
N .
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One of the crucial tools

The continuous group homomorphism

� : R ! T1 , t 7! (p�it
k )

1
k=1

has dense range, and for each n and ↵ with n = p↵ the following

diagram commutes

T1 T

R

zzz↵

e�ittt logn
�
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Bayart’s Hardy spaces of Dirichlet series, 2002

For 1  p  1

Hp :=

n

D =

X

ann
�s

: 9f 2 Hp(T1
) : an(D) =

ˆf(↵) if n = p↵
o

together with kDkp = kfkp defines a Banach space.

The Bohr-Hedenmalm-Lindqvist-Seip theorem revisited

D1((log n)) = H1
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From ordinary to general Dirichlet series

• . . . a big step!

• A few heros in alphabetical order: Bohr, Besikovitch, Bohnenblust,

Hardy, Helson, Hille, Kahane, Landau, Perron, M. Riesz, Neder,. . .

Under construction

. . . an Hp-theory of �-Dirichlet series

modelled along Bayart’s ‘ordinary theory’
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���-Dirichlet groups

Given a frequency �, we call a pair (G,�) a �-Dirichlet group if

• G is a compact abelian group and � : R ! G a continuous group

homomorphism with dense range.

• For each character e�i�nttt there is some character h�n(!!!) (then

unique) such that

G T

R

h�n(!!!)

e�i�nttt
�
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Definition – Hardy spaces of general Dirichlet series

Let (G,�) be a �-Dirichlet group, and 1  p  1. Then

Hp(�)

consists of all D =

P

ane
��ns for which there is some f 2 Lp(G)

(then unique) such that

• ˆf :

bG ! C is supported by all h�n , n 2 N
• an(D) =

ˆf(h�n) for all n
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Essential

• The Hp(�)’s are Banach spaces which are independent of the

chosen �-Dirichlet group.

• For �n = log n we may choose G = T1 and the Kronecker flow

� : R ! T1 , t 7! (p�it
k )

1
k=1

. Hence Bayart’s Hp-theory is

incorporated.

• There are plenty of ways to ‘realize’ the groups in this result!

For arbitrary �’s the Bohr compactification R or bQ1 always do

the job, and for certain classes of ‘nice’ �’s the groups T1
=

bZ1

and ⌅...

• The general motto is: Choose the group which fits with your

frequency and your problem!
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The Bohr-Hedenmalm-Lindqvist-Seip theorem for general

Dirichlet series

Let � satisfy (BC). Then

D1(�) = H1(�)

The proof needs an extension of Helson’s theorem ....
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Recall that the idea of this talk was to explain how the following

results are linked?

Carleson-Hunt theorem

The Fourier series of every f 2 Lp(T), 1 < p < 1 converges almost

everywhere on T.

Bohr’s theorem

Let D =

P

ann
�s be a Dirichlet series. Then the abscissa of uniform

convergence and the abscissa of bounedness coincide.

Helson’s theorem

Let D =

P

ann
�s be a Dirichlet series such that (an) 2 `

2

. Then
P

�(n)an(D)n�s converges for almost all � on [Re > 0].
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Assume that ��� satisfies (BC)

(BC)

(BC) and (G,�)(G,�)
(G,�) be a ���-Dirichlet group.

Helson’s theorem in Hp(�)Hp(�)Hp(�)’s

Let 1  p < 1. Then for every D 2 Hp(�) the Dirichlet series

X

h�n(!)an(D)e��ns

for almost all ! 2 G converges on [Re > 0].

Helson’s theorem in Hp(�)Hp(�)Hp(�)’s

Let 1  p < 1. Then for every u > 0 and every D 2 Hp(�) the series

X

an(D)e��nuh�n

converges almost everywhere on G .

Maximal inequality

For every u > 0 there is some C = C(u) > 0 such that for every

D 2 Hp(�), 1  p < 1
�

�

�

�

sup

N

�

�

�

N
X

n=1

an(D)e��nuh�n

�

�

�

�

�

�

�

Lp(G)

 CkDkHp(�) .
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X
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�

�

�

�

sup

N

�

�

�

N
X

n=1

an(D)e��nuh�n

�

�

�

�

�

�

�

Lp(G)

 CkDkHp(�) .
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Credits on the ’almost everywhere part’ in the ordinary case:

• p = 2 : due to Helson, and Bayart gives a proof with the

Mencho↵-Rademacher theorem....

• 1  p < 1 : due to Bayart, and his proof uses so-called

hypercontractivity....

In the ordinary case no maximal inequalities were known so far. First

application: If in our maximal inequality we let p ! 1, then Bohr’s

fundamental theorem appears in a natural way.

What about convergence on the imaginary axis – the case u = 0

u = 0u = 0?
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Theorem

Let � be a frequency of integer type and (G,�) a �-Dirichlet group.

Then for every 1 < p < 1 there is a constant C = C(p) > 0 such that

for every D 2 Hp(�)

�

�

�

�

sup

N

�

�

�

N
X

n=1

anh�n

�

�

�

�

�

�

�

Lp(G)

 CkDkHp(�) .

In particular, the series
X

an(D)h�n

converges almost everywhere on G.
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Credits

• For 1 < p < 1 and � = (n) this is a reformulation of the

Carleson-Hunt theorem.

• For p = 2 and � = (log n) the result is due to Hedenmalm and

Saksman – and its proof is based on Carleson’s maximal inequality

and a technique of Fe↵erman.

• For 1 < p < 1 our proof follows similar ideas – in particular using

the Carleson-Hunt maximal inequality and Fe↵ermans technique.

What does this mean for functions on T1T1T1?

20



Carleson-Hunt type theorem for the infinite dimensional torus

Let 1 < p < 1. Then for every f 2 Hp(T1
) and for almost all z 2 T1

f(z) = lim

N

X

p↵N

ˆf(↵)z↵

and
�

�

�

�

sup

N

�

�

�

X

p↵N

ˆf(↵)z↵
�

�

�

�

�

�

�

Lp(T1
)

 C(p)kfkHp(T1
)

.
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Helson’s theorem for the infinite dimensional torus

Let 1  p < 1. Then for every f 2 Hp(T1
), every u > 0 and almost

all z 2 T1

lim

N

X

p↵N

ˆf(↵)
⇣ z

pu

⌘↵

exists

and
�

�

�

�

sup

N

�

�

�

X

p↵N

c↵

⇣ w

pu

⌘↵�
�

�

�

�

�

�

Lp(T1
)

 C(u)kfkp .
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