Non-symmetric polarization Sunke Schlüters

Carl von Ossietzky University Oldenburg

Let *P* be an *m*-homogeneous polynomial in *n*-complex variables x_1, \ldots, x_n . Clearly, *P* has a unique representation in the form

$$P(x) = \sum_{1 \leq j_1 \leq \ldots \leq j_m \leq n} c_{(j_1,\ldots,j_m)} x_{j_1} \cdots x_{j_m},$$

and the *m*-form

$$L_P(x^{(1)},\ldots,x^{(m)}) = \sum_{1 \le j_1 \le \ldots \le j_m \le n} c_{(j_1,\ldots,j_m)} x_{j_1}^{(1)} \cdots x_{j_m}^{(m)}$$

satisfies $L_p(x,...,x) = P(x)$ for every $x \in \mathbb{C}^n$. We show that, although L_p in general is non-symmetric, for a large class of reasonable norms $\|\cdot\|$ on \mathbb{C}^n the norm of L_p on $(\mathbb{C}^n, \|\cdot\|)^m$ up to a logarithmic term $(c \log n)^{m^2}$ can be estimated by the norm of P on $(\mathbb{C}^n, \|\cdot\|)$; here $c \ge 1$ denotes a universal constant. Moreover, for the ℓ_p -norms $\|\cdot\|_p$, $1 \le p < 2$ the logarithmic term in the number n of variables is even superfluous.