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Carleson-Hunt theorem, 1966

The Fourier series of every f € L,(T),1 < p < oo converges almost
everywhere on T.

Bohr’s fundamental theorem, 1914

Let D = > a,n ° be a Dirichlet series. Then the abscissa of uniform
convergence and the abscissa of boundedness coincide.

Helson’s theorem.....



Appetizer — Riemann’s conjecture is true 'almost everywhere’:

For almost all completely multiplicative arithmetic functions y : N — T

> x(n)%

converges on [Re > 1] and has no zeros there.

the radomized (-function

Almost everywhere?

E— T, x+~ (x(px)) group isomorphism

Helson’s theorem, 1969

Let D = > a,n* be a Dirichlet series such that (a,,) € ¢5. Then

Z x(n)apn=*

converges for almost all x € E on [Re > 0].



Carleson-Hunt theorem, 1966

The Fourier series of every f € L,(T),1 < p < oo converges almost
everywhere on T.

Bohr’s theorem, 1914

Let D = >  a,n ® be a Dirichlet series. Then the abscissa of uniform
convergence and the abscissa of boundedness coincide.

Helson’s theorem, 1969

Let D = > a,n % be a Dirichlet series such that (a,) € ¢5. Then
> x(n)a,(D)n~* converges for almost all y on [Re > 0].

These three apparently very different results are in fact linked!



General Dirichlet series

A = logn

ordinary case

Zan#

general Dirichlet series

S ane e

power series

> anz™



A natural class of \-Dirichlet series

Doo(N) = {D = Zane_’\"sz D is bdd and holo on [Re > O]}

Theorem

Doo(X) is a Banach space whenever \ satisfies Bohr's condition (BC):

A=IA)>0>03C>0VneN: Ay — A, > Ce”(HDn



Obvious

There is a bijective isometry

Doo((n)) = Hy(T), D= Zane_"S — f= Zanz”.

Theorem, Bohr-Hedenmalm-Lindqvist-Seip, 1998

There is a bijective isometry
Doo((logn)) = Hoo(T™), D+ f

which preserves the coefficients, i.e. a, (D) = f(c) whenever n € N
and @ = (aq,...,an,0,...) € N(()N) are such that

— &1 N
n=mp X...XpN 0



One of the crucial tools
The continuous group homomorphism

B:R—T®, tw (py "),

has dense range, and for each n and a with n = p® the following
diagram commutes




Bayart’s Hardy spaces of Dirichlet series, 2002
For1 <p< o

H, = {D = aun~: 3f € Hy(T™) : an(D) = f(a) if n= p”‘}

together with ||D||, = || f||, defines a Banach space.

The Bohr-Hedenmalm-Lindqvist-Seip theorem revisited

Doo((logn)) = Heo
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From ordinary to general Dirichlet series
e ... a big step!

e A few heros in alphabetical order: Bohr, Besikovitch, Bohnenblust,
Hardy, Helson, Hille, Kahane, Landau, Perron, M. Riesz, Neder,. ..

Under construction

... an H-theory of A-Dirichlet series
modelled along Bayart's ‘ordinary theory’
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A-Dirichlet groups
Given a frequency A, we call a pair (G, ) a A-Dirichlet group if

e (G is a compact abelian group and g : R — G a continuous group
homomorphism with dense range.

e For each character e~"** there is some character hy, (w) (then
unique) such that

- hy, (W)

B

T

e—i)\nt
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Definition — Hardy spaces of general Dirichlet series
Let (G, B) be a A-Dirichlet group, and 1 < p < co. Then

Hp(A)

consists of all D = > a,e~*"* for which there is some f € L,(G)
(then unique) such that

° f: G—Cis supported by all hy,, n € N

e a,(D) = f(hy,) foralln
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Essential

e The #,(\)'s are Banach spaces which are independent of the
chosen A-Dirichlet group.

e For \, =logn we may choose G = T and the Kronecker flow
B:R—T®, t+— (p;it),;“;l. Hence Bayart's H,,-theory is
incorporated.

e There are plenty of ways to ‘realize’ the groups in this result!

For arbitrary \'s the Bohr compactification R or @OO always do
the job, and for certain classes of ‘nice’ \'s the groups T = 7>
and Z...

e The general motto is: Choose the group which fits with your
frequency and your problem!
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The Bohr-Hedenmalm-Lindqvist-Seip theorem for general
Dirichlet series

Let A satisfy (BC). Then

Doo(A) = Hoo(N)

The proof needs an extension of Helson’s theorem ....
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Recall that the idea of this talk was to explain how the following
results are linked?

Carleson-Hunt theorem

The Fourier series of every f € L,(T),1 < p < oo converges almost
everywhere on T.

Bohr’s theorem

Let D = > a,n ® be a Dirichlet series. Then the abscissa of uniform
convergence and the abscissa of bounedness coincide.

Helson’s theorem

Let D = > a,n ° be a Dirichlet series such that (a,) € ¢5. Then
> x(n)a,(D)n~* converges for almost all y on [Re > 0].
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Assume that ) satisfies (BC) and (G, 8) be a A-Dirichlet group.

Helson’s theorem in #,())’s

Let 1 < p < co. Then for every D € H,(\) the Dirichlet series

Z Ry, (W)an(D)e A

for almost all w € G converges on [Re > 0].
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Assume that ) satisfies (BC) and (G, 8) be a A-Dirichlet group.

Helson’s theorem in H,())’s

Let 1 <p < oco. Then for every u > 0 and every D € H,(\) the series

Z an(D)e_’\""hAn

converges almost everywhere on G .

Maximal inequality

For every u > 0 there is some C' = C(u) > 0 such that for every
DeHy(N),1<p<oo

N
sup‘ Zan(D)@Anuh)\n‘H < C|IDll3, ) -
Ly(G)
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Credits on the 'almost everywhere part’ in the ordinary case:

e p = 2: due to Helson, and Bayart gives a proof with the
Menchoff-Rademacher theorem....

e 1 < p < oo: due to Bayart, and his proof uses so-called
hypercontractivity....

In the ordinary case no maximal inequalities were known so far. First
application: If in our maximal inequality we let p — oo, then Bohr's
fundamental theorem appears in a natural way.

What about convergence on the imaginary axis — the case u =07
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Theorem

Let A be a frequency of integer type and (G, 3) a A-Dirichlet group.
Then for every 1 < p < oo there is a constant C' = C(p) > 0 such that
for every D € H,(N)

N
sup‘ZanhAn)H < Cl D3, x) -
N n=1 Ly(G)

In particular, the series
Zan(D)hAn

converges almost everywhere on G.
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Credits

e For 1 <p < oo and A = (n) this is a reformulation of the
Carleson-Hunt theorem.

e For p =2 and A = (logn) the result is due to Hedenmalm and
Saksman — and its proof is based on Carleson’'s maximal inequality
and a technique of Fefferman.

e For 1 < p < oo our proof follows similar ideas — in particular using
the Carleson-Hunt maximal inequality and Feffermans technique.

What does this mean for functions on T*°?
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Carleson-Hunt type theorem for the infinite dimensional torus
Let 1 < p < co. Then for every f € H,(T*) and for almost all z € T
f@) =lm 3 fla)e
pY<N
and

< CONSlle, (=) -
Lip(T)

s%p‘ > fla)ze

pESN
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Helson’s theorem for the infinite dimensional torus
Let 1 < p < oo. Then for every f € H,(T>), every u > 0 and almost
all z € T*°
A~ z «
lil{fn Z f(a) (p—u> exists
pe<N

and

22



